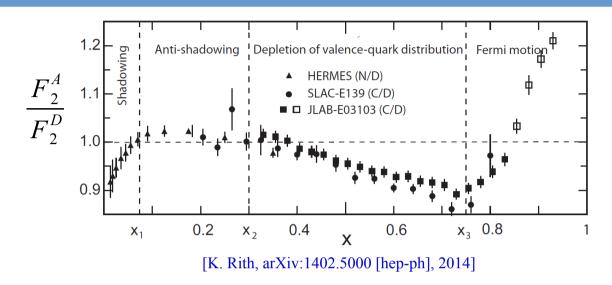


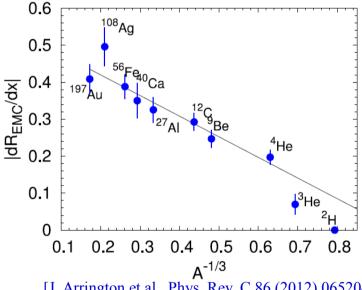
3D Partonic Structure of Nucleons and Nuclei

M. Hattawy


- Physics Motivations
- Recent Results.
- Future Measurements.

Light Cone 2018, 14-18 May 2018, Jefferson Lab

EMC Effect

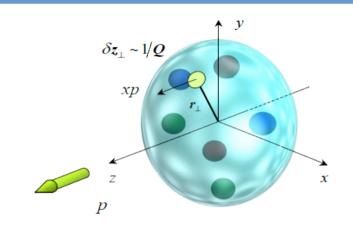


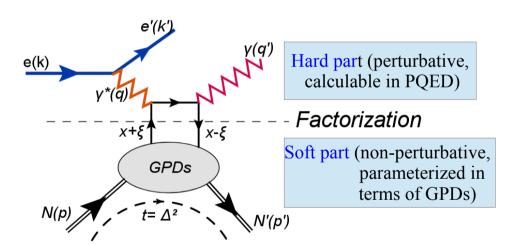
- Precise measurements at CERN, SLAC and JLab
 - → Links with the nuclear properties, i.e. mass & density
- The origin of the EMC effect is still not fully understood, but possible explanations:
 - → Modifications of the nucleons themselves
 - → Effect of non-nucleonic degrees of freedom, e.g. pions exchange
 - → Modifications from multi-nucleon effects (binding, N-N correlations, etc...)

Clear explanations may arise from measuring the nuclear modifications via

measuring the Generalized Parton Distributions.

EMC effect: the modification of the PDF F₂ as a function of the longitudinal momentum fraction x [0.3, 0.75] carried by the parton.

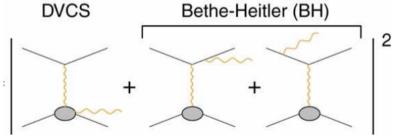

[J. Arrington et al., Phys. Rev. C 86 (2012) 065204]



Generalized Parton Distributions

- Contain information on:

- → Correlation between quarks and anti-quarks
- → Correlation between longitudinal momentum and transverse spatial position of partons
- Can be accessed via hard exclusive processes such as deeply virtual Compton scattering (DVCS):



$$\xi \simeq x_B / (2 - x_B)$$
 $x_B = Q^2 / 2 \text{p.q}$
 $t = (p - p')^2 = (q - q')^2$

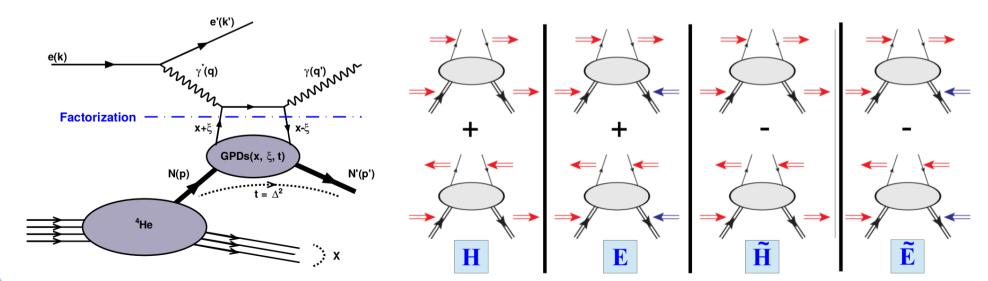
* At leading order in $1/Q^2$ (twist-2) and in the coupling constant of QCD (α_s).

• Experimentally, the measured photonelectroproduction cross section (ep \rightarrow ep γ) is:

$$d\sigma \propto |\tau_{\rm BH}|^2 + \underbrace{\left(\tau_{\rm DVCS}^*\tau_{\rm BH} + \tau_{\rm BH}^*\tau_{\rm DVCS}\right)}_{\mathcal{I}} + |\tau_{\rm DVCS}|^2$$

• The DVCS signal is enhanced by the interference with BH.

