Recent results in lattice QCD spectroscopy

Ben Hörz (Johannes Gutenberg-Universität Mainz)
Light Cone 2018
May 14, 2018

MODERN-DAY LATTICE SPECTROSCOPY

Scattering processes and resonances from lattice QCD

Raúl A. Briceño, ${ }^{1, *}$ Jozef J. Dudek, ${ }^{1,2, \dagger}$ and Ross D. Young ${ }^{3, \ddagger}$
${ }^{1}$ Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
${ }^{2}$ Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
${ }^{3}$ Special Research Center for the Subatomic Structure of Matter (CSSM), Department of Physics, University of Adelaide, Adelaide 5005, Australia
(Dated: June 21, 2017)
The vast majority of hadrons observed in nature are not stable under the strong interaction, rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances of-

- state-of-the-art spectroscopy tries to treat resonances properly
- detailed review of status and prospects from last summer
[Briceño, Dudek, Young 1706.06223]
- here: brief introduction and recent highlights

SCATTERING FROM LATTICE QCD

Euclidean time, finite volume \rightsquigarrow no direct access to scattering

single particle in a periodic box $\rightsquigarrow \Delta E \propto \mathrm{e}^{-m L}$
two spinless particles in a periodic box
$\rightsquigarrow \Delta E \propto a_{0} / L^{3}+O\left(L^{-4}\right)$
[Lüscher '86, '91]

\Rightarrow 'The Lüscher method'

Two-Particle Quantization Condition

Formalism for two particles complete!

$$
\operatorname{det}\left[F\left(E_{L}, L\right)+\mathcal{M}^{-1}\left(E_{L}\right)\right]=0
$$

$E_{L}-\mathrm{FV}$ spectrum
\mathcal{M} - scattering amplitude
F - known functionsnonzero total momentum [e.g. Rummukainen, Gottlieb hep-lat/9503028]
scattering of unequal particles
multiple strongly coupled channels [e.g. Liu, Feng, He hep-lat/0508022]
\square particles with intrinsic spin
[e.g. Fu 1110.0319] [e.g. Göckeler et al. 1206.4141]

What took practitioners so long?

- FV spectroscopy is technically challenging
- algorithmic advances paved the way

Two-Particle Quantization Condition

Formalism for two particles complete!

$$
\operatorname{det}\left[F\left(E_{L}, L\right)+\mathcal{M}^{-1}\left(E_{L}\right)\right]=0
$$

$E_{L}-\mathrm{FV}$ spectrum
\mathcal{M} - scattering amplitude
F - known functions
nonzero total mor $\cdot F$ encodes the symmetries of the box ${ }^{9503028]}$ \square scattering of uned i.e. it is not diagonal in partial wave
\square multiple strongly

- relevant group theory worked out
\square particles with intr
[Morningstar et al. 1707.05817]
206.4141]
- publicly available
[github.com/cjmorningstar10/TwoHadronsInBox]
What took practitioners so tom?
- FV spectroscopy is technically challenging
- algorithmic advances paved the way
[related results: see talk by Colin Egerer Thu 3pm]

Two-Particle Quantization Condition

Formalism for two particles complete!

$$
\operatorname{det}\left[F\left(E_{L}, L\right)+\mathcal{M}^{-1}\left(E_{L}\right)\right]=0
$$

$E_{L}-\mathrm{FV}$ spectrum
\mathcal{M} - scattering amplitude
F - known functions
F - known functionsnonzero total momentum [e.g. Rummukainen, Gottlieb hep-lat/9503028]
scattering of unequal particles
multiple strongly coupled channels
particles with intrinsic spin
[e.g. Fu 1110.0319]
[e.g. Liu, Feng, He hep-lat/0508022] [e.g. Göckeler et al. 1206.4141]

What took practitioners so long?

- FV spectroscopy is technically challenging
- algorithmic advances paved the way

- good spectroscopy requires good operators
- necessitates efficient treatment of quark propagation
- a path to reliable spectroscopy: distillation \& stoch. variants
[Peardon et al. 0905.2160, Morningstar et al. 1104.3870]

A SIMPLE (YET RELEVANT) RESONANCE: $\rho(770)$

- elastic $\pi \pi$ scattering neglecting $\ell \geq 3$ partial wave spectrum \Leftrightarrow scattering amplitude
- benchmark system for the lattice
e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, ..., Dudek, Edwards, Thomas 1212.0830, ...
- survey of remaining systematics underway
lattice spacing, quark mass, residual FV, partial-wave mixing

A SIMPLE (YET RELEVANT) RESONANCE: $\rho(770)$

- elastic $\pi \pi$ scattering neglecting $\ell \geq 3$ partial wave spectrum \Leftrightarrow scattering amplitude
- benchmark system for the lattice
e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, ..., Dudek, Edwards, Thomas 1212.0830, ...
- survey of remaining systematics underway
lattice spacing, quark mass, residual FV, partial-wave mixing

