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Part I

�e scope of a �xed-target programme at the
LHC
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High-x frontier

High-x frontier

Advance our understanding of the high-x gluon, antiquark and
heavy-quark content in the nucleon & nucleus

� Very large PDF uncertainties for x à 0.5.
[could be crucial to characterise possible BSM discoveries]

� Proton charm content important to high-energy neutrino & cosmic-rays physics
� EMC e�ect is an open problem; studying a possible gluon EMC e�ect is essential
� Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
� Search for and study rare proton/deuteron 
uctuations

where a single gluon carries most of its momentum [See next talk by N.Yamanaka]
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3D mapping of the parton momentum

3D mapping of the parton momentum

Advance our understanding dynamics and spin of gluons and quarks inside
(un)polarised nucleons

� Possible missing contribution to the proton spin: Orbital Angular Momentum Lg ;q :
1
2 �

1
2∆Σ � ∆G �Lg �Lq [First hint by COMPASS that Lg x 0]

� Test of the QCD factorisation framework [beyond the DY AN sign change]
� Determination of the linearly polarised gluons in unpolarised protons

[once measured, allows for spin physics without polarised proton, e.g. at the LHC]
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heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities

� A complete set of heavy-
avour studies between SPS and RHIC energies
[needed to calibrate the quarkonium thermometer (J~ψ, ψ�, χc , Υ, D, J~ψ � b + pairs)]

� Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
� Explore the longitudinal expansion of QGP formation
� Test the factorisation of cold nuclear e�ects from p � A to A � B collisions
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Part II

Possible Implementations and Luminosities
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The fixed-target mode at the LHC

Fixed-target collisions at the LHC: main kinematical features

Energy range
7 TeV proton beam on a fixed target

c.m.s. energy: Rapidity shift:
Boost:

7 TeV proton beam on a fixed target

GeV 1152  pN Ems
8.40  l byy60)2/(  msBoost:

c.m.s. energy: Rapidity shift:

2.76 TeV Pb beam on a fixed target
GeV 722 Pb  Ems NNN

8.40...  labsmc yy60)2/(  Nms

gy p y
Boost:

PbNNN

3.40...  labsmc yy40

Such
º
s allow, for the �rst time, for systematic studies ofW boson, bottomonia,

pT spectra, associated production, . . . , in the �xed target mode

E�ect of boost : [particularly relevant for high energy beams]

LHCb and the ALICE muon arm become backward detectors [yc.m.s. @ 0]

With the reduced
º
s, their acceptance for physics grows and nearly covers

half of the backward region for most probes [�1 @ xF @ 0]

Allows for backward physics up to high xtarget (� x2)
[uncharted for proton-nucleus; most relevant for p-p� with large x� ]
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The fixed-target mode at the LHC

LHCb acceptance for various colliding modes

J.P. Lansberg (IPNO) STSAs with AFTER@LHC May 15, 2018 8 / 22



The fixed-target mode at the LHC

LHCb acceptance for various colliding modes

c.m.s.
y

10− 8− 6− 4− 2− 0 2 4 6 8 10

(G
eV

)
N

N
s

210

310

410

)p/ms=ln(
beam

y)p/ms=-ln(
beam

y

ψJ/ (1S)Υ +/-W

(1)
(2)

(3)

(1) Fixed-target using p beam, Ep � 7 TeV
(2) Fixed-target using Pb beam, EPb � 2.76 A.TeV
(3) Collider using p beams, Ep � 7 TeV

J.P. Lansberg (IPNO) STSAs with AFTER@LHC May 15, 2018 9 / 22



The fixed-target mode at the LHC

ALICE muon acceptance for various colliding modes

Central barrel: �0.9 @ η @ 0.9
Muon spectrometer acceptance: 2.5 @ η @ 4
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ALICE muon acceptance for various colliding modes

c.m.s.
y

10− 8− 6− 4− 2− 0 2 4 6 8 10

(G
eV

)
N

N
s

210

310

410

)p/ms=ln(
beam

y)p/ms=-ln(
beam

y

ψJ/ (1S)Υ +/-W

(1)
(2)