DVCS off Nuclei


Two DVCS channels are accessible with nuclear targets:

♦ Coherent DVCS: $e^-A \rightarrow e^-A \gamma$

- → Study the partonic structure of the nucleus.
- \rightarrow One chiral-even GPD ($\mathbf{H_A}(\mathbf{x},\boldsymbol{\xi},\mathbf{t})$) is needed to parametrize the structure of the spinless nuclei (4 He, 12 C, 16 O, ...).

♦ Incoherent DVCS: $e^-A \rightarrow e^-N \gamma X$

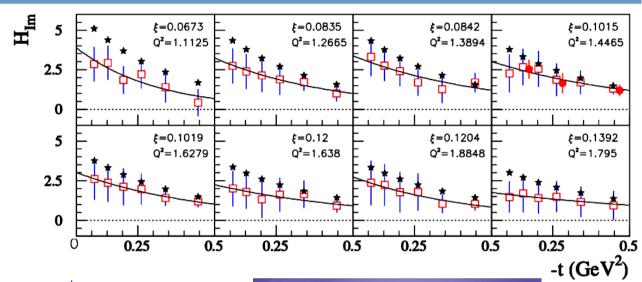
- → The nucleus breaks and the DVCS takes place on a nucleon.
- → Study the partonic structure of the bound nucleons (4 chiral-even GPDs are needed to parametrize their structure).

e'(k')_

 $H_{\Delta}(x, \xi, t)$

χ+ξ

4He(p)

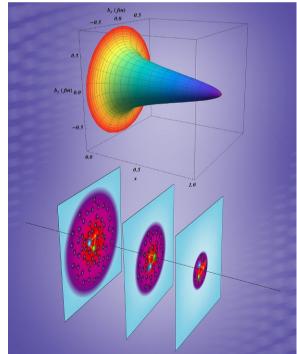

γ(**q**')_γγγ

Factorization

⁴He'(p')

Proton Tomography via DVCS

- Local fit of all the JLab data
- Jlab Hall A $(\sigma, \Delta \sigma)$
- CLAS (σ , $\Delta \sigma$, 1TSA, DSA)
- Enough coverage to explore the t and $x_B (\rightarrow \xi)$ dependence of H_{Im} .


Obtaining the tomography of the proton

- Represented is the mean square charge radius of the

proton for slices of x.

• The nucleon size is shrinking with x.

0.5 0.6 0.6 0.5 0.4 (X) 0.3 0.2 0.1 0.1 0.1

[R. Dupré et al. Phys.Rev. D95 (2017) no.1, 011501]

Nuclear Spin-Zero DVCS Observables

The GPD H_A parametrizes the structure of the spinless nuclei (⁴He, ¹²C, ...)

$$\mathcal{H}_{A}(\xi,t) = Re(\mathcal{H}_{A}(\xi,t)) - i\pi Im(\mathcal{H}_{A}(\xi,t))$$

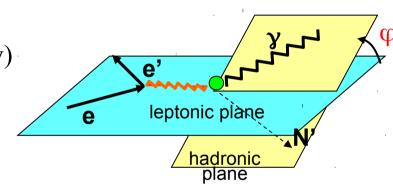
$$Im(\mathcal{H}_{A}(\xi,t)) = H_{A}(\xi,\xi,t) - H_{A}(-\xi,\xi,t)$$

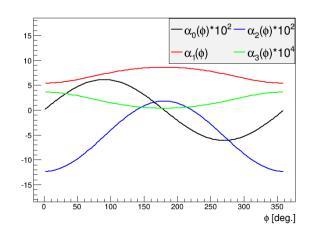
$$Re(\mathcal{H}_{A}(\xi,t)) = \mathcal{P} \int_{0}^{1} dx [H_{A}(x,\xi,t) - H_{A}(-x,\xi,t)] C^{+}(x,\xi)$$

$$C^{+}(x,\xi) = \frac{1}{x-\xi} + \frac{1}{x+\xi}$$

 \rightarrow Beam-spin asymmetry ($A_{LU}(\varphi)$) : (+/- beam helicity)

$$A_{LU} = rac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-} = rac{1}{P_B} rac{N^+ - N^-}{N^+ + N^-}$$