A simple (YEt relevant) RESONANCE: $\rho(770)$

- elastic $\pi \pi$ scattering neglecting $\ell \geq 3$ partial wave spectrum \Leftrightarrow scattering amplitude
- benchmark system for the lattice
e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, ..., Dudek, Edwards, Thomas 1212.0830, ...
- survey of remaining systematics underway
lattice spacing, quark mass, residual FV, partial-wave mixing

A simple (YEt relevant) RESONANCE: $\rho(770)$

- elastic $\pi \pi$ scattering neglecting $\ell \geq 3$ partial wave spectrum \Leftrightarrow scattering amplitude
- benchmark system for the lattice
e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, ..., Dudek, Edwards, Thomas 1212.0830, ...
- survey of remaining systematics underway
lattice spacing, quark mass, residual FV, partial-wave mixing

A simple (YEt relevant) RESONANCE: $\rho(770)$

- elastic $\pi \pi$ scattering neglecting $\ell \geq 3$ partial wave spectrum \Leftrightarrow scattering amplitude
- benchmark system for the lattice
e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, ..., Dudek, Edwards, Thomas 1212.0830, ...
- survey of remaining systematics underway
lattice spacing, quark mass, residual FV, partial-wave mixing

A simple (YEt relevant) RESONANCE: $\rho(770)$

- elastic $\pi \pi$ scattering neglecting $\ell \geq 3$ partial wave spectrum \Leftrightarrow scattering amplitude
- benchmark system for the lattice
e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, ..., Dudek, Edwards, Thomas 1212.0830, ...
- survey of remaining systematics underway
lattice spacing, quark mass, residual FV, partial-wave mixing

Where do we go from here?

- determination of the QCD spectrum
- low-lying resonances
esp. scalar sector (σ, κ)
- baryon resonances ($N(1440), \Lambda(1405))$
- charm sector \& exotics
- ...
- electroweak processes above multi-particle thresholds
- B decays
- transition form factors for nuclear physics
- ...

Where do we go from here?

- determination of the QCD spectrum
- low-lying resonances
esp. scalar sector (σ, κ)
- baryon resonances ($N(1440), \Lambda(1405))$
- charm sector \& exotics
- electroweak processes above multi-particle thresholds
- mature two-particle formalism for matrix elements
[for a survey see Briceño EPJ Web Conf. 175 (2018) 01016]
- spectroscopy a stepping stone towards this goal

Alessandro Baroni Thu 3.20pm
Daniel Robaina Fri 4.10pm (for a different take on inclusive decay rates)

$\rho(770)$ FROM COUPLED $\pi \pi, K \bar{K}$ SCATTERING

- amplitudes from global fits to FV spectrum
- parametrization uncertainty (shaded bands)
- limited by multi-particle thresholds
\rightsquigarrow physical pion mass not necessarily desirable
[Wilson et al. 1507.02599]

AN a_{0} RESONANCE IN $\pi \eta, K \bar{K}$ SCATTERING

[Dudek, Edwards, Wilson 1602.05122]

AN a_{0} RESONANCE IN $\pi \eta, K \bar{K}$ SCATTERING

$I=0 \pi \pi$ SCATTERING AND THE σ RESONANCE

- $\sigma / f_{0}(500)$ controversial history
- adjustable pion mass as a tool
- sophisticated scattering amplitude analyses required
[Briceño et al. 1607.05900]

$I=0 \pi \pi$ SCATTERING AND THE σ RESONANCE

[Briceño et al. 1607.05900]

$I=0 \pi \pi$ SCATTERING AND THE σ RESONANCE (II)

[Guo et al. 1803.02897]

- independent measurements by various groups
- global analysis of different pion masses
(overlap with EFT methods)

$K \pi$ SCATTERING: $K^{*}(892)$ AND κ

[Brett et al. 1802.03100]

$K \pi$ SCATTERING: $K^{*}(892)$ AND κ

$I=3 / 2 N \pi$ SCATTERING: $\Delta(1232)$

a baryonic resonance
\rightsquigarrow combinatorically harder
\leadsto typically worse signal-to-noise
\rightsquigarrow scattering of particles with spin: rotational-symmetry breaking more restricting

- Breit-Wigner shape
- Δ (1232) found on threshold
[Andersen et al. 1710.01557]

Where is the Roper resonance?

\rightsquigarrow a lot of progress on three-particle formalism in recent years various 'competing' approaches, seeming to converge

Summary

- treat unstable particles properly
- two-particle formalism fully understood, three-body formalism nearing completion
- practical numerical implementation ongoing by many groups
- prerequisite to unlocking matrix elements

SUMMARY

- treat unstable particles properly
- two-particle formalism fully understood, three-body formalism nearing completion
- practical numerical implementation ongoing by many groups
- prerequisite to unlocking matrix elements

$$
\rightsquigarrow \text { interesting times ahead for those efforts }
$$

IN THE GRAND SCHEME OF THINGS

[slide from Raul's Lattice 2017 talk]

