

Single-Transverse-Spin-Asymmetry Studies in the Fixed-Target Mode using the LHC Beams (AFTER@LHC)

J.P. Lansberg

IPN Orsay – Paris-Sud U./Paris Saclay U. –CNRS/IN2P3 Light Cone 2018, May 14 – 19, JLab, Newport News, USA

AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current_author_list

J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

May 15, 2018 1 / 22

Part I

The scope of a fixed-target programme at the LHC

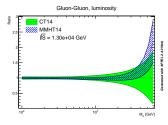
J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

May 15, 2018 2 / 22

Image: Image:

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

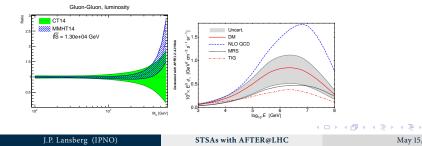

イロト イポト イヨト イヨト

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

Image: Image:

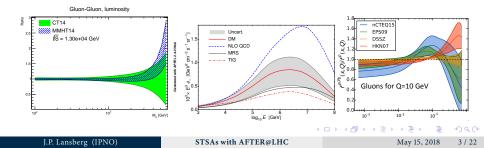


Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

· Proton charm content important to high-energy neutrino & cosmic-rays physics



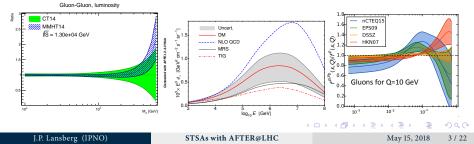
Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

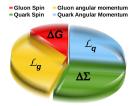

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search for and study rare proton/deuteron fluctuations

where a single gluon carries most of its momentum

[See next talk by N.Yamanaka]


Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

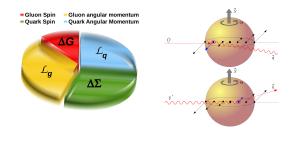
Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

[First hint by COMPASS that $\mathcal{L}_g \neq 0$]

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons


Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

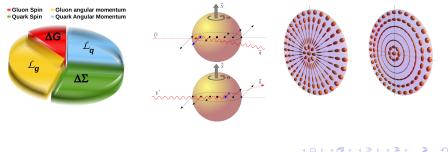
Test of the QCD factorisation framework

[First hint by COMPASS that $\mathcal{L}_g \neq 0$]

[beyond the DY A_N sign change]

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

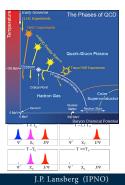
Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:


 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$

[First hint by COMPASS that $\mathcal{L}_g \neq 0$] [beyond the DY A_N sign change]

Test of the QCD factorisation framework

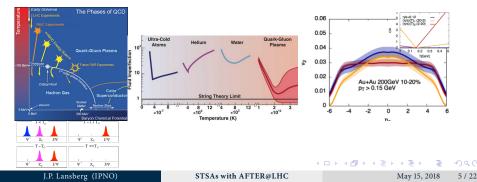
Determination of the linearly polarised gluons in unpolarised protons


[once measured, allows for spin physics without polarised proton, e.g. at the LHC]

Heavy-ion collisions towards large rapidities

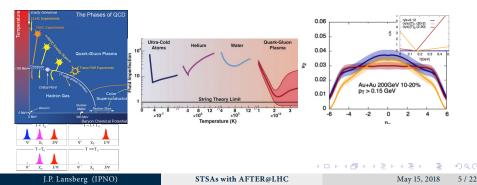
Heavy-ion collisions towards large rapidities

• A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, Y, D, J/\psi \leftarrow b + pairs)$]

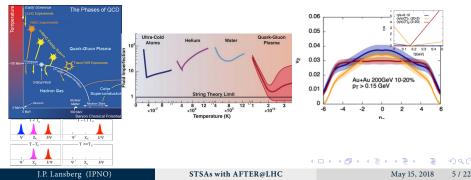

STSAs with AFTER@LHC

May 15, 2018 5 / 22

• • • • • • • • • • • • •


Heavy-ion collisions towards large rapidities

- · A complete set of heavy-flavour studies between SPS and RHIC energies
 - [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation


Heavy-ion collisions towards large rapidities

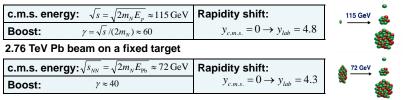
- · A complete set of heavy-flavour studies between SPS and RHIC energies
 - [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation

Heavy-ion collisions towards large rapidities

- · A complete set of heavy-flavour studies between SPS and RHIC energies
 - [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- · Explore the longitudinal expansion of QGP formation
- Test the factorisation of cold nuclear effects from p + A to A + B collisions

Part II

Possible Implementations and Luminosities


J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

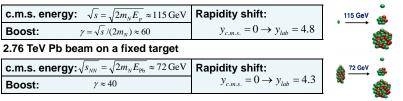
May 15, 2018 6 / 22

Energy range

7 TeV proton beam on a fixed target

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Energy range

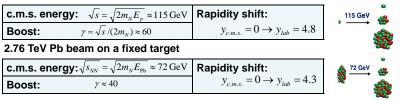

7 TeV proton beam on a fixed target

Such \sqrt{s} allow, for the first time, for systematic studies of *W* boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Energy range

7 TeV proton beam on a fixed target

Such \sqrt{s} allow, for the first time, for systematic studies of *W* boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode


Effect of boost :

[particularly relevant for high energy beams]

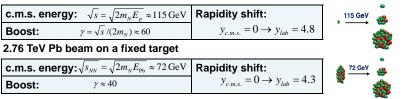
• LHCb and the ALICE muon arm become backward detectors $[y_{c.m.s.} < 0]$

Energy range

7 TeV proton beam on a fixed target

Such \sqrt{s} allow, for the first time, for systematic studies of *W* boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost :


[particularly relevant for high energy beams]

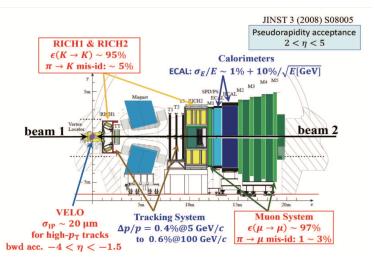
イロト イヨト イヨト イヨト

- LHCb and the ALICE muon arm become backward detectors $[y_{c.m.s.} < 0]$
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$

Energy range

7 TeV proton beam on a fixed target

Such \sqrt{s} allow, for the first time, for systematic studies of *W* boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

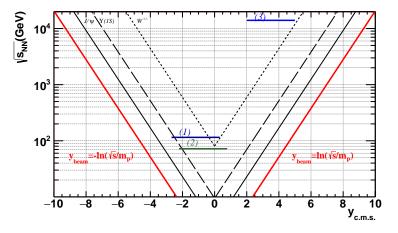

Effect of boost :

[particularly relevant for high energy beams]

- LHCb and the ALICE muon arm become backward detectors $[y_{c.m.s.} < 0]$
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$

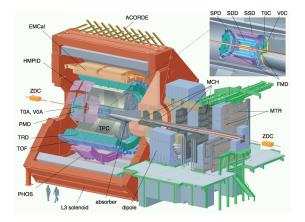
• Allows for backward physics up to high $x_{target} (\equiv x_2)$ [uncharted for proton-nucleus; most relevant for p-p[†] with large x^{\dagger}] [P. Lansberg (IPNO) ST\$As with AFTER@LHC May 15, 2018 7/22

LHCb acceptance for various colliding modes



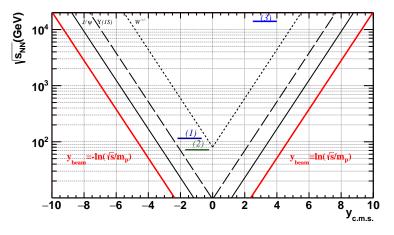
J.P. Lansberg (IPNO)

STSAs with AFTER@LHC


May 15, 2018 8 / 22

LHCb acceptance for various colliding modes

- (1) Fixed-target using p beam, $E_p = 7$ TeV
- (2) Fixed-target using Pb beam, $E_{Pb} = 2.76$ A.TeV
- (3) Collider using p beams, $E_p = 7$ TeV


ALICE muon acceptance for various colliding modes

- Central barrel: $-0.9 < \eta < 0.9$
- Muon spectrometer acceptance: $2.5 < \eta < 4$