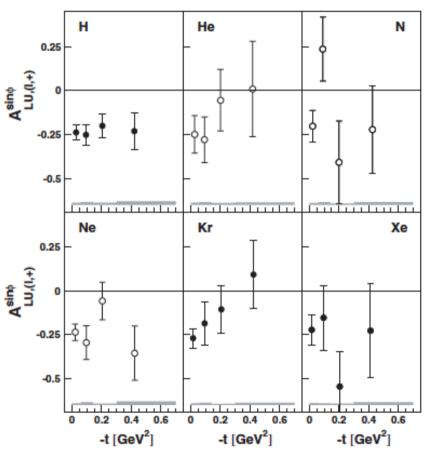

$$= \frac{\alpha_0(\phi) \Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$$


$$\alpha_{0}(\phi) = \frac{x_{A}(1+\varepsilon^{2})^{2}}{y}S_{++}(1)\sin(\phi)$$

$$\alpha_{1}(\phi) = c_{0}^{BH} + c_{1}^{BH}\cos(\phi) + c_{2}^{BH}\cos(2\phi)$$

$$\alpha_{2}(\phi) = \frac{x_{A}(1+\varepsilon^{2})^{2}}{y}\left(C_{++}(0) + C_{++}(1)\cos(\phi)\right)$$

$$\alpha_{3}(\phi) = \frac{x_{A}^{2}t(1+\varepsilon^{2})^{2}}{y}\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi) \cdot 2\frac{2-2y+y^{2}+\frac{\varepsilon^{2}}{2}y^{2}}{1+\varepsilon^{2}}$$



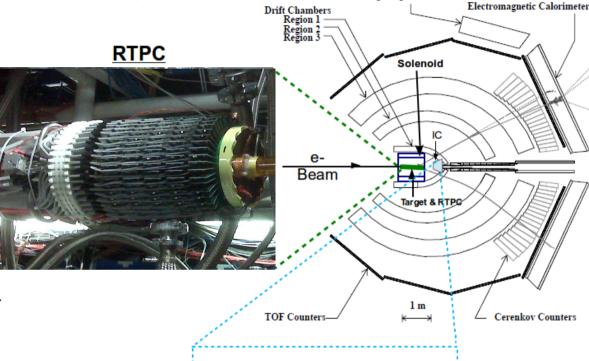
Nuclear DVCS Measurements: HERMES

- The exclusivity is ensured via cut on the missing mass of $e\gamma X$ final state configuration.
- Coherent and incoherent separation depending on -t, i.e. coherent rich at small -t.
- Conclusions from HERMES: No nuclear-mass dependence has been observed.

In CLAS - E08-024, we measured EXCLUSIVELY the coherent and incoherent DVCS channels off ⁴He

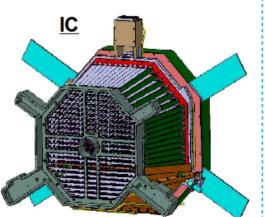
$$A_{LU}^{sin} = \frac{1}{\pi} \int_0^{2\pi} d\phi \sin\phi \, A_{LU}(\phi)$$

[A. Airapetian, et al., Phys Rev. C 81 (2010) 035202]


CLAS - E08-024 Experimental Setup

 $e^{-4}He \rightarrow e^{-}(^{4}He/pX) \gamma$

6 GeV, L. polarized


Beam polarization $(P_B) = 83\%$

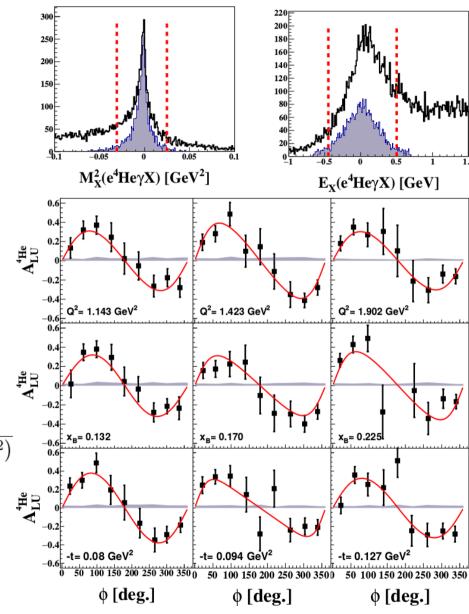
- CLAS:
 - → Superconducting Torus magnet.
 - → 6 independent sectors:
 - → DCs track charged particles.
 - \rightarrow CCs separate e⁻/ π ⁻.
 - → TOF Counters identify hadrons.
 - \rightarrow ECs detect γ , e and n [8°,45°].
- **IC:** Improves γ detection acceptance [4°,14°].
- RTPC: Detects low energy nuclear recoils.
- Solenoid: Shields the detectors from Møller electrons.
 - Enables tracking in the RTPC.
- **Target:** ⁴He gas @ 6 atm, 293 K

