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Motivations
The quest of a reliable flavor decomposition needs sound information on the neutron
dynamical observables (GPDs, TMDs).
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A great motivation for very accurate and long-lasting experimental efforts in developing
effective neutron targets to investigate the electromagnetic responses of the neutron

⇒ the polarized 3He target, 90% neutron target
(e.g. H. Gao et al, PR12-09-014; J.P. Chen et al, PR12-11-007, @JLAB12)

Bonus: mirror nuclei, 3He and 3H , play a pivotal role for stringent checks of the model
dependence, upon the nuclear description, in extracting the neutron information (⇒ G.
Petratos, MARATHON @ JLAB12, for unpolarized DIS)
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On the theory side, we need to implement the nuclear description and hence to validate
a sound extraction procedure of dynamical information on the neutron
The main quantity to pursue such a programme is the

Nuclear Spectral Function (⇒ nucleon Green’s function in the medium)

Pσ′σ(k,E) = − 1

π
=m

{
〈Ψgr |a†k,σ′

1

E − H + iε
ak,σ|Ψgr 〉

}
with

H =
∑
α,β

〈α|H1|β〉 a†(α) a(β) +
1

2

∑
α,β,γ,η

〈αγ|H2|βη〉 a†(α) a†(γ)a(β) a(η) + . . . . . .

Probabilistic interpretation: the diagonal terms give the probability distribution to find a
constituent with given spin, momentum and removal energy in the ground state of the
interacting system, |Ψgr 〉.
This quantity is quite familiar in nuclear physics, less in hadron physics (hadronization of
the constituent) where the QFT framework is needed → correlator, 〈Ψgr |ψ(x)ψ(y)|Ψgr 〉.
Where we are for 3He (and 3H )?

Accurate description of the initial state within ‘a non relativistic framework (cf
Kievsky,Pace, G.S. Viviani PRC 56, 64 (1997))

Realistic description of the final state, as needed for SiDIS experiments (!!):
besides the fully interacting spectator pair, the generalized eikonal approximation
has been introduced for describing (knocked out nucleon + debris from
hadronization) (cf Del Dotto et al PRC 96, 065203 (2017))
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The Relativistic Hamiltonian Dynamics framework

Why a relativistic treatment ?
General answer: to develop a more advanced theory, appropriate for JLAB12 and

(future) EIC kinematics

The Standard Model of Few-Nucleon Systems, where nucleon and pion degrees of
freedom are taken into account, has achieved a very high degree of sophistication.

Nonetheless, one should try to fulfill, as much as possible, the relativistic
constraints, dictated by the covariance with respect the Poincaré Group, GP , when
processes involving nucleons with high 3-momentum are considered and a high
precision is needed.
This is the case if one studies, e.g., i) the nucleon structure functions (unpolarized
and polarized cases); ii) the nucleon TMDs, iii) signatures of short-range
correlations; iv) exotics (6-bag quarks etc).

At least, one should carefully deal with the boosts of the nuclear states, |Ψinit〉 and
|Ψfin〉!

The definitely preferred framework for embedding the successful non relativistic
phenomenology is given by the

Light-front Relativistic Hamiltonian Dynamics (fixed dof) +
Bakamjian-Thomas construction of the interacting Poincaré generators.
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One can address both Poincaré covariance and locality

General principles to be implemented

F Extended Poincaré covariance - Commutation rules between the generators

[Pµ,Pν ] = 0, [Mµν ,Pρ] = −ı(gµρPν − gνρPµ),

[Mµν ,Mρσ] = −ı(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ)

P and T have to be taken into account !

F F Macroscopic locality (≡ cluster separability (relevant in nuclear physics)): i.e.
observables associated with different space-time regions must commute in the limit of
large spacelike separation (i.e. causally disconnected), rather than for arbitrary
(µ-locality) spacelike separations (Keister-Polyzou, Adv. Nucl. Phys. 20, 225 (1991)).

Physical motivation: When a system is separated into disjoint subsystems by a
sufficiently large spacelike separation, then the subsystems behave as independent
systems.
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The Light-Front framework has several advantages:

7 Kinematical generators: i) three LF boosts (at variance with the dynamical
nature of the Instant-form boosts), ii) P̃ = (P+,P⊥), iii) Rotation around the
z-axis.

The LF boosts have a subgroup structure : then one gets a trivial separation of the
intrinsic motion (as in the non-relativistic case). Separation of intrinsic and global
motion is important to correctly treat the boost between initial and final states !)

P+ ≥ 0 leads to a meaningful Fock expansion, once massless constituents are
absent

No square root in the dynamical operator P−, propagating the state in the
LF-time.

The infinite-momentum frame (IMF) description of DIS is easily included.