• • • • • • • • • • • • •

ALICE muon acceptance for various colliding modes

- (1) Fixed-target using p beam, $E_p = 7$ TeV
- (2) Fixed-target using Pb beam, $E_{Pb} = 2.76$ A.TeV
- (3) Collider using p beams, $E_p = 7$ TeV

STSAs with AFTER@LHC

イロト イヨト イヨト イヨト

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: *p* flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA *p* beam and by STAR at RHIC]

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
 - $\cdot\,\,$ the LHC beam halo is recycled on dense target: proton flux: $5\times10^8~s^{-1}\,\,$ & lead flux: $2\times10^5~s^{-1}\,\,$

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot\,\,$ the LHC beam halo is recycled on dense target: proton flux: 5 $\times\,10^8~s^{-1}\,\,$ & lead flux: 2 $\times\,10^5~s^{-1}\,\,$
 - $\cdot~$ Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- \cdot the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - $\cdot~$ Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- \rightarrow Luminosities with internal gas target or crystal-based solutions are not very different

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- \cdot the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- \rightarrow Luminosities with internal gas target or crystal-based solutions are not very different
- \rightarrow The beam line option is currently a little too ambitious (this could change with FCC)

イロト イ部ト イヨト イヨト 二日

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- \cdot the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - $\cdot~$ Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- \rightarrow Luminosities with internal gas target or crystal-based solutions are not very different
- \rightarrow The beam line option is currently a little too ambitious (this could change with FCC)
- \rightarrow The internal solid target & beam split option: similar possibilities; the latter is cleaner

イロト イ部ト イヨト イヨト 二日

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot~$ the LHC beam halo is recycled on dense target: proton flux: 5 × 10⁸ s⁻¹ $\,$ & lead flux: 2 × 10⁵ s⁻¹ $\,$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow~$ Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow~$ The beam line option is currently a little too ambitious (this could change with FCC)
- $\rightarrow~$ The internal solid target & beam split option: similar possibilities; the latter is cleaner
- \rightarrow The gas target is the best for polarised target and satisfactory for heavy-ion studies

Possible implementations

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot~$ the LHC beam halo is recycled on dense target: proton flux: 5 \times 10 8 s $^{-1}~~$ & lead flux: 2 \times 10 5 s $^{-1}$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow~$ Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow~$ The beam line option is currently a little too ambitious (this could change with FCC)
- → The internal solid target & beam split option: similar possibilities; the latter is cleaner
- \rightarrow The gas target is the best for polarised target and satisfactory for heavy-ion studies

$$\begin{array}{c|c} pp & pA & PbA \\ \mathcal{O}(0.1 - 10 \text{ fb}^{-1}\text{yr}^{-1}) & \mathcal{O}(0.1 - 1 \text{ fb}^{-1}\text{yr}^{-1}) & \mathcal{O}(1 - 50 \text{ nb}^{-1}\text{yr}^{-1}) \\ \end{array}$$

イロト イヨト イヨト イヨト

The polarised H-jet polarimeter at RHIC-BNL

Zelenski et al. NIM A 536 (2005) 248

- Used to measure the proton beam polarisation at RHIC
- 9 vacuum chambers: 9 stages of differential pumping
- Polarised gas: free atomic beam source (ABS) crossing the RHIC beam: H, D and ³He possible
- Holding field in the target vacuum chamber
- Diagnostic system: Breit-Rabi polarimeter

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

The polarised H-jet polarimeter at RHIC-BNL

Zelenski et al. NIM A 536 (2005) 248

- Used to measure the proton beam polarisation at RHIC
- 9 vacuum chambers: 9 stages of differential pumping
- Polarised gas: free atomic beam source (ABS) crossing the RHIC beam: H, D and ³He possible
- Holding field in the target vacuum chamber
- Diagnostic system: Breit-Rabi polarimeter

Density

- Polarised inlet H^{\uparrow} flux: 1.3×10^{17} H/s
- Areal density $\theta_{H^{\uparrow}} = 1.2 \times 10^{12} \text{ atoms/cm}^2 [7 15 \times \text{SMOG but much longer data taking}]$
- Higher flux can be obtained for ${}^{3}\text{He}^{\dagger}$ (×100) and H₂ (×1000)
- Gas target profile at interaction point: gaussian with a full width of ~ 6 mm