CLAS

Large-angle Calorimeter

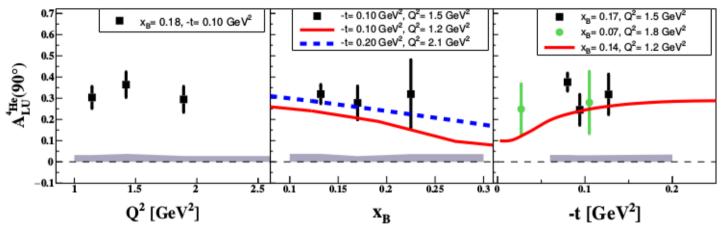
Coherent DVCS Selection & Asymmetries

1. We select **COHERENT** events which have:


- ♦ Events with :
 - Only one good electron in CLAS
 - At least one high-energy photon (E γ > 2 GeV)
 - Only one ${}^{4}\text{He}$ in RTPC (p $\sim 250\text{-}400 \text{ MeV}$).
- $\Diamond Q^2 > 1 \text{ GeV}^2$.
- ♦ Exclusivity cuts.

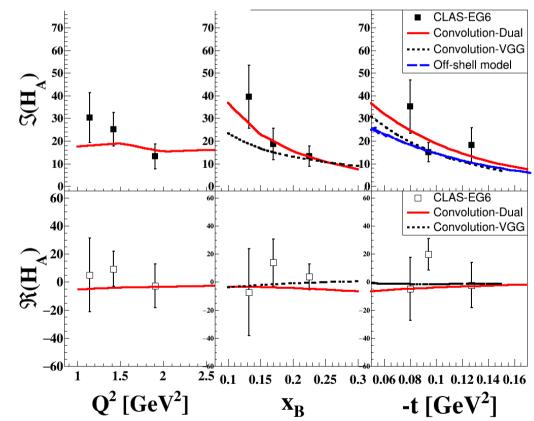
2. π^0 background subtraction based on data and simulation (cont. $\sim 2-4\%$)

3. Beam-spin asymmetry:


$$\begin{split} A_{LU} &= \frac{d^{4}\sigma^{+} - d^{4}\sigma^{-}}{d^{4}\sigma^{+} + d^{4}\sigma^{-}} = \frac{1}{P_{B}} \frac{N^{+} - N^{-}}{N^{+} + N^{-}} \\ &= \frac{\alpha_{0}(\phi) \Im m(\mathcal{H}_{A})}{\alpha_{1}(\phi) + \alpha_{2}(\phi) \Re e(\mathcal{H}_{A}) + \alpha_{3}(\phi) \left(\Re e(\mathcal{H}_{A})^{2} + \Im m(\mathcal{H}_{A})^{2}\right)} \end{split}$$

- 2D bins due to limited statistics
- Uncertainities dominated by statictics
- Systematic uncertainities (~ 10 %)
- dominated by exclusivity cuts (~8 %) and large phi bining (~5 %)

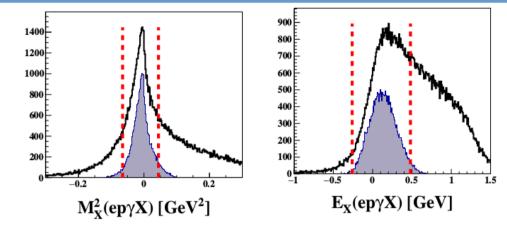
Coherent A_{LU} and CFFs


[S. Liuti and K. Taneja. PRC 72 (2005) 032201] [HERMES: A. Airapetian, et al., PRC 81, 035202 (2010)]

- \rightarrow Same A_{LU} sign as HERMES.
- → Asymmetries are in agreement with the available models.
- →The first ever experimental extraction of the real and the imaginary parts of the ⁴He CFF. Compatible with the calculations.
- \rightarrow More precise extraction of Im(H_A).

CLAS-EG6: M. Hattawy et al., Phys. Rev. Lett. 119, 202004 (2017) Convolution-Dual: V. Guzey, PRC 78, 025211 (2008).

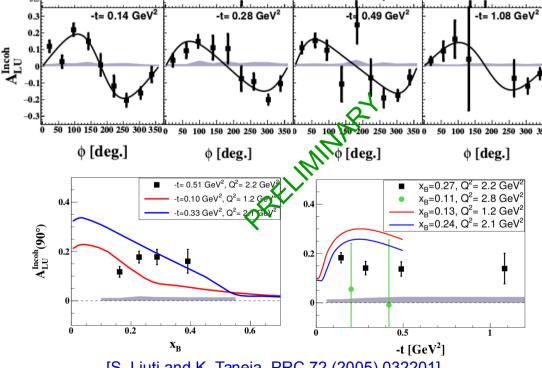
Convolution-VGG: M. Guidal, M. V. Polyakov, A. V. Radyushkin and M. Vanderhaeghen, PRD 72, 054013 (2005).


