

Recent results from GLUE

Justin Stevens

WILLIAM & MARY

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc.

Phys. Lett. 8 (1964) 214

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

Light Cone 2018

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

Do gluonic degrees of freedom manifest themselves in the bound states we observe in nature?

Hybrid mesons and gluonic excitations

- * Excited gluonic field coupled to $q\bar{q}$ pair
- * Rich spectrum of hybrid mesons predicted by Lattice QCD
- * Gluonic field with $J^{PC} = 1^{+-}$ and mass = 1-1.5 GeV

Hybrid mesons and gluonic excitations

- * Excited gluonic field coupled to $q\bar{q}$ pair
- * Rich spectrum of hybrid mesons predicted by Lattice QCD
- * Gluonic field with $J^{PC} = 1^{+-}$ and mass = 1-1.5 GeV
- * "Exotic" ${\rm J}^{\rm PC}$: not simple $q\bar{q}$ from the non-rel. quark model

Dudek et al. PRD 88 (2013) 094505

$$\phi = |s\bar{s}\rangle$$
$$\omega = |u\bar{u} + d\bar{d}\rangle$$

$$\pi^0 = \left| u\bar{u} - d\bar{d} \right\rangle$$

Note: $m_{\pi} = 392 \, \text{MeV}$

Meson Mass (MeV)

* Ideally look for a pattern of hybrid states in multiple decay modes

* Primary goal of the GlueX experiment is to search for and ultimately map out the spectrum of light quark hybrid mesons

- * Linearly polarized photon beam from CEBAF 12 GeV
- *** Large acceptance** detector for both charged and neutral particles
- *** ~200 billion events** (3 PB of data) collected in 2017 and 2018

forward calorimeter

Exotic J^{PC} in photoproduction

Production through t-channel "quasi-particle" exchange

Non-exotic J^{PC} in photoproduction

Exchange J^{PC} $1^{--}: \omega, \rho$ $1^{+-}: b, h$

- * Begin by understanding non-exotic production mechanism
- Linear photon beam polarization critical to filter out "naturality" of the exchange particle

$\gamma p \rightarrow \pi^0 p$ beam asymmetry Σ

 Beam asymmetry Σ provides insight into dominant production mechanism

$$\Sigma = \frac{|\omega + \rho|^2 - |h + b|^2}{|\omega + \rho|^2 + |h + b|^2}$$

- From experimental standpoint it's easily extended to yp→ηp
 - * No previous measurements!

Phys. Rev. C 95, 042201(R)

Phys. Rev. C 95, 042201(R)

- * Dip in multiple theory predictions not observed
- Indication of vector
 exchange dominance at this energy
- * Additional asymmetry measurements ongoing with this dataset

First 12 GeV publication! Phys. Rev. C 95, 042201(R)

Pseudoscalar beam asymmetries

Consistent with prediction from JPAC: PLB 774 (2017) 362

Neutral pseudoscalars: $\Sigma \sim 1$, dominated by vector exchange

Pseudoscalar beam asymmetries

Charged pseudoscalars: more complicated *-t* **dependence**

Light Cone 2018

- * Enhancement consistent with earlier SLAC measurement, but ~1000x more statistics with early GlueX data
- * Polarization observables will provide further insight into the nature of this enhancement

Early spectroscopy opportunities

 $\gamma p \to \eta \pi^0 p$

2.5

Preliminary

3

- Previous photoproduction * data very sparse for channels with multiple neutrals particles
- Early opportunity for exotic * search since P-wave is exotic

 a_2

1.5

2

Counts / 10 MeV 3000 0005

2000

1000

0.5

1

- * Already studying polarization observables for "simple" final states
- * Beginning to identify known mesons in multi-particle final states

J/ψ photoproduction at JLab

- Threshold J/ψ provides information on the gluon distributions in the nucleon
- * Planned measurements in Hall A, B and C
- * First data from Hall D already under analysis

Charm Quarks at JLab

 $\Lambda_b \to J/\psi p K^-$

Summary

- * The Gue experiment is commissioned and the initial meson program is well underway
- Early measurements aimed at understanding the meson production mechanism through polarization observables
- First observation of charm at JLab, potential limits on pentaquark production

U.S. DEPARTMENT OF

Office of

Science

Backup

GLUE Timeline

- GlueX "Low intensity" program expected to be completed in 2018
- High intensity program
 including DIRC will collect
 10x more data
- Primakoff and other experiments interleaved

2018: ~75B events, ~1 PB of data

* Longer term: proposed K_L beam facility (PAC proposal)

Light Cone 2018

Justin Stevens, WILLIAM & MARY 34

Light Cone 2018

Justin Stevens, WILLIAM & MARY 36

Exotic J^{PC} in photoproduction

- * Can couple to all states in the lightest hybrid multiplet through t-channel exchange and photoproduction (via Vector Meson Dominance)
- * Photon beam polarization filters the "naturality" of the exchange particle

