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ABSTRACT: Recently, J. Collis has pointed out that vacuum diagrams are, contrary

to the general belief, non-vanishing in light-front field theory. In our contribution, we

first recall the old (forgotten) arguments by Chang and Ma and by Yan, why this should

be so. Then we apply the argument of analyticity of the self-energy diagrams in λφ3

and λφ4 two-dimensional models in light-front (LF) perturbation theory to calculate the

vacuum bubbles explicitly as p = 0 values of the appropriate self-energy diagrams. The

results are non-zero and agree with the usual Feynman-diagram calculation. Surprisingly,

the light-front bubbles are non-vanishing NOT due to LF zero modes. This is confirmed

by the DLCQ calculations, where the mode with n = 0 (the LF zero mode with k+ = 0)

is manifestly absent, but the results still converge to the continuum values for increasing

”harmonic resolution” K. Generalization to realistic 3+1 dimensional case and to e.g.

Yukawa theory is straightforward.

INTRODUCTION

Quantum field theory formulated in terms of light-front (LF) variables has a few unusual

features: indications of inconsistency?

One problem appeared to be paradoxically related to the most celebrated property of
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the LF quantization - vacuum simplicity

Well known: positivity of the LF momentum p+ together with its conservation implies

that the ground state of any dynamical model cannot contain quanta carrying p+ 6= 0.

Only a tiny subset of all field modes, namely those carrying p+ = 0 - the LF zero modes

(ZM) - can contribute in principle

NB: some field modes (ZM of the scalar field) which appear as dynamical ones in the

conventional (”space-like”, SL for short) theory become constrained (non-dynamical) in

the LF form of the theory ⇒ cannot contribute to vacuum processes directly

QUESTIONS: how does LF theory describe vacuum phenomena? Is the LF dynamics

equivalent to the SL form? Can it predict something truly new?

The equivalence issue realized and studied already in the pioneering papers on LF

perturbative S-matrix by Cheng and Ma (1969) and by T.-M. Yan (1973) includig the

vacuum problem at the perturbation theory level

Method: covariant Feynman amplitudes (integrals) rewritten in terms of LF variables
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the delicate step: to perform the integration in p− variable, since the propagators in

2D behave as (k+k− − m2 + iǫ)−1 instead of (k2
0 − k2

1 − m2 + iǫ)−1 - convergence

T.-M. Yan, PRD 7, 1780 (1973): I =
∫

d4p 1
(p2−µ2+iǫ)3

= π2

2iµ2
.

Here d4p = dp0dp1dp2dp3 and p0 → idp4. In LF variables,

I =

∫

dp
+
dp

−
d
2
p⊥

1

(p+p− − p2
⊥ − µ2 + iǫ)3

= −π

4

∫

dp
+
dp

− 1

(p+p− − µ2 + iǫ)2
.

(1)

A double pole at p− = µ2−iǫ

p+
, at infinity for p+ = 0, a careful treatment needed:

I = −π

4

+∞
∫

−∞

dp+ lim
Λ→∞

+Λ
∫

−Λ

dp− 1

(p+p− − µ2 + iǫ)2
=

=
π

4

+∞
∫

−∞

dp+

p+
lim
Λ→∞

( 1

p+Λ − µ2 + iǫ
− 1

−p+Λ − µ2 + iǫ

)

. (2)
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Using the identity

1

p+

( 1

p+Λ − µ2 + iǫ
− 1

−p+Λ − µ2 + iǫ

)

=
1

µ2

( Λ

p+Λ − µ2 + iǫ
− Λ

p+Λ + µ2 − iǫ

)

,

(3)

for Λ → ∞, one gets

I =
π

4µ2

+∞
∫

−∞

dp
+
( 1

p+ + iǫ
− 1

p+ − iǫ

)

=
π

4µ2

+∞
∫

−∞

dp
+[−2iπδ(p

+
)
]

=
π2

2iµ2
. (4)