Off-shell model: J. O. Gonzalez-Hernandez, S. Liuti, G. R. Goldstein and K. Kathuria, PRC 88, no. 6, 065206 (2013)

Incoherent DVCS Selection & Asymmetries

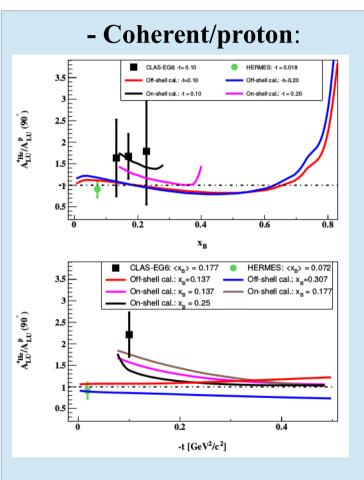
1. We select events which have:

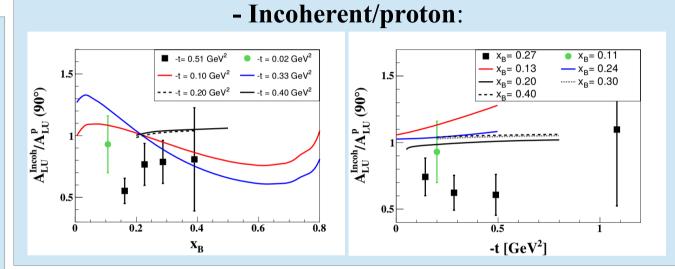
- ♦ Events with :
 - Only one good electron in CLAS
 - At least one high-energy photon (E γ > 2 GeV)
 - Only one proton in CLAS.
- $\Diamond Q^2 > 1 \text{ GeV}^2 \text{ and W} > 2 \text{ GeV/c}^2$
- ♦ Exclusivity cuts (3 sigmas).


2. π^0 background subtraction (contaminations ~ 8 - 11%)

3. Beam-spin asymmetry:

$$A_{LU} = rac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-} = rac{1}{P_B} rac{N^+ - N^-}{N^+ + N^-}$$


$$A_{LU} \propto \alpha(\phi) \big\{ F_1 H + \xi (F_1 + F_2) \widetilde{H} + \kappa F_2 E \big\}$$


- 2D bins due to limited statistics
- Fits in the form: $\frac{\alpha * \sin(\phi)}{(1 + \beta * \cos(\phi))}$
 - * A PRL presenting the incoherent results is under progress.

Generalized EMC Ratio

♦ We comparing our measured coherent/incoherent asymmetries to the asymmetries measured in CLAS DVCS experiment on free proton

→ Coherent/proton is:

- Consistent with the enhancement predicted by the Impulse approximation model [V. Guezy et al., PRC 78 (2008) 025211]
- Does not match the inclusive measurement of HERMES.

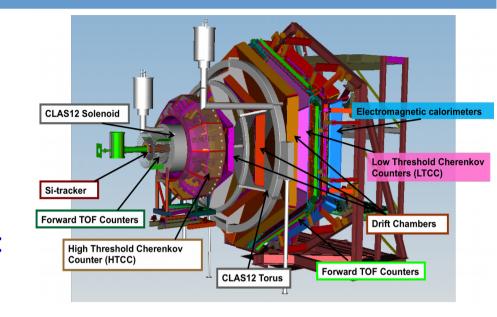
[A. Airapetian, et al., Phys. Rev. C 81, 035202 (2010)]

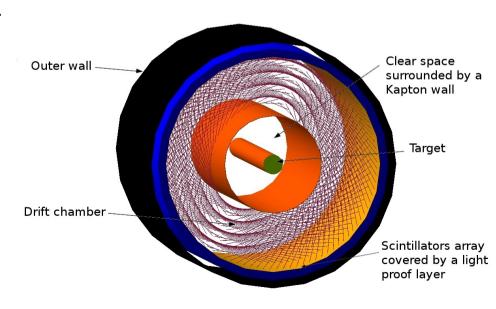
→ **Incoherent/proton** is supressed compared to both the PWIA and the nuclear spectral function calculations.

[S. Liuti and K. Taneja. PRC 72 (2005) 032201] [V. Guezy et al., PRC 78 (2008) 025211]

CLAS12-ALERT Program

◆ CLAS–E08-024 experiment:

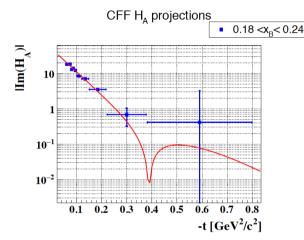

- 2D binning due to limited statistics
- Limited phase-space.