(3)

(1) Fixed-target using p beam, Ep � 7 TeV
(2) Fixed-target using Pb beam, EPb � 2.76 A.TeV
(3) Collider using p beams, Ep � 7 TeV

J.P. Lansberg (IPNO) STSAs with AFTER@LHC May 15, 2018 11 / 22



The fixed-target mode at the LHC

Possible implementations

Internal gas target (with or without storage cell)

� can be installed in one of the existing LHC caverns, and coupled to existing experiments
� currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
� uses the high LHC particle current: p 
ux: 3.4 � 1018 s�1 & Pb 
ux: 3.6 � 1014 s�1
� Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
� A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
Bent crystal option: beam line vs split

� crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]

� the LHC beam halo is recycled on dense target: proton 
ux: 5 � 108 s�1 & lead 
ux: 2 � 105 s�1

� Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
� Beam split : similar 
uxes; less/no civil engineering; might be coupled to an existing experiment

� Luminosities with internal gas target or crystal-based solutions are not very di�erent
� �e beam line option is currently a little too ambitious (this could change with FCC)
� �e internal solid target & beam split option: similar possibilities; the latter is cleaner
� �e gas target is the best for polarised target and satisfactory for heavy-ion studies

pp pA PbA
O�0.1 � 10  �1yr�1� O�0.1 � 1  �1yr�1� O�1 � 50 nb�1yr�1�
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The fixed-target mode at the LHC

Some details on the H-jet target

�e polarised H-jet polarimeter at RHIC-BNL Zelenski et al. NIM A 536 (2005) 248

Used to measure the proton beam polarisation at RHIC
9 vacuum chambers: 9 stages of di�erential pumping
Polarised gas: free atomic beam source (ABS) crossing the RHIC beam: H, D and

3He possible
Holding �eld in the target vacuum chamber
Diagnostic system: Breit-Rabi polarimeter
Density
Polarised inlet H� 
ux: 1.3 � 1017 H/s
Areal density θH� � 1.2 � 1012 atoms/cm2 [7 � 15� SMOG but much longer data taking]
Higher 
ux can be obtained for 3He� (�100) and H2 (� 1000)
Gas target pro�le at interaction point: gaussian with a full width of � 6 mm
Luminosity
Using nominal LHC bunch number [2808 bunches for proton and 592 for lead] and
for 1 LHC year [107 s proton beam and 106 s lead beam]

LpH� � 4.5 � 1030 cm�2 s�1 [t � 107 s: LpH� � 45 pb�1]
LpH2 � 1033 � 1034 cm�2 s�1 [t � 107 s : LpH2 A 10  �1]
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Part III

An updated selection of projected
performances

What is not covered

Pion STSAs

Photon STSAs

W boson STSAs

C-even quarkonium STSAs

DLL for Λ
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Drell-Yan

� Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF �t (E866 & E772 @ Fermilab).

� Extremely large yields up to x2 � 1 [plot made for pXe with a Hermes like target]
� Same acceptance for pp collisions
� A single measurement (in pp coll.) at RHIC, just released
� Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting
� as well as the nuclear PDF uncertainties
� On-going theory study forW� production accounting for threshold resummation
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� Extremely large yields up to x2 � 1 [plot made for pXe with a Hermes like target]
� Same acceptance for pp collisions
� A single measurement (in pp coll.) at RHIC, just released

� Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting
� as well as the nuclear PDF uncertainties
� On-going theory study forW� production accounting for threshold resummation
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Drell-Yan performances for spin analyses [LHCb-like detector]
D. Kikola et al. Few Body Syst. 58 (2017) 139

� DY pair production on a transversely
polarised target is the aim of several
experiment (COMPASS, E1039, STAR, E1039)

� Check the sign change in AN DY vs
SIDIS: hot topic in spin physics !