Same result with the exponential α-representation (D−1 = −i
+∞
∫

0

dαeiα(D+iǫ)). Chang

and Ma more sophisticated method for a vacuum bubble with 3 internal lines
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(a) (b) (c)

Vacuum bubbles for φ3 and φ4 models

V =

∫

dp
+
dp

− 1

p+p− − µ2 + iǫ
Σ(p

+
p
−
), (5)

where Σ(p2) represented as

Σ(p2) =

∫

dλF (λ)eiλp
2
, F (λ) =

+∞
∫

0

dξ1dξ2δ(λ(ξ1+ξ2)−ξ1ξ2)e
−iµ2ξ1ξ2/λ, (6)
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where the above α-representation used here and also in (5). Insert Σ of (6) into (5):

V =

∫

dp
+
dp

−[ − i

+∞
∫

0

dξdλF (λ)e
ip2(λ+ξ)−iµ2ξ]

=

=

∫

dp
+
[

− 2πi

∫ +∞

0

dξdλF (λ)(λ + ξ)
−1

e
−iµ2ξ

]

δ(p
+
). (7)

Non-zero result, but no explicit formula given.

(a) (b) (c)

Self-energy diagrams for for φ3, φ4 and φ5 models

J. Collins: recalled these results plus identified a mathematical subtlety leading to a
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false conclusion that the LF vacuum diagrams vanish (already for the simplest case with

two internal lines) - in both covariant (Feynman) PT and the Hamiltonian LFPT

HERE: generalization to loops with more internal lines, using the analyticity argument,

both continuum and finite-volume formulation (DLCQ),

complete agreement with covariant Feynman results

THE FORMALISM AND SIMPLE EXAMPLES

The basic formula for the S-matrix in the ”old-fashioned”, Hamiltonian, LF-time

ordered, non-manifestly covariant PT (it avoids the k− integration in a natural way, also:

energy denominators instead of covariant propagators)

Sfi = δfi −
i

2

+∞
∫

−∞

dx+〈φf |V (x+)|φi〉 −
1

4

+∞
∫

−∞

dx+
1 〈φf |V (x+

1 )|φn〉
x+1
∫

−∞

dx+
2 〈φn|V (x+

2 )|φi〉

+ . . . , where V = P
−
int, V (x

+
) = e

i
2P

−
0 x+

V (0)e
− i
2P

−
0 x+

, (8)
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Sfi = δfi − 2πiδ(p−
i − p−

f )Tfi, Tfi =
1

√

p+
f
p+
i

δ(p+
f − p+

i )Mfi

1̂ =
∑

n

|φn〉〈φn| = |0〉〈0| +
+∞
∫

0

dl
+
1 a

†
(l

+
1 )|0〉〈0|a(l

+
1 ) +

+

+∞
∫

0

dl
+
1

+∞
∫

0

dl
+
2 a

†
(l

+
2 )a

†
(l

+
1 )|0〉〈0|a(l

+
1 )a(l

+
2 ) + . . . . (9)

We shall work with λφ3 and λφ4 models in 2D, for which

P−
int =

λ

3!
3

+∞
∫

0

dk+

√
4πk+

+∞
∫

0

dp+

√

4πp+

+∞
∫

0

dq+

√

4πq+
2πδ(p+ + k+ − q+)

×
{

a†(q+)a(k+)a(p+) + a†(p+)a†(k+)a(q+)
}

(10)
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P−
int = V1 + V2 + V3 =

=
λ

4!