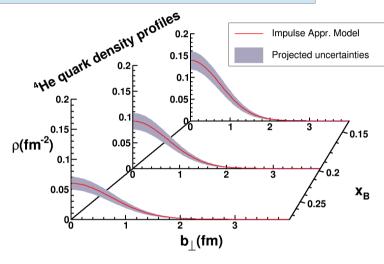

CLAS12 experimental apparatus:

- High luminosity & large acceptance.
- Measurements of deeply virtual exclusive, semi-inclusive, and inclusive processes.

◆ We proposed to measure with CLAS12:

- Partonic Structure of Light Nuclei.
- Tagged EMC Measurements on Light Nuclei.
- Spectator-Tagged DVCS Off Light Nuclei.
- Other Physics Opportunities.
- ◆ The momentum threshold of the CLAS12 inner tracker is too high to be used for our measurements.
- Proposed experimental setup:
 - CLAS12 forward detectors.
 - A Low Eenergy Recoil Tracker (ALERT) in place of CLAS12 Central detector (SVT & MVT).
- CLAS12-ALERT setup will allow higher statistics and wider kinematical coverage.

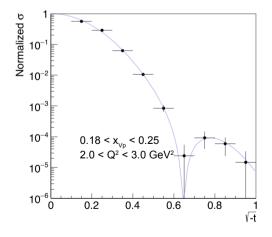

Partonic Structure of Light Nuclei (PR12-17-012)

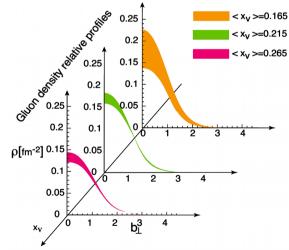

- Map the fundamental structure of nuclei within the GPD framework
- Compare the quark and gluon 3D structure of the Helium nucleus

$e^{4}He\rightarrow e^{4}He^{7}$:

- Fully model independent extracion of H_A CFF from fitting the BSA.
- Fourier transform of $Im(H_A)$ at $\xi=0$ gives probability densitiy of quarks as function of x and impact parameter.

$$\rho(x, 0, b_{\perp}) = \int_{0}^{\infty} J_{0}(b\sqrt{t})H^{A}(x, 0, t)\frac{\sqrt{t}}{2\pi}d\sqrt{t}$$





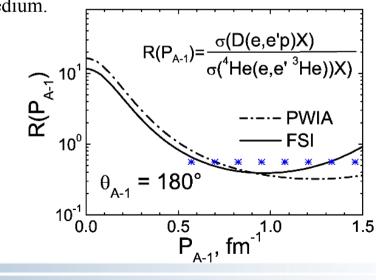
e ⁴He→e` ⁴He`φ:

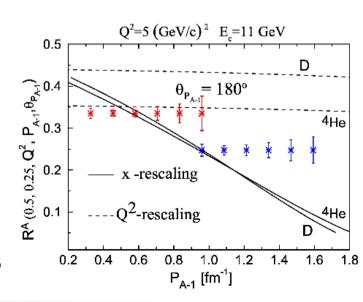
- Detect recoil ⁴He, e, and K⁺ (missing K⁻)
- The longitudinal cross-section will be extracted from the angular distribution of the kaon decay in the phi helicity frame.
- Gluon density extraction:

$$\rho_g(x,0,b_\perp) \to \int_0^\infty J_0(b\sqrt{t}) \sqrt{\frac{d\sigma_L}{dt}} \frac{\sqrt{t}}{2\pi} d\sqrt{t}$$

Requested PAC days: $20 \text{ days at } 3x10^{34} \text{ cm}^{-2}\text{s}^{-1} + 10 \text{ days at } 6x10^{34} \text{ cm}^{-2}\text{s}^{-1} + (5 \text{ Com.})$

Tagged EMC Measurements (PR12-17-012A)


DIS, with tagged spectator, provides access to new variables and explore links between EMC effect and intranuclear dynamics


◆ Comparing D to ⁴He is particularly interesting:

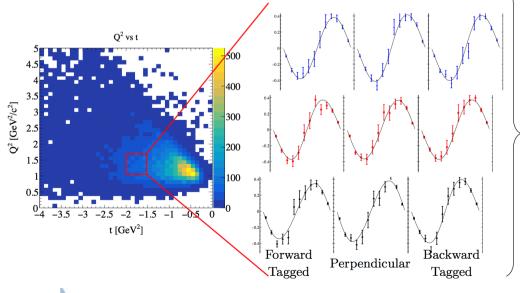
- It conserves the nucleus isospin symmetry.
- ⁴He is a light nuclei with a sizable EMC effect.
- The two rescaling effects are cleanly separated by the comparison between the two nuclei.
- They complement each other in spectator momentum coverage.

