

Recent results from Glue

WILLIAM © MARY
CHARTERED 1693

Confined states of quarks and gluons

Observed mesons and baryons well described by $1^{\text {st }}$ principles QCD

But these aren't the only states permitted by QCD

Confined states of quarks and gluons

mesons

tetraquark

baryons

pentaquark

Observed mesons and baryons well described by $1^{\text {st }}$ principles QCD

But these aren't the only states permitted by QCD

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California
... Baryons can now be constructed from quarks by using the combinations ($q q q$), ($q q q q \bar{q}$), etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc....

Phys. Lett. 8 (1964) 214

Confined states of quarks and gluons

mesons

baryons

pentaquark

Observed mesons and baryons well described by $1^{\text {st }}$ principles QCD

But these aren't the only states permitted by QCD

Confined states of quarks and gluons

mesons

tetraquark

baryons

pentaquark

Observed mesons and baryons well described by $1^{\text {st }}$ principles QCD

But these aren't the only states permitted by QCD
$\Lambda_{b} \rightarrow J / \psi p K^{-}$

Confined states of quarks and gluons

mesons

baryons

pentaquark

Accessible at Jefferson Lab

Observed mesons and baryons well described by $1^{\text {st }}$ principles QCD

But these aren't the only states permitted by QCD

$$
\Lambda_{b} \rightarrow J / \psi p K^{-}
$$

Confined states of quarks and gluons

mesons

baryons

Observed mesons and baryons well described by $1^{\text {st }}$ principles QCD

But these aren't the only states permitted by QCD

tetraquark

pentaquark

glueball

hybrid meson

Do gluonic degrees of freedom manifest themselves in the bound states we observe in nature?

Hybrid mesons and gluonic excitations

** Excited gluonic field coupled to $q \bar{q}$ pair

* Rich spectrum of hybrid mesons predicted by Lattice QCD
* Gluonic field with JPC $=1+$ - and mass $=1-1.5 \mathrm{GeV}$

hybrid meson

Hybrid mesons and gluonic excitations

* Excited gluonic field coupled to $q \bar{q}$ pair
* Rich spectrum of hybrid mesons predicted by Lattice QCD
* Gluonic field with JPC $=1+$ - and mass $=1-1.5 \mathrm{GeV}$
** "Exotic" JPC : not simple $q \bar{q}$ from the non-rel. quark model

$$
J^{P C}=0^{+-}, 1^{-+}, 2^{+-} \ldots
$$

$$
\begin{aligned}
& \vec{J}=\vec{L}+\vec{S} \\
& P=(-1)^{L+1} \\
& C=(-1)^{L+S}
\end{aligned}
$$

hybrid meson

Lattice QCD

$$
\begin{aligned}
& u \bar{u}+d \bar{d} \\
& s \bar{s} \\
& \\
& \phi=|s \bar{s}\rangle \\
& \omega=|u \bar{u}+d \bar{d}\rangle \\
& \pi^{0}=|u \bar{u}-d \bar{d}\rangle
\end{aligned}
$$

Note: $m_{\pi}=392 \mathrm{MeV}$

* Ideally look for a pattern of hybrid states in multiple decay modes
** Primary goal of the GlueX experiment is to search for and ultimately map out the spectrum of light quark hybrid mesons

SluE \sim in Hall D

Linearly polarized photon beam from CEBAF 12 GeV

Large acceptance detector for both charged and neutral particles

* ~200 billion events (3 PB of data) collected in 2017 and 2018
forward calorimeter
barrel time-of calorimeter -flight
forward drift chambers
central drift chamber
superconducting magnet

Exotic JPC in photoproduction

Meson X with particular JPC

Production through t-channel "quasi-particle" exchange

Non-exotic JPC in photoproduction

Exchange JPC

$$
\begin{aligned}
& 1^{--}: \omega, \rho \\
& 1^{+-}: b, h
\end{aligned}
$$

* Begin by understanding non-exotic production mechanism
* Linear photon beam polarization critical to filter out "naturality" of the exchange particle

$\gamma p \rightarrow \pi^{0} p$ beam asymmetry Σ

* Beam asymmetry Σ provides insight into dominant production mechanism

$$
\Sigma=\frac{|\omega+\rho|^{2}-|h+b|^{2}}{|\omega+\rho|^{2}+|h+b|^{2}}
$$

Exchange JPC

$$
\begin{aligned}
& 1^{--}: \omega, \rho \\
& 1^{+-}: b, h
\end{aligned}
$$

* From experimental standpoint it's easily extended to $\gamma p \rightarrow \eta p$
* No previous measurements!
$J^{\text {PAC }}:$ Mathieu et al. PRD 92, 074013