Drawback: the transverse LF-rotations are dynamical

But within the Bakamjian-Thomas framework one can construct an intrinsic angular
momentum fully kinematical!
Moreover the Mass Operator, developed within a non relativistic framework, is fully
acceptable for a BT construction of the Poincaré generators

Giovanni Salmè (INFN-Rome) LC2018: J=1/2 dynamical observables ..... 8 / 19



To complete the matter: the spin

Coupling spins and orbital angular momenta is easily accomplished in the Instant
Form of RHD (kinematical hyperplane t=0) through Clebsch-Gordan coefficients,
since in this form the three rotation generators are independent of interaction.

To embed this machinery in the LFHD one needs unitary operators, the so-called
Melosh rotations that relate the LF spin wave function and the canonical one. For
a particle of spin (1/2) with LF momentum k̃ ≡ {k+, ~k⊥}

|k; s, σ〉c =
∑
σ′

D
1/2
σ′,σ(RM (k̃)) |k̃; s, σ′〉LF

where

D
1/2
σ′,σ(RM (k̃)) is the standard Wigner function for the J = 1/2 case ,

RM (k̃) is the rotation between the rest frames of the particle reached through a LF
boost or a canonical boost, starting from the same Pauli-Lubanski vector.

D
1
2 [RM (k̃)]σσ′ = χ†σ

m + k+ − ıσ · (ẑ × k⊥)√
(m + k+)2 + |k⊥|2

χσ′ = LF 〈k̃; sσ|k; sσ′〉c

χσ is a two-dimensional spinor. To use the Clebsch-Gordan coefficients to couple
angular momenta in LFHD one has to exploit the relation with the canonical spin.
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From the NR Nuclear Spectral Function to the LF one

Pσ′σ(k,E) = − 1

π
=m

{
〈Ψgr |a†k,σ′

1

E − H + iε
ak,σ|Ψgr 〉

}
=
∑

f(A−1)

〈~p, στ ;ψf(A−1)
|ψA

JM〉 〈ψA
JM|ψf(A−1)

;~p, σ′τ〉 δ(E − Ef(A−1)
+ EA)

with |~p, στ〉 plane wave with momentum ~p in the system rest frame and spin along z
equal to σ, and |ψf(A−1)

〉: a state of the (A− 1)-particle spectator system: fully

interacting !
The spin-dependent LF Nuclear Spectral Function can be defined through the formal
relation between the overlaps 〈~p, στ ;ψf(A−1)

|ψA
JM〉LF in Light-front HD (hyperplane

x+ = 0) and the ones in Instant-form HD (hyperplane t = 0)

Then, by exploiting the Bakamjian-Thomas construction,one can approximates the
Instant-form overlaps through the ones calculated within a non relativistic approach, still
preserving the Poincaré covariance and taking benefit of the whole successful
phenomenology. (A. Del Dotto, E. Pace, G. Salmè, S. Scopetta, PRC 95, 014001
(2017))

Giovanni Salmè (INFN-Rome) LC2018: J=1/2 dynamical observables ..... 10 / 19



For implementing the macrocausality, it is crucial to distinguish between the cluster
(1, 23) reference frame and the one of the whole system (123). (At the present stage
the packing operators (Sokolov, Theor. Mat. Fiz. 36 (1978) 355) are neglected).
The LF overlaps are

LF 〈Tτ ;α, ε; JJz ; τ1σ, κ̃|j , jz ; ε3;
1

2
Tz〉 =

∑
τ2τ3

∫
dk23

∑
σ′1

D
1
2 [RM (k̃)]σσ′1

√
(2π)3 2E(k)

√
κ+E23

k+ES

∑
σ′′2 ,σ

′′
3

∑
σ′2,σ

′
3

Dσ′′2 ,σ′2 (k̃23, k̃2) Dσ′′3 ,σ′3 (−k̃23, k̃3)

NR〈T , τ ;α, ε; JJz |k23, σ
′′
2 , σ

′′
3 ; τ2, τ3〉 〈σ′3, σ′2, σ′1; τ3, τ2, τ1; k23, k|j , jz ;B3;

1

2
Tz〉NR

Dσ′′i ,σ′i (±k̃23, k̃i ) =
∑
σi

D
1
2 [R†M (±k̃23)]σ′′i σi

D
1
2 [RM (k̃i )]σiσ

′
i

where the relevant LF momenta of the emitted constituent, in the two frames are
k⊥ = κ⊥, k+ = ξ M0(123) = κ+ M0(123)/M0(1, 23)

M2
0(1, 23) =

m2 + |κ⊥|2

ξ
+

M2(23) + |κ⊥|2

(1− ξ)

N.B. within LFHD, normalization and momentum sum
rule are automatically fulfilled !!
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Preliminary Results for EMC effect in 3He :

RA
2 (x) =

A FA
2 (x)

Z F p
2 (x) + (A− Z) F n

2 (x)

Two-body channel, only (the spectator pair is in a deuteron state)
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x
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R

H
e 2(2

b)
 /

R
D 2

3He - EMC 
Two-body contribution  renormalized

Preliminary

Solid line: calculation with the LF Nuclear Spectral Function.