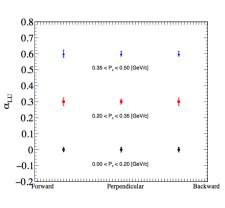
- FSI models over wide momentum and angle ranges.
- EMC effect models: x/Q^2 scaling.
- d/u ratio changes in nuclear medium.
- ◆ 40 (+5) PAC days
 - 20 on 4 He $(3x10^{34} \text{ cm}^{-2}\text{s}^{-1})$.
 - 20 on D $3x10^{34}$ cm⁻²s⁻¹).

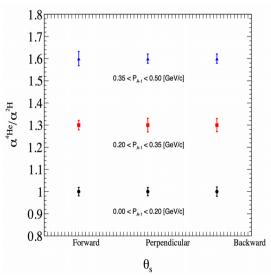
 $\mathbf{k_e}$

Spectator-Tagged DVCS On Light Nuclei (PR12-17-012B)

- Probe connection between partonic and nucleonic interpretations via DVCS
- Partonic interpretation and in-medium hadron tomography of nucleons
- Study of Off-Forward EMC effect in incoherent DVCS


◆ Bound-p DVCS:


- Fully detected ep³H final state, provides unique opportunity to study FSI, test PWIA, identify kinematics with small/large FSI.


◆ Bound neutron in ⁴He/quasi-free in ²H:

- e^{3} He(n) / ep(n) final states (p detection down to ~70 MeV, 3 He to ~120 MeV).
- Six-dimensional binning ($Q^{2},$ $x_{_{B}},$ t, $\phi,$ $p_{_{s}},$ $\theta_{_{s}}).$

No additional PAC days

CLAS12

Other Physics Opportunities (PR12-17-012C)

The three main proposals of the ALERT run group is only a fraction of the physics that can be achieved by successfully analyzing the ALERT run group data

• π^0 production off ⁴He

- Coherent and incoherent production.
- Measure BSA, leading to chiral-odd CFFs.
- Also as a DVCS background.

Coherent DVCS off D

- Access to new GPDs, H_3 , with relationships to dueteron charge form factors.
- Coherent DVMP off D
 - π^0 , φ , ω and ρ mesons.
- Semi-inclusive reaction p(e,e`p)X
 - Study the π^0 cloud of the proton.
- \bullet D(e, e'pp_s)X
 - Study the π^- cloud of the neutron.

More Physics:

- Helium GPDs beyond the DVCS at leading order and leading twist.
- Tagged nuclear form factors measurements.
- The role of Δs in short-range correlations.
- The role of the final state interaction in hadronization and medium modified fragmentation functions.
- The medium modification of the transverse momentum dependent parton distributions.
- ... and more

Conclusions & Perspectives

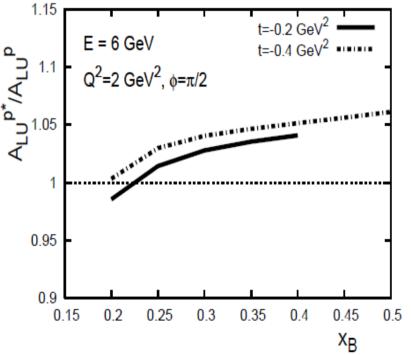
♦ Several decades of elastic and DIS experiments on hadrons have provided one-dimensional views of hadrons' structure.

♦ We are now exploring the 3D structure of nucleons within the GPD framework

- → Fifteen years of successful experiments at JLab.
- → Accumulated a wide array of proton data.
- \rightarrow The first tomography was extracted.

♦ The first exclusive measurement of DVCS off ⁴He:

- → The coherent DVCS shows a stronger asymmetry than the free proton as was expected from theory.
- → We performed the first ever model independent extraction of the ⁴He CFF.
- → We extracted EMC ratios and compared them to theoretical predictions.
- → The bound proton has shown a different trend compared to the free one indicating the medium modifications of the GPDs and opening up new opportunities to study the EMC effect.
- ♦ CLAS12-ALERT will provide wider kinematical coverage and better statistics that will:
 - → Allow performing ⁴He tomography in terms of quarks and gluons.
 - → Allow comparing the gluon radius to the charge radius.
 - → Use tagging methods to study EMC effect via DIS measurements.
 - → Use Tagged-DVCS techniques to study in-medium nucleon interpretations.
 - → Reinforce EIC physics program by proving their usefulness in the valence region.