イロト イヨト イヨト イヨト

The polarised H-jet polarimeter at RHIC-BNL

Zelenski et al. NIM A 536 (2005) 248

- Used to measure the proton beam polarisation at RHIC
- 9 vacuum chambers: 9 stages of differential pumping
- Polarised gas: free atomic beam source (ABS) crossing the RHIC beam: H, D and ³He possible
- Holding field in the target vacuum chamber
- Diagnostic system: Breit-Rabi polarimeter

Density

- Polarised inlet H^{\uparrow} flux: 1.3×10^{17} H/s
- Areal density $\theta_{H^{\uparrow}} = 1.2 \times 10^{12} \text{ atoms/cm}^2 [7 15 \times \text{SMOG but much longer data taking}]$
- Higher flux can be obtained for ${}^{3}\text{He}^{\dagger}$ (×100) and H₂ (×1000)
- Gas target profile at interaction point: gaussian with a full width of ~ 6 mm

Luminosity

- Using nominal LHC bunch number [2808 bunches for proton and 592 for lead] and for 1 LHC year [10⁷ s proton beam and 10⁶ s lead beam]
- $\mathcal{L}_{pH^{\dagger}} = 4.5 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1} [t = 10^7 \text{ s} : \mathcal{L}_{pH^{\dagger}} = 45 \text{ pb}^{-1}]$

•
$$\mathcal{L}_{pH_2}^{res} = 10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1} [t = 10^7 \text{ s} : \mathcal{L}_{pH_2} > 10 \text{ fb}^{-1}]$$

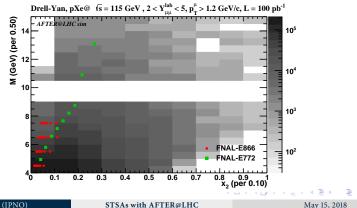
Part III

An updated selection of projected performances

What is not covered

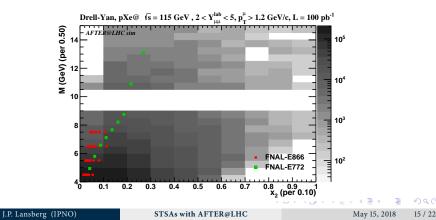
- Pion STSAs
- Photon STSAs
- W boson STSAs
- C-even quarkonium STSAs
- D_{LL} for Λ

Image: Image:

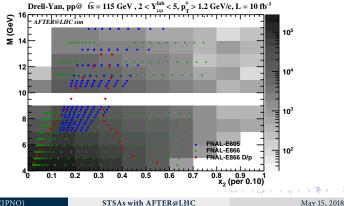

J.P. Lansberg ((IPNO)
-----------------	--------

STSAs with AFTER@LHC

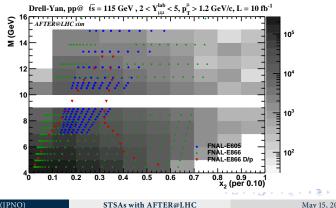
E ► < E ► E ∽ Q ↔ May 15, 2018 15 / 22

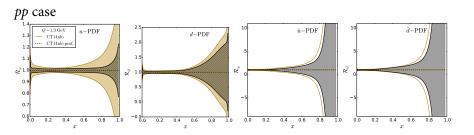

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

· Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).

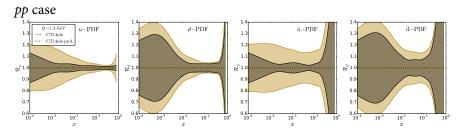


J.P. Lansberg (IPNO)


- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]

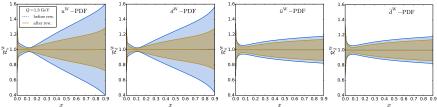

- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- · Same acceptance for *pp* collisions

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released



- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released
- Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting

• □ ▶ • • □ ▶ • • □ ▶ •


- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released
- Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting

• □ ▶ • 4 🖓 ▶ • 3 3 ▶ •

- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- · Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released
- · Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties

pW case

- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released
- · Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties
- On-going theory study for W^{\pm} production accounting for threshold resummation