� From an exploration phase to a
consolidation phase

�
3He� target� quark Sivers e�ect in the
neutron via DY: unique !
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NEW: preliminary FoM with H-jet (1 year)
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Heavy-
avour studies : kinematical ranges
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Open charm projections
D. Kikola et al.. Few Body Syst. 58 (2017) 139

� D0 can also be collected with a
transversely polarised target

[Never measured]
� Gives access to the tri-gluon
correlation and the gluon Sivers
e�ect

[related to Lg]
� Di�erences in AD0

N and AD̄0

N gives
acces to C-odd correlators

[No other facility can directly
measure this; PHENIX via charged
muons arXiv:1703.09333]

� Precision at the per cent level with
AFTER@LHC(b)
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[ Beware of the unconventional definition of xF at RHIC which does not correspond to x1 � x2 in the fixed target mode]
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Quarkonium Projections
D. Kikola et al. Few Body Syst. 58 (2017) 139

� AN for all quarkonia (J~ψ, ψ�, χc , Υ�nS�, χb & ηc) can be measured
[So far, only J~ψ by PHENIX with large uncertainties]

[NEW: FoM not degraded with a H-jet like solution]
� Also access on polarised neutron (3He�) at the per cent level for J~ψ!
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� Completely new perspectives to study the gluon Sivers e�ect [and beyond� Lg]
� Di-J~ψ allow one to study the kT dependence of the gluon Sivers function for the very �rst time !
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Ultra-Peripheral Collisions in the FT mode and J~ψ production

JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

pH PbH
Photon-emitter proton Lead

σ totJ~ψ (pb) 1.18�103 276.77�103

σJ~ψ�l� l� (pb) 70.10 16.50�103

σJ~ψ�l� l� (with LHCb ηµ cut) (pb) 20.65 9.81�103

σJ~ψ�l� l� (with LHCb ηµ and p
µ
T cut) (pb) 20.64 9.81�103
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Conclusions

Three main themes push for a fixed-target program at the LHC
S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

�e high x frontier: new probes of the con�nement
and connections with astroparticles

�e nucleon spin and the transverse dynamics of the partons
�e approach to the decon�nement phase transition:

new energy, new rapidity domain and new probes
2 ways towards fixed-target collisions with the LHC beams

A slow extraction with a bent crystal
An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

Based on fast simulations, the AFTER@LHC study group has made FoMs
for LHCb and ALICE in the FT mode

which clearly support a full physics program
In synergy with & under the advice of the conveners of the CERN Physics
Beyond Collider working group [pbc.web.cern.ch], we now prepare a
document on the �xed-target physics at the LHC
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Further readings

Heavy-Ion Physics
Gluon shadowing e�ects on J~ψ and Υ production in p+Pb collisions atºsNN � 115 GeV and Pb+p
collisions at

º
sNN � 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.

Prospects for open heavy 
avor measurements in heavy-ion and p+A collisions in a �xed-target
experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134

Quarkonium suppression from coherent energy loss in �xed-target experiments using LHC beams by F.
Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951

Anti-shadowing E�ect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by
K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689

Lepton-pair production in ultraperipheral collisions at AFTER@LHC
By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087

Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J.
Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.
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Further readings

Spin physics
Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K.
Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015)
257934.

Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a
TMD factorisation scheme by M. Anselmino, U. D’Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]].
Adv.Hi.En.Phys. (2015) 475040.

�e gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou.
[arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396

Azimuthal asymmetries in lepton-pair production at a �xed-target experiment using the LHC beams
(AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C.
Pisano. Phys.Rev. D86 (2012) 094007.
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Further readings

Hadron structure
Double-quarkonium production at a �xed-target experiment at the LHC (AFTER@LHC).
by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294

Next-To-Leading Order Di�erential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in
Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC)
by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
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