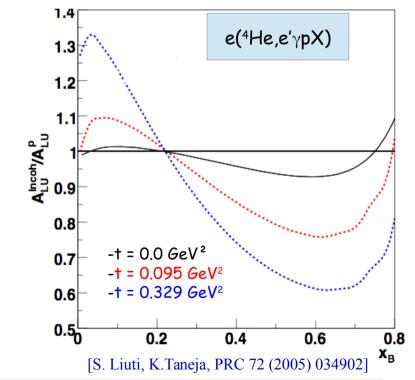

Theoretical Predictions of the EMC in ⁴He

On-shell calculations:

(1) Impulse approximation GPD^{4He} $(x,\xi,t) = \Sigma$ (free p and n GPDs)*F_{4He}(t)

(2) Medium modifications:

$$H^{q/p^*}(x, \xi, t, Q^2) = \frac{F_1^{p^*}(t)}{F_1^p(t)} H^q(x, \xi, t, Q^2),$$



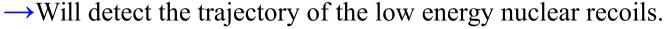
[V. Guzey, A. W. Thomas, K. Tsushima, PRC 79 (2009) 055205]

Off-shell calculations:

Nucleus = bound nucleons + nuclear binding effects

$$\begin{split} H^A(x,\xi,t) &= \sum_N \int \frac{d^2 P_\perp dY}{2(2\pi)^3} \, \frac{1}{A-Y} \, \mathcal{A} \rho^A(\underline{P^2},P'^2) & \text{Nuclear spectral function} \\ &\times \sqrt{\frac{Y-\xi}{Y}} \left[H^N_{OFF}(\frac{x}{Y},\frac{\xi}{Y},P^2,t) - \frac{1}{4} \frac{(\xi/Y)^2}{1-\xi/Y} E^N_{OFF}(\frac{x}{Y},\frac{\xi}{Y},P^2,t) \right] \end{split}$$

New ⁴He GPDs calculation is coming


ALERT Detector

Outer wall

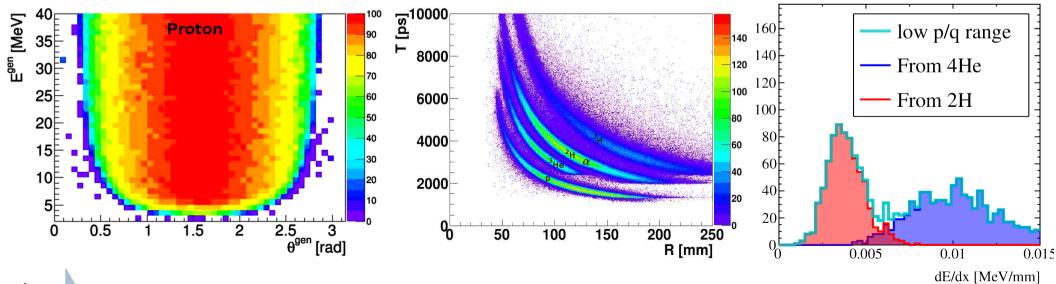
Drift chamber

- Cylindrical target:
 - 30 cm long
 - 6 mm outer radius.
 - Target at 3 atm pressure.
 - 25µm target wall (Kapton).
- ◆ A clear space filled with helium to reduce secondary scattering from the high rate Moller electrons (R_{out} = 30 mm).

- 8 circular layers of 2mm hexagonal cells.
- 10° stereo-angle to give z-resoluation.
- Total of 2600 wires, < 600 kg tension.
- Maximum drift time ~ 250 ns, will be included in the trigger.
- ◆ Two rings of plastic scintillators (Total thickness of 20 mm, SIPMs directly attached):
 - → TOF (< 150 ps resolution) and deposited energy measurements.
 - → Separate protons, deuterium, tritium, alpha, ³He

Clear space

surrounded by a Kapton wall


Target

Scintillators array covered by a light

proof layer

ALERT Expected Performance

- Capabilities for very low momentum detection
 - As low as 70 MeV/c for protons and 240 MeV/c for ⁴He
 - Forward and backward detections (25° from the beam).
- Capabilities to handle high rates
 - Small distance between wires leads to short drift time <250 ns (5 μs in a similar RTPC)
 - This translates into 20× less accidental hits
 - Will be integrated in the trigger for significantly reduced DAQ rate
- Improved PID
 - Like in the RTPC, we get dE/dx measurment
 - We have more resolution on the curvature due to the large pad size in previous RTPCs
 - TOF information

22