Dotted line: convolution formula with a momentum distribution as in Oelfke,
Sauer, Coester, Nucl. Phys. A 518, 593 (1990) - only two-body contribution

The next step will be the full calculation including the exact 3-body contribution.
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Within the LFHD and exploiting the BT construction (Mfree → Mint), the LF
spin-dependent spectral function for a system polarized along S, can be decomposed in
terms of available vectors,

the unit vector n̂ , ⊥ to the hyperplane n · x = 0. Our choice is nµ ≡ {1, 0, 0, 1}
the polarization vector S

the transverse (with respect to the n̂ axis) momentum component k⊥ = p⊥ = κ⊥
of the 3-momentum p of one of the constituents,

Pτ
M,σ′σ(κ̃, ε, S) =

1

2

[
Bτ0,M + σ ·Fτ

M(κ̃, ε,S)
]
σ′σ

The scalar Bτ0,M = Tr
[
PτM,σ′σ(κ̃, ε, S)

]
yields the unpolarized spectral function ;

the pseudovector Fτ
M(κ̃, ε,S) = Tr

[
P̂τ
M(κ̃, ε, S) σ

]
can be written as a linear

combination of the available pseudovectors,

FM(ξ, k⊥; ε,S) = S B1,M + k̂⊥ (S · k̂⊥) B2,M + k̂⊥ (S · n̂) B3,M

+ n̂ (S · k̂⊥) B4,M + n̂ (S · n̂) B5,M +
(

k̂⊥ × n̂
) [(

k̂⊥ × n̂
)
· S
]
B6,M.

where any angular dependence is explicitly given.
The seven scalar quantities Bi,M (i = 0, 1, ..., 6) can depend on the possible scalars, i.e.,
|k⊥|, ξ, ε, (S · k̂⊥)2, (S · n̂)2.
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By integrating the LF SF on the minus component of the constituent 4-momentum,
that amounts to integrate on the internal energy of the spectator system, one
straightforwardly gets the LF spin-dependent momentum distribution

nτσ′σ(x , k⊥;M,S) =
1

2
{b0,M + σ · fM(x , k⊥; S)}σ′σ

fM(x , k⊥; S) is a pseudovector

fM(x , k⊥; S) = S b1,M + k̂⊥ (S · k̂⊥) b2,M + k̂⊥ (S · n̂) b3,M

+ n̂ (S · k̂⊥) b4,M + n̂ (S · n̂) b5,M +
(

k̂⊥ × n̂
) [(

k̂⊥ × n̂
)
· S
]
b6,M

The decomposition follows from the corresponding one of the SF, and the seven scalar
functions bi,M are properly integrals over the spectator energy, ε, present in the
functions Bi,M

The valuable content of such a decomposition is to make explicit the interplay relations
among constituent longitudinal/transverse variables and spin dofs.
This can be usefully exploited in determining relations for the so-called
Transverse-momentum Distributions (TMDs) in the valence sector.
N.B.the above decomposition is built considering a fixed number of constituents inside
the interacting system.
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Transverse-momentum distributions are obtained within a field-theoretical framework,
when the the virtual-photon scattering by a J=1/2 target is analyzed.
The basic quantity for elaborating the analysis is the Correlator (e.g. [Barone, Drago,
Ratcliffe, Phys. Rep. 359, 1 (2002))

Φτα,β(p,P, S) =

∫
dξ e ipξ̇ 〈P, S ,A|ψ̄τβ(0)ψτα(ξ)|A, S ,P

〉
⇒ Φ(p,P, S) =

1

2
/P A1 +

1

2
γ5 /P

[
A2 Sz +

1

M
Ã1 p⊥·S⊥

]
+

+
1

2
/P γ5

[
A3 /S⊥ + Ã2

Sz

M
/p⊥ +

1

M2
Ã3 p⊥·S⊥ /p⊥

]
where |A, S ,P〉 is the A-particle state and ψτα(ξ) the fermionic field (e.g. a nucleon of
isospin τ in a nucleus, or in valence approximation a quark in a nucleon).

From the above decomposition, one introduces the TMDs, that yield insights in the
possible correlations involving both kinematical variables and spin degrees of freedom, .