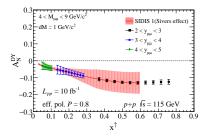
イロト イポト イヨト イヨト

D. Kikola et al. Few Body Syst. 58 (2017) 139

STSAs with AFTER@LHC

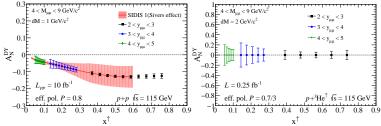
May 15, 2018 16 / 22

D. Kikola et al. Few Body Syst. 58 (2017) 139

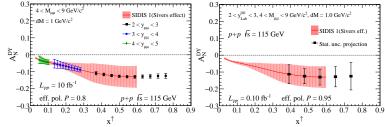

DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics !

Experiment	particles	beam en- ergy (GeV)	\sqrt{s} (GeV)	x^{\uparrow}	\mathcal{L} (cm ⁻² s ⁻¹)	$\mathcal{P}_{\rm eff}$	\mathcal{F} (cm ⁻² s ⁻¹)
AFTER@LHCb	$p + p^{\uparrow}$	7000	115	$0.05 \div 0.95$	$1 \cdot 10^{33}$	80%	$6.4 \cdot 10^{32}$
AFTER@LHCb	$p+^{3}He^{\uparrow}$	7000	115	$0.05 \div 0.95$	$2.5 \cdot 10^{32}$	23%	$1.4 \cdot 10^{31}$
AFTER@ALICE $_{\mu}$	$p + p^{\uparrow}$	7000	115	$0.1 \div 0.3$	$2.5 \cdot 10^{31}$	80%	$1.6 \cdot 10^{31}$
COMPASS (CERN)	$\pi^- + p^{\uparrow}$	190	19	$0.05 \div 0.55$	$2 \cdot 10^{33}$	18%	6.5 · 10 ³¹
PHENIX/STAR (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	510	$0.05 \div 0.1$	$2\cdot 10^{32}$	50%	$5.0\cdot10^{31}$
E1039 (FNAL)	$p + p^{\dagger}$	120	15	$0.1 \div 0.45$	$4 \cdot 10^{35}$	15%	$9.0 \cdot 10^{33}$
E1027 (FNAL)	$p^{\uparrow} + p$	120	15	$0.35 \div 0.9$	$2 \cdot 10^{35}$	60%	$7.2 \cdot 10^{34}$
NICA (JINR)	$p^{\uparrow} + p$	collider	26	$0.1 \div 0.8$	$1 \cdot 10^{32}$	70%	$4.9 \cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\dagger} + p^{\dagger}$	collider	200	$0.1 \div 0.5$	$8\cdot 10^{31}$	60%	$2.9\cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\dagger} + p^{\dagger}$	collider	510	$0.05 \div 0.6$	$6\cdot 10^{32}$	50%	$1.5\cdot 10^{32}$
PANDA (GSI)	$\tilde{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	$2\cdot 10^{32}$	20%	$8.0\cdot 10^{30}$


- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase

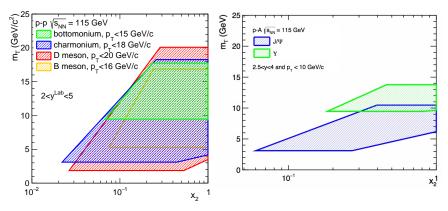
Experiment	particles	beam en- ergy (GeV)	\sqrt{s} (GeV)	x [†]	\mathcal{L} (cm ⁻² s ⁻¹)	\mathcal{P}_{eff}	\mathcal{F} (cm ⁻² s ⁻¹)
AFTER@LHCb	$p + p^{\uparrow}$	7000	115	$0.05 \div 0.95$	$1 \cdot 10^{33}$	80%	$6.4 \cdot 10^{32}$
AFTER@LHCb	$p+^{3}He^{\uparrow}$	7000	115	$0.05 \div 0.95$	$2.5 \cdot 10^{32}$	23%	$1.4 \cdot 10^{31}$
AFTER@ALICE $_{\mu}$	$p + p^{\uparrow}$	7000	115	$0.1 \div 0.3$	$2.5 \cdot 10^{31}$	80%	$1.6 \cdot 10^{31}$
COMPASS (CERN)	$\pi^- + p^{\uparrow}$	190	19	$0.05 \div 0.55$	$2 \cdot 10^{33}$	18%	6.5 · 10 ³¹
PHENIX/STAR (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	510	$0.05 \div 0.1$	$2\cdot 10^{32}$	50%	$5.0\cdot10^{31}$
E1039 (FNAL)	$p + p^{\dagger}$	120	15	$0.1 \div 0.45$	$4 \cdot 10^{35}$	15%	$9.0 \cdot 10^{33}$
E1027 (FNAL)	$p^{\uparrow} + p$	120	15	$0.35 \div 0.9$	$2 \cdot 10^{35}$	60%	$7.2 \cdot 10^{34}$
NICA (JINR)	$p^{\uparrow} + p$	collider	26	$0.1 \div 0.8$	$1 \cdot 10^{32}$	70%	$4.9 \cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\dagger} + p^{\dagger}$	collider	200	$0.1 \div 0.5$	$8\cdot 10^{31}$	60%	$2.9 \cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\dagger} + p^{\dagger}$	collider	510	$0.05 \div 0.6$	$6\cdot 10^{32}$	50%	$1.5\cdot10^{32}$
PANDA (GSI)	$\tilde{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	$2\cdot 10^{32}$	20%	$8.0\cdot 10^{30}$


- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase
- ³He^{\uparrow} target \rightarrow quark Sivers effect in the neutron via DY: unique !

Experiment	particles	beam en- ergy (GeV)	\sqrt{s} (GeV)	x^{\uparrow}	\mathcal{L} (cm ⁻² s ⁻¹)	\mathcal{P}_{eff}	\mathcal{F} (cm ⁻² s ⁻¹)
AFTER@LHCb	$p + p^{\dagger}$	7000	115	$0.05 \div 0.95$	$1 \cdot 10^{33}$	80%	$6.4 \cdot 10^{32}$
AFTER@LHCb	$p+^{3}He^{\dagger}$	7000	115	$0.05 \div 0.95$	$2.5 \cdot 10^{32}$	23%	$1.4 \cdot 10^{31}$
AFTER@ALICEµ	$p + p^{\uparrow}$	7000	115	$0.1 \div 0.3$	$2.5 \cdot 10^{31}$	80%	$1.6 \cdot 10^{31}$
COMPASS (CERN)	$\pi^- + p^{\uparrow}$	190	19	$0.05 \div 0.55$	$2\cdot 10^{33}$	18%	$6.5 \cdot 10^{31}$
PHENIX/STAR (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	510	$0.05 \div 0.1$	$2\cdot 10^{32}$	50%	$5.0\cdot10^{31}$
E1039 (FNAL)	$p + p^{\uparrow}$	120	15	$0.1 \div 0.45$	$4 \cdot 10^{35}$	15%	$9.0 \cdot 10^{33}$
E1027 (FNAL)	$p^{\uparrow} + p$	120	15	$0.35 \div 0.9$	$2 \cdot 10^{35}$	60%	$7.2 \cdot 10^{34}$
NICA (JINR)	$p^{\uparrow} + p$	collider	26	$0.1 \div 0.8$	$1 \cdot 10^{32}$	70%	$4.9 \cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\dagger} + p^{\dagger}$	collider	200	$0.1 \div 0.5$	$8\cdot 10^{31}$	60%	$2.9\cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	510	$0.05 \div 0.6$	$6\cdot 10^{32}$	50%	$1.5\cdot 10^{32}$
PANDA (GSI)	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	$2\cdot 10^{32}$	20%	$8.0 \cdot 10^{30}$

- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase
- ³He^{\uparrow} target \rightarrow quark Sivers effect in the neutron via DY: unique !