+∞
∫

0

dk+

√
4πk+

+∞
∫

0

dp+

√

4πp+

+∞
∫

0

dq+

√

4πq+

+∞
∫

0

dr+

√
4πr+

8π

×
{[

a
†
(k

+
)a

†
(p

+
)a

†
(q

+
)a(r

+
) + a

†
(r

+
)a(p

+
)a(q

+
)a(k

+
)
]

δ(k
+
+ p

+
+ q

+ − r
+
)

+
3

2
a
†
(k

+
)a

†
(p

+
)a(q

+
)a(r

+
)δ(k

+
+ p

+ − q
+ − r

+
)
}

. (11)

The rules of the LF perturbation theory imply that the vacuum amplitudes (bubbles)

vanish (or rather are mathematically ill-defined) (Yan 1973) as the corresponding integrals

contain the delta function δ(p+
1 + p+

2 ... + p+
n ) (momentum conservation) which can be

satisfied only if all of them vanish, leading to singular integrands.

The simplest example: LF tadpole
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it arises in the process of normal-ordering the Hamiltonian

a†(k+
1 )a(k

+
2 )a

†(k+
3 )a(k

+
4 ) = δ(k+

2 − k+
3 )a

†(k+
1 )a(k

+
4 )+ ::≡ VT+ ::,

S
(1)
fi = − i

2

+∞
∫

−∞

dx
+〈0|a(p+

f )e
i
2p

−
f
x+

VTe
− i
2p

−
i
x+

a
†
(p

+
i )|0〉

⇒ MT =
λ

8π

+∞
∫

0

dk+

k+
→ λ

8π

Λ
∫

ǫ

dk+

k+
. (12)

Changing the variable k+ → µ2

k+
:

MT =
λ

8π

Λ
∫

µ2

Λ

dk−

k− =
λ

8π
log

Λ2

µ2
. (13)
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A. Harindranath, L. Martinovic and J. P. Vary, PRD 64, 105016 (2001):

IMF, near-LC and LFPT loop diagrams (self-energy and scattering): comparison

in particular, one-loop self-energy in λφ3(3 + 1) toy model

Σ(p2) =
λ2

4(2π)3

1
∫

0

dx

∫

d2q⊥
1

p2x(1 − x) − (q⊥)2 − µ2 + iǫ
. (14)

Reducing to 1+1 dim and setting p = 0 (=vacuum bubble, J. Collin’s case), we have

V ≡ Σ(0) =
λ2

8π

1
∫

0

dx
1

−µ2 + iǫ
= − 1

8π

λ2

µ2
. (15)

We did not realize this connection at that time.

– Typeset by FoilTEX – 11



Simple case - analytic formula for s ≡ p2 6= 0:

V =

1
∫

0

dx

sx(1 − x) − µ2 + iǫ
= −4

arctan
√

s
4µ2−s

√

4µ2s − s2
. (16)

Undefined for s = 0, L’Hospital yields the correct value −1/µ2.

Vacuum amplitudes in the SL form: bubble in φ3 toy model

The corresponding Feynman rules lead to the double two-dimensional integral expression

V3(µ) =

∫

d2p

∫

d2q
1

(p2 − µ2 + iǫ)(q2 − µ2 + iǫ)((p + q)2 − µ2 + iǫ)
. (17)

Can be evaluated in a few ways: by using the Feynman parameters, by means

of α-representation or via more sophisticated mathematical methods (Mellin-Barnes

representation for powers of massive propagators (Davydychev and Tausk, NPB (1993),
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PRD (1996)) - the same result

V (µ) = −C

µ2
, C = 2.344..., (18)

The constant C has a particular representation in each of the computational method.

The first method: combine the propagators into one denominator by means of the

auxiliary integrals in terms of the Feynman parameters xi, then go over to Euclidean space

and calculate the integrals in p and q variables. The result is the the double-integral

representation

V3 =
π2

µ2

1
∫

0

dx1dx2dx3

δ(1 − x1 − x2 − x3)

x1x2 + x1x3 + x2x3

, (19)

which can be transformed by a suitable change of variables to the LF integral with p = 0!