π^{0} and η beam asymmetries

$\gamma p \rightarrow p \gamma \gamma$

Phys. Rev. C 95, 042201(R)

π^{0} and η beam asymmetries

Meson Production Plane

Plane Parallel to Lab Floor
(same as PARA polarization plane)

$$
\sigma=\sigma_{0}\left(1-P_{\gamma} \Sigma \cos 2\left(\phi_{p}-\phi_{\gamma}^{\operatorname{lin}}\right)\right)
$$

Phys. Rev. C 95, 042201(R)

π^{0} and η beam asymmetries

$$
\frac{Y_{\perp}-F_{R} Y_{\|}}{Y_{\perp}+F_{R} Y_{\|}}=P_{\gamma} \Sigma \cos 2 \phi_{p}
$$

Phys. Rev. C 95, 042201 (R)

π^{0} and η beam asymmetries

* Dip in multiple theory predictions not observed
* Indication of vector exchange dominance at this energy
* Additional asymmetry measurements ongoing with this dataset

First 12 GeV publication!
Phys. Rev. C 95, 042201(R)

Pseudoscalar beam asymmetries

Consistent with prediction from $J^{\text {PAC }}: ~ P L B 774$ (2017) 362

Neutral pseudoscalars: $\mathbf{\Sigma} \sim 1$, dominated by vector exchange

Pseudoscalar beam asymmetries

Charged pseudoscalars: more complicated -t dependence

Early spectroscopy opportunities

* Enhancement consistent with earlier SLAC measurement, but $\sim 1000 x$ more statistics with early GlueX data
* Polarization observables will provide further insight into the nature of this enhancement

Early spectroscopy opportunities

$$
\gamma p \rightarrow 4 \gamma p
$$

* Previous photoproduction data very sparse for channels with multiple neutrals particles
* Early opportunity for exotic search since P-wave is exotic

$$
\pi^{-} p \rightarrow \eta \pi^{0} n
$$

Mapping the meson spectrum

** Already studying polarization observables for "simple" final states

* Beginning to identify known mesons in multi-particle final states

J/ ψ photoproduction at JLab

* Threshold J/ ψ provides information on the gluon distributions in the nucleon
* Planned measurements in Hall A, B and C
* First data from Hall D already under analysis

Charm Quarks at JLab

Hadronic
molecule

$\Lambda_{b} \rightarrow J / \psi p K^{-}$

LHCb 2015

Observation of charm at GluE

$$
\gamma p \rightarrow p e^{+} e^{-}
$$

Summary

* The GluE experiment is commissioned and the initial meson program is well underway
* Early measurements aimed at understanding the meson production mechanism through polarization observables
* First observation of charm at JLab, potential limits on pentaquark production

Backup

EluE Mar Timeline

2018: ~75B events, ~1 PB of data

* GlueX "Low intensity" program expected to be completed in 2018
* High intensity program including DIRC will collect 10x more data
* Primakoff and other experiments interleaved

* Longer term: proposed KL beam facility (PAC proposal)

Photon Beam and Tagger

Measured Flux

Measured Polarization

Glue an Physics Program

Exotic JPC in photoproduction

Approximate $J^{P C}$		
Mass (MeV)		
π_{1}	1900	1^{-+}
η_{1}	2100	1^{-+}
η_{1}^{\prime}	2300	1^{-+}
b_{0}	2400	0^{+-}
h_{0}	2400	0^{+-}
h_{0}^{\prime}	2500	0^{+-}
b_{2}	2500	2^{+-}
h_{2}	2500	2^{+-}
h_{2}^{\prime}	2600	2^{+-}

Possible quantum numbers from Vector Meson Dominance and t-channel exchange: (IG)JPC

米 Can couple to all states in the lightest hybrid multiplet through t-channel exchange and photoproduction (via Vector Meson Dominance)
** Photon beam polarization filters the "naturality" of the exchange particle