To match the description in terms of SF, with fixed number of particles, the particle
contribution to the correlation function from on-mass-shell fermions, has to be singled
out

Φτval (p,P, S) =
( /pon + m)

2m
Φτ (p,P, S)

( /pon + m)

2m
=
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TDMs in the valence sector I

By using the proper traces one finds for a J = 1/2 target the following relations between
the six T-even, twist-2 TMDs, and the seven scalar functions bi , defining the
spin-dependent constituent LF momentum distribution (recall: within the
Bakamjian-Thomas framework)

f (x , |p⊥|2) = b0

∆f (x , |p⊥|2) =
{
b1,M + b5,M

}
g1T (x , |p⊥|2) =

M

|p⊥|
b4,M

∆′T f (x , |p⊥|2) =
1

2

{
2 b1,M + b2,M + b6,M

}
h⊥1L(x , |p⊥|2) =

M

|p⊥|
b3,M

h⊥1T (x , |p⊥|2) =
M2

|p⊥|2
{
b2,M − b6,M

}
In the case of 3He the Nuclear TMDs could be obtained through measurements of
appropriate spin asymmetries in 3He(e, e′p) experiments at high momentum transfer.
In the hadronic case SiDIS reactions are the golden door to access TMDs.
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Let us remind that

nτσσ′(x , k⊥;M,S) =
2(−1)M+1/2

(1− x)

∑
L=0,2

∫
dk23 Zτσσ′(x , k⊥, k23, L,S)

L is the orbital angular momentum of the one-body off-diagonal density matrix. Non
relavistically... ∫

d3k e ik·(r−r′) ρ(r, r′)e ik·(r−r′) =
∑
L,λ

YλL (k̂)......

Summarize: from the general principles implemented in the SF, TMDs receive
contributions from both L = 0 and L = 2.

N.B. for L = 2⇒ b2,M = b5,M = 0 and one can recover, in the valence sector we are,
well-known linear equalities [ Jacob, Mulders, Rodrigues, Nucl. Phys. A 626, 937 (1997)
; Lorcé, Pasquini, Phys. Rev. D 84, 034039 (2011)]

∆f (x , |p⊥|2) = ∆′T f (x , |p⊥|2) +
|p⊥|2

2M2
h⊥1T (x , |p⊥|2)

g1T (x , |p⊥|2) = −h⊥1L(x , |p⊥|2) (1)

As far as the quadratic relation discussed in the above papers is concerned

(g1T )2 + 2 ∆′T f h⊥1T = 0 (2)

in our approach it does not hold, even if the contribution from the angular momentum
L = 2 is absent, because of the considered effects due to the interacting spectator pair.
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TMDs in the valence sector II: T-even Twist-3 case

Extending our analysis to the T-even twist-3 TMDs, in the valence sector
⇒ relations among twist-2 and twist-3 TMDs can be recovered (cf Bacchetta et al
(JHEP02(2007)093) in the nucleon case, once the gluon contribution is dropped out i.e.
Wandzura-Wilczek approximation), viz

e(x , |p⊥|2) =
m

Mx
f (x , |p⊥|2)

f ⊥(x , |p⊥|2) =
1

x
f (x , |p⊥|2)

g ′T (x , |p⊥|2) =
m

Mx
h1T (x , |p⊥|2)

g⊥T (x , |p⊥|2) =
1

x

[m
M

h⊥1T (x , |p⊥|2) + g1T (x , |p⊥|2)
]

gT (x , |p⊥|2) =
1

x

[
m

M
∆′T f (x , |p⊥|2) +

|p⊥|2

2M2
g1T (x , |p⊥|2)

]
g⊥L (x , |p⊥|2) =

1

x

[m
M

h⊥1L(x , |p⊥|2) + ∆f (x , |p⊥|2)
]

. . . . . . . . . . . .
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Conclusions & Perspectives

A Poincaré covariant description of nuclei, based on the light-front
Hamiltonian dynamics, has been proposed. The Bakamjian-Thomas
construction of the Poincaré generators allows one to embed the successful
phenomenology for few-nucleon systems in a Poincaré covariant framework. N.B.
Normalization and momentum sum rule both automatically fulfilled.

F Macrocausality can be implemented, as it must be (packing operator not yet
included)

FF A new effect of binding in the nuclear spectral function follows. This is seen
in our preliminary (two-body channel only), calculation of 3He EMC effect.

F Notably, the Spectral Function is related to the valence contribution to the
correlator introduced for a QFT description of SiDIS reactions.

FF General principles implemented in the LF Spectral function entail relations
among T-even twist-2 and twist-3 valence TMDs, with interesting angular
momentum dependence.

Nuclear and hadronic applications of the LF Nuclear spectral function are in
progress, in collaboration with L. Kaptari
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