(see below)

LIGHT-FRONT CALCULATION IN CONTINUUM

The result (18) obtained in a very simple way also in the LFPT, contrary to the the general

belief
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THE METHOD: start with the (self-energy) graph with nonvanishing external

momentum and write down the corresponding LF amplitude. The expected analyticity in p

then permits one to consider its value at p = 0 (after going over to relative LF momenta)

- the vacuum loop emerges simply as the limit of the corresponding self-energy graph for

vanishing external momentum. In this way, the expression (??) is replaced by

Σ(p) = N

p+
∫

0

dk+

k+

p+−k+
∫

0

dl+

p+ − k+ − l+
1

p− − µ2

k+
− µ2

l+
− µ2

p+−k+−l+
+ iǫ

. (20)

Introducing the dimensionless variables x = k+

p+
, y = l+

p+
, Σ(p) becomes

Σ(p) = N

1
∫

0

dx

x

1−x
∫

0

dy

(1 − x − y)

1
[

p2 − µ2

x − µ2

y − µ2

1−x−y

]

. (21)

Now we can set p = 0. The integral over the variable y can be performed explicitly,
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yielding

Σ(0) = − 2

µ2

1
∫

0

dx
ln

√
1−x+

√
1+3x√

1−x−
√
1+3x

√

(1 − x)(1 + 3x)
(22)

The numerical computation

Σ(0) = −C/µ
2
, C = 2, 344 . . . (23)

FINITE VOLUME (DLCQ) CALCULATION

Remarkably, the same result obtained in the discretized (finite-volume) treatment with

(anti-)periodic boundary conditions (BC). In both cases, the field mode carrying p+ = 0

is manifestly absent.

The corresponding field expansion at x+ = 0 is

φ(0, x
−
) =

1√
2L

∞
∑

n

1
√

p+
n

[

ane
−ip+n x−

+ a
†
ne

ip+n x−]
, (24)
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where p+
n = 2πn/L and L is the lenght of the finite interval. The index n runs over

half-integers for antiperiodic boundary conditions and over integers for periodic BC, with

n = 0 excluded. Reason: this field mode is not a dynamical quantity, but a constrained

variable, expressed in terms of the n 6= 0 field modes. The DLCQ analog of the Σ(p)

amplitude is

Σ(p) = −λ
2
N

p+
∑

q+

p+−q+
∑

k+

1

k+q+(p+ − k+ − q+)
[

p− − µ2

k+
− µ2

q+
− µ2

p+−k+−q+

]

.

(25)

For p = 0 and with k+ → 2π
L m, etc.:

Σ(0) = V3(µ
2) = − 1

µ2

K−2
∑

m=1

1

m

K−m−1
∑

n=1

1

n(K − m − n)
[

1
m + 1

n + 1
K−m−n

]. (26)
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Numerical values:

K = 32 K = 64 K = 128 K = 512 K = 2048

V = 1.921 V = 2.099 V = 2.205 V = 2.301 V = 2.331 (27)

Smooth approach to p = 0 (K = 512):

p2 = 10−2 p2 = 10−4 p2 = 10−6 p2 = 0

V = 3.267 V = 2.307 V = 2.301 V = 2.302 (28)

Explanation: for some finite p−, p− = µ2

p+
approaching µ2 → 0 implies p+ approaches

0 as well

Convergence for the φ4 loop slower, but reliable:

V4(µ
2) = − 1

µ2

K−3
∑

l=1

1

l

K−l−2
∑

m=1

1

m

K−l−l−1
∑

n=1

1

n(K − l − m − n)
[

1
l +

1
m + 1

n + 1
K−l−m−n

].

(29)
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V4 = 6.798, 7.795, 7.967 for K = 128, 512, 800, approaching the continuum

value V4 = 8.414....

CONCLUSIONS

• vacuum diagrams in the φ3(1+1) and φ4(1+1) models obtained as p = 0 (external

momentum) limit of the corresponding self-energy diagrams

• works also in a final volume with (A)PBC (DLCQ) ⇒ not effect of the zero modes

• generalization to e.g. Yukawa theory and to (3+1)-dimensional case straightforward

• expected to work also for the generalized tadpoles - to be checked

Simple tadpole and a generalized tadpole in φ4 model
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