Exotic JPC decays

C. A. Meyer and E. S. Swanson, Progress in Particle and Nuclear Physics B82, 21, (2015)

Approximate Mass (MeV)		$J^{P C}$	Total Width MeV		Allowed Decay Modes	
		PSS	IKP			
π_{1}	1900		1^{-+}	81-168	117	$b_{1} \pi, \pi \rho, \pi f_{1}, \pi \eta, \pi \eta^{\prime}, \eta a_{1}, \pi \eta(1295)$
η_{1}	2100	1^{-+}	59-158	107	$\pi a_{1}, \pi a_{2}, \eta f_{1} \eta f_{2}, \pi \pi(1300), \eta \eta^{\prime}, K K_{1}^{A}, K K_{1}^{B}$	
η_{1}^{\prime}	2300	1^{-+}	95-216	172	$K K_{1}^{B}, K K_{1}^{A}, K K^{*} \eta \eta^{\prime}$	
b_{0}	2400	0^{+-}	247-429	665	$\pi \pi(1300), \pi h_{1}, \rho f_{1}, \eta b_{1}$	
h_{0}	2400	0^{+-}	59-262	94	$\pi b_{1}, \eta h_{1}, K K(1460)$	
h_{0}^{\prime}	2500	0^{+-}	259-490	426	$K K(1460), K K_{1}^{A}, \eta h_{1}$	
b_{2}	2500	2^{+-}	5-11	248	$\pi a_{1}, \pi a_{2}, \pi h_{1}, \eta \rho, \eta b_{1}, \rho f_{1}$	
h_{2}	2500	2^{+-}	4-12	166	$\pi \rho, \pi b_{1}, \eta \omega, \omega b_{1}$	
h_{2}^{\prime}	2600	2^{+-}	5-18	79	$K K_{1}^{B}, K K_{1}^{A}, K K_{2}^{*}, \eta h_{1}$	

* Predictions for the spectrum of hybrids from lattice, but decay predictions are model dependent

1-+ channels observed

$$
\begin{aligned}
\pi \rho & \rightarrow \pi \pi \pi \\
\pi \eta^{\prime} & \rightarrow \eta \pi \pi \pi \\
\pi b_{1} & \rightarrow \omega \pi \pi
\end{aligned}
$$

Some additional 1-+ channels

$$
\begin{array}{cl}
\pi a_{2} \rightarrow \eta \pi \pi & \eta f_{1} \rightarrow \eta \eta \pi \pi \\
K K^{*} & \rightarrow K K \pi \\
K K_{1}(1270) & \rightarrow K K \pi \pi
\end{array}
$$

Early GluE m physics: $\gamma p \rightarrow \pi^{0} p$

High-Energy π^{0} Photoproduction from Hydrogen with Unpolarized and Linearly Polarized Photons*
R. L. Anderson, D. B. Gustavson, J. R. Johnson, I. D. Overman, D. M. Ritson, and B. H. Wiik Stanford Linear Accelerator Center, Stanford, California 94305
and
D. Worcester \dagger

Harvard University, Cambridge, Massachusetts 02138 (Received 25 June 1971)

```
l October 1971
```


Early \mathcal{E} LuE \sim physics: $\gamma p \rightarrow \pi^{0} p$

High-Energy π^{0} Photoproduction from Hydrogen with Unpolarized and Linearly Polarized Photons*
R. L. Anderson, D. B. Gustavson, J. R. Johnson, I. D. Overman, D. M. Ritson, and B. H. Wiik Stanford Linear Accelerator Center, Stanford, California 94305
and
D. Worcester \dagger

Harvard University, Cambridge, Massachusetts 02138 (Received 25 June 1971)

Exchange JPC

$$
\begin{aligned}
& 1^{--}: \omega, \rho \\
& 1^{+-}: b, h
\end{aligned}
$$

1 October 1971

$$
\frac{d \sigma}{d t}=\sigma_{\perp}+\sigma_{\|}=|\rho+\omega|^{2}+|b+h|^{2}
$$

JPAC: Mathieu et al. PRD 92, 074013

Early spectroscopy opportunities

** Successfully reconstructing 5γ final state and observe b_{1} signal consistent with previous JLab photoproduction experiment (RadPhi)

Observation of charm at GıUE

$$
\gamma p \rightarrow p e^{+} e^{-}
$$

Amplitude Analysis

* Goal: Identify JPC of $X \rightarrow \pi^{+} \pi^{-\pi^{+}}$

** Model the intensity of events at the level of QM amplitudes (allow for interference)

$$
I(\vec{x})=\frac{d N}{d \vec{x}}=\left|\sum_{\alpha}^{N_{\text {amps }}} V_{\alpha} A_{\alpha}(\vec{x})\right|^{2}
$$

* 5-dimensional problem: two new angles at each decay step (X and I)

$$
X \rightarrow \rho \pi^{+} \quad \rho \rightarrow \pi^{+} \pi^{-}
$$

Example Intensity:

$$
\begin{aligned}
& X\left(1^{++}\right) \\
& \rightarrow \rho \pi^{+}(\mathrm{S} \text { wave })
\end{aligned}
$$

Amplitude Analysis

* Expand set of possible amplitudes over many X and I, and determine V_{α} via
maximum likelihood fit
* Good angular acceptance critical for disentangling JPC

$$
I(\vec{x})=\frac{d N}{d \vec{x}}=\left|\sum_{\alpha}^{N_{\mathrm{amps}}} V_{\alpha} A_{\alpha}(\vec{x})\right|^{2}
$$

$$
\begin{aligned}
& X\left(1^{++}\right) \\
& \rightarrow \rho \pi^{+}(\mathrm{S} \text { wave })
\end{aligned}
$$

$$
X \rightarrow \rho \pi^{+}
$$

$$
\rho \rightarrow \pi^{+} \pi^{-}
$$

$$
X\left(2^{++}\right)
$$

$\rightarrow \rho \pi^{+}$(D wave)

Amplitude Analysis

* Simulate production of known resonances and exotic hybrid (1^{-+}) signal with 1.6% relative strength
** Yields correspond to ~3.5 hours of GlueX data taking (at full intensity)

Glu- Simulation

Strangeness program

$J^{P C} \quad$ Allowed Decay Modes

π_{1}	1^{-+}	$b_{1} \pi, \pi \rho, \pi f_{1}, \pi \eta, \pi \eta^{\prime}, \eta a_{1}, \pi \eta(1295)$
η_{1}	1^{-+}	$\pi a_{1}, \pi a_{2}, \eta f_{1}, \eta f_{2} \pi \pi(1300), \eta \eta^{\prime}, K K_{1}^{A}, K K_{1}^{B}$
η_{1}^{\prime}	1^{-+}	$K K_{1}^{B}, K K_{1}^{A}, K K^{*}$
b_{0}	0^{+-}	$\pi \eta^{\prime}$
h_{0}	0^{+-}	$\pi(1300), \pi h_{1}, \rho f_{1}, \eta b_{1}$
h_{0}^{\prime}	0^{+-}	$K b_{1}, \eta h_{1}, K K(1460)$
b_{2}	2^{+-}	$\pi a_{1}, \pi a_{2}, \pi h_{1}, \eta \rho, \eta b_{1}, \rho f_{1}$
h_{2}	2^{+-}	$\pi \rho, \pi b_{1}, \eta \omega, \omega b_{1}$
h_{2}^{\prime}	2^{+-}	$K K_{1}^{B}, K K_{1}^{A}, K K_{2}^{*}, \eta h_{1}$

* Mapping the hybrid spectrum requires: large statistics samples of many particle final states in strange and nonstrange decay modes
* Experimentally access to strangeness content of the state by comparing strange vs non-strange decay modes

Strangeness program: $Y(2175)$

Belle: $e^{+} e^{-} \rightarrow \phi \pi^{+} \pi^{-}(\gamma)$
BES III: $J / \psi \rightarrow \eta \phi \pi^{+} \pi^{-}$

* $\mathrm{Y}(2175) \mathrm{JPC}=1-\mathrm{s}$ state observed by 3 experiments
** Decay pattern similar to $\mathrm{Y}(4260)$ in charmonium

$$
Y(2175) \rightarrow \phi \pi^{+} \pi^{-} \quad Y(4260) \rightarrow J / \psi \pi^{+} \pi^{-}
$$

* Is there evidence for such strangeonium states in photoproduction?

Hyperon Spectroscopy: $\Xi^{-}(d s s)$

closis 6 GeV

* Lattice predicts strange and light quark content for mesons
* Search for a pattern of hybrid states in many final states
* Requires clean identification of charged pions and kaons

Approximate $J^{P C}$			Final States
	Mass (MeV)		

Strangeness program: decay patterns

** Experimentally infer quark flavor composition through branching ratios to strange and non-strange decays
$\frac{\mathcal{B}\left(f_{2}^{\prime}(1525) \rightarrow \pi \pi\right)}{\mathcal{B}\left(f_{2}^{\prime}(1525) \rightarrow K K\right)} \approx 0.009$ $\frac{\mathcal{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)}{\mathcal{B}\left(f_{2}(1270) \rightarrow K K\right)} \approx 20$

* Consistent with lattice QCD mixing angle for 2^{++}, and

```
and
```


GluE DIRC upgrade

* The GlueX DIRC (Detection of Internally Reflected Cherenkov light) provides new K / π separation and will use components of the BaBar DIRC
* Partial installation and commissioning in 2018

GluE DIRC upgrade

Support structure in place and alignment underway

GluE m DIRC upgrade

Loading of 1st BaBar bar box at SLAC

Delivered safely to JLab in November 2017

Follow our next trip in June with the final 3 boxes:
twitter言 @Gluex_DIRC

Expected DIRC performance

GluE Simulation

* Significantly extends reach in search for exotic hadrons (hybrid, multi-quark, etc.) containing strange quarks