Experiment	particles	beam en- ergy (GeV)	\sqrt{s} (GeV)	x^{\uparrow}	\mathcal{L} (cm ⁻² s ⁻¹)	\mathcal{P}_{eff}	\mathcal{F} (cm ⁻² s ⁻¹)
AFTER@LHCb	$p + p^{\dagger}$	7000	115	$0.05 \div 0.95$	$1 \cdot 10^{33}$	80%	$6.4 \cdot 10^{32}$
AFTER@LHCb	$p+^{3}He^{\uparrow}$	7000	115	$0.05 \div 0.95$	$2.5 \cdot 10^{32}$	23%	$1.4 \cdot 10^{31}$
AFTER@ALICE $_{\mu}$	$p + p^{\uparrow}$	7000	115	$0.1 \div 0.3$	$2.5 \cdot 10^{31}$	80%	$1.6 \cdot 10^{31}$
COMPASS (CERN)	$\pi^- + p^{\uparrow}$	190	19	$0.05 \div 0.55$	$2 \cdot 10^{33}$	18%	6.5 · 10 ³¹
PHENIX/STAR (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	510	$0.05 \div 0.1$	$2\cdot 10^{32}$	50%	$5.0\cdot10^{31}$
E1039 (FNAL)	$p + p^{\dagger}$	120	15	$0.1 \div 0.45$	$4 \cdot 10^{35}$	15%	$9.0 \cdot 10^{33}$
E1027 (FNAL)	$p^{\uparrow} + p$	120	15	$0.35 \div 0.9$	$2 \cdot 10^{35}$	60%	$7.2 \cdot 10^{34}$
NICA (JINR)	$p^{\uparrow} + p$	collider	26	$0.1 \div 0.8$	$1 \cdot 10^{32}$	70%	$4.9 \cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\dagger} + p^{\dagger}$	collider	200	$0.1 \div 0.5$	$8\cdot 10^{31}$	60%	$2.9 \cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	510	$0.05 \div 0.6$	$6\cdot 10^{32}$	50%	$1.5\cdot10^{32}$
PANDA (GSI)	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	$2\cdot 10^{32}$	20%	$8.0\cdot10^{30}$



NEW: preliminary FoM with H-jet (1 year)

J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

Heavy-flavour studies : kinematical ranges

- Left: for LHCb based on 10 fb⁻¹ of data
- Right : for ALICE based on a P_T cut (to be improved with 0.25 fb⁻¹ and HF μ))

May 15, 2018 17 / 22

D. Kikola et al.. Few Body Syst. 58 (2017) 139

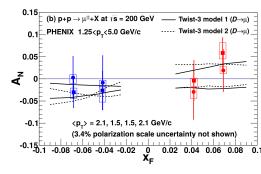
STSAs with AFTER@LHC

E ► < E ► E ∽ Q (~ May 15, 2018 18 / 22

イロト イヨト イヨト イヨト

D⁰ can also be collected with a transversely polarised target [Never measured] D. Kikola et al.. Few Body Syst. 58 (2017) 139

イロト イポト イヨト イヨト


- D⁰ can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect

[related to \mathcal{L}_g]

Differences in $A_N^{D^0}$ and $A_N^{\bar{D}^0}$ gives acces to *C*-odd correlators

[No other facility can directly measure this; PHENIX via charged muons arXiv:1703.09333]

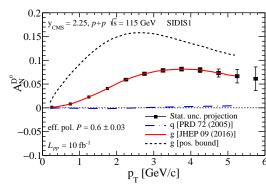
D. Kikola et al.. Few Body Syst. 58 (2017) 139

[Beware of the unconventional definition of x_F at RHIC which does not correspond to $x_1 - x_2$ in the fixed target mode]

STSAs with AFTER@LHC

May 15, 2018 18 / 22

- D⁰ can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect


[related to \mathcal{L}_g]

Differences in $A_N^{D^0}$ and $A_N^{\overline{D}^0}$ gives acces to *C*-odd correlators

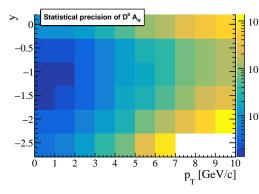
[No other facility can directly measure this; PHENIX via charged muons arXiv:1703.09333]

Precision at the per cent level with AFTER@LHC(b)

D. Kikola et al.. Few Body Syst. 58 (2017) 139

STSAs with AFTER@LHC

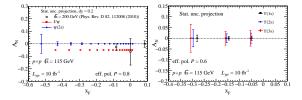
- D⁰ can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect


[related to \mathcal{L}_g]

Differences in $A_N^{D^0}$ and $A_N^{\overline{D}^0}$ gives acces to *C*-odd correlators

[No other facility can directly measure this; PHENIX via charged muons arXiv:1703.09333]

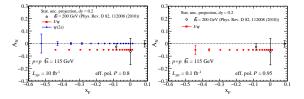
Precision at the per cent level with AFTER@LHC(b)


D. Kikola et al.. Few Body Syst. 58 (2017) 139

D. Kikola et al. Few Body Syst. 58 (2017)

<ロト < 部 > < 国 > < 国 >

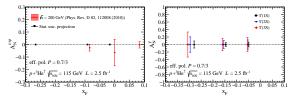
• A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]

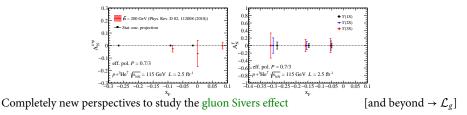

STSAs with AFTER@LHC

May 15, 2018 19 / 22

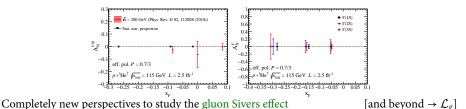
D. Kikola et al. Few Body Syst. 58 (2017)

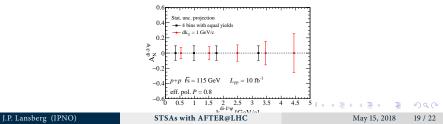
• A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX w


[So far, only J/ψ by PHENIX with large uncertainties] [NEW: FoM not degraded with a H-jet like solution]


D. Kikola et al. Few Body Syst. 58 (2017)

 A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties] [NEW: FoM not degraded with a H-jet like solution]


Also access on polarised neutron (³He[†]) at the per cent level for J/ψ !


- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties] [NEW: FoM not degraded with a H-jet like solution]
- Also access on polarised neutron (³He[†]) at the per cent level for J/ψ !

- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties] [NEW: FoM not degraded with a H-jet like solution]
- Also access on polarised neutron (³He[†]) at the per cent level for J/ψ !

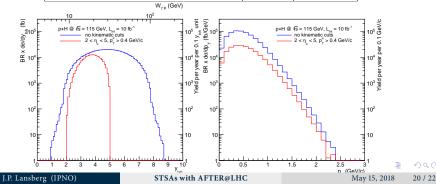
• Di- J/ψ allow one to study the k_T dependence of the gluon Sivers function for the very first time !

Ultra-Peripheral Collisions in the FT mode and J/ψ production

	pН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot}$ (pb)	1.18×10^{3}	276.77×10^3
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10^3
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} and $p_{\rm T}^{\mu}$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

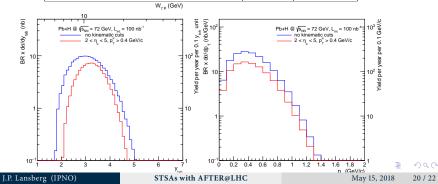
J.P. Lansberg (IPNO)


STSAs with AFTER@LHC

May 15, 2018 20 / 22

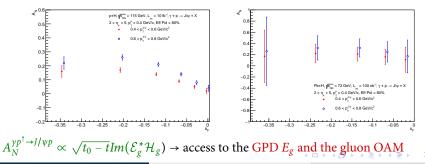
Ultra-Peripheral Collisions in the FT mode and J/ψ production

	pН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot}$ (pb)	1.18×10^{3}	276.77×10^3
$\sigma_{J/\psi \to l^+l^-}$ (pb)	70.10	16.50×10^3
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} and $p_{\rm T}^{\mu}$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000


JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

Ultra-Peripheral Collisions in the FT mode and J/ψ production

	pН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot}$ (pb)	1.18×10^{3}	276.77×10^3
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10^3
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} and $p_{\rm T}^{\mu}$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000


JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

Ultra-Peripheral Collisions in the FT mode and J/ψ production

	pН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot}$ (pb)	1.18×10^{3}	276.77×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (pb)	70.10	16.50×10^{3}
$\sigma_{J/\psi \rightarrow l^+l^-}$ (with LHCb η_{μ} cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} and $p_{\rm T}^{\mu}$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

May 15, 2018 20 / 22

Part IV

Conclusion

J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

E ▶ ◀ E ▶ E ∽ ९ ↔ May 15, 2018 21 / 22

$\bullet~$ Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

イロト イポト イヨト イヨ

• The nucleon