Exotic J^{PC} decays

C. A. Meyer and E. S. Swanson, Progress in Particle and Nuclear Physics B82, 21, (2015)

	Approximate	J^{PC}	Total Widt	h MeV	Allowed Decay Modes
	Mass (MeV)		\mathbf{PSS}	IKP	
π_1	1900	1^{-+}	81 - 168	117	$b_1\pi, \pi\rho, \pi f_1, \pi\eta, \pi\eta', \eta a_1, \pi\eta(1295)$
η_1	2100	1^{-+}	59 - 158	107	$\pi a_1, \pi a_2, \eta f_1 \eta f_2, \pi \pi (1300), \eta \eta', KK_1^A, KK_1^B$
η_1'	2300	1^{-+}	95 - 216	172	$KK_1^B, KK_1^A, KK^* \eta\eta'$
b_0	2400	0^{+-}	247 - 429	665	$\pi\pi(1300), \pi h_1, \rho f_1, \eta b_1$
h_0	2400	0^{+-}	59 - 262	94	$\pi b_1, \eta h_1, KK(1460)$
h_0'	2500	0^{+-}	259 - 490	426	$KK(1460), KK_1^A, \eta h_1$
b_2	2500	2^{+-}	5 - 11	248	$\pi a_1, \pi a_2, \pi h_1, \eta \rho, \eta b_1, \rho f_1$
h_2	2500	2^{+-}	4 - 12	166	$\pi ho, \pi b_1, \eta \omega, \omega b_1$
h_2'	2600	2^{+-}	5 - 18	79	$KK_1^B, KK_1^A, KK_2^*, \eta h_1$

* Predictions for the spectrum of hybrids from lattice, but decay predictions are model dependent

1-+ channels observed

$\pi \rho \to \pi \pi \pi$ $\pi \eta' \to \eta \pi \pi \pi$ $\pi b_1 \to \omega \pi \pi$

Some additional 1⁻⁺ channels

$$\pi a_2 \to \eta \pi \pi \quad \eta f_1 \to \eta \eta \pi \pi$$
$$KK^* \to KK\pi$$
$$KK_1(1270) \to KK\pi\pi$$

Light Cone 2018

Justin Stevens, WILLIAM & MARY 41

Early spectroscopy opportunities $\gamma p \to 5\gamma p$

* Successfully reconstructing 5γ final state and observe b₁ signal consistent with previous JLab photoproduction experiment (RadPhi)

Light Cone 2018

Observation of charm at $\gamma p \rightarrow p e^+ e^$ top view (looking down from above detector) (1.0 GeV)

Amplitude Analysis

n

- *** Goal:** Identify J^{PC} of $X \rightarrow \pi^+\pi^-\pi^+$
- * Model the intensity of events at the level of QM amplitudes (allow for interference)

$$I(\vec{x}) = \frac{dN}{d\vec{x}} = \left| \sum_{\alpha}^{N_{\text{amps}}} V_{\alpha} A_{\alpha}(\vec{x}) \right|$$

* 5-dimensional problem: two new angles at each decay step (*X* and *I*)

X

$$X(1^{++})$$

 $\rightarrow \rho \pi^+ \text{ (S wave)}$

Amplitude Analysis

$$I(\vec{x}) = \frac{dN}{d\vec{x}} = \left| \sum_{\alpha}^{N_{\text{amps}}} V_{\alpha} A_{\alpha}(\vec{x}) \right|^2$$

- Expand set of possible amplitudes over many X and I, and determine V_{α} via maximum likelihood fit
- Good angular acceptance critical for disentangling J^{PC}

Justin Stevens, WILLIAM & MARY 46

Amplitude Analysis

- Simulate production of known resonances and exotic hybrid (1⁻⁺) signal with 1.6% relative strength
- * Yields correspond to ~3.5 hours of GlueX data taking (at full intensity)

Strangeness program	3000	exotics
$J^{PC} $	2500 2000 M/W 1500	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & &$

- * Mapping the hybrid spectrum requires: large statistics samples of many particle final states in strange and nonstrange decay modes
- * Experimentally access to strangeness content of the state by comparing strange vs non-strange decay modes

Strangeness program: Y(2175)

Light Cone 2018

Justin Stevens, WILLIAM & MARY 52

- * Lattice predicts strange and light quark content for mesons
- Search for a pattern of hybrid states in many final states
- Requires clean identification of charged pions and kaons

	Approximate	J^{PC}	Final States
	Mass~(MeV)		
π_1	1900	1^{-+}	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}, 5\pi, \eta 3\pi^{\dagger}, \eta'\pi^{\dagger}$
η_1	2100	1^{-+}	$4\pi, \eta 4\pi, \eta \eta \pi \pi^{\dagger}$
η_1'	2300	1^{-+}	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$

Strangeness program: decay patterns

 9^{++}

 Experimentally infer quark flavor composition through branching ratios to strange and non-strange decays

 $\frac{\mathcal{B}(f_2'(1525) \to \pi\pi)}{\mathcal{B}(f_2'(1525) \to KK)} \approx 0.009$

 $\frac{\mathcal{B}(f_2(1270) \to \pi\pi)}{\mathcal{B}(f_2(1270) \to KK)} \approx 20$

- * Consistent with lattice QCD mixing angle for 2⁺⁺, and predictions for hybrids
- * Need capability to detect strange and non-strange to infer hybrid flavor content

 2^{+-}

- * The GlueX DIRC (Detection of Internally Reflected Cherenkov light) provides new K/π separation and will use components of the BaBar DIRC
- * Partial installation and commissioning in **2018**

Support structure in place and alignment underway

Loading of 1st BaBar bar box at SLAC

Delivered safely to JLab in November 2017

Follow our next trip in June with the final 3 boxes:

Significantly extends reach in search for exotic hadrons (hybrid, multi-quark, etc.) containing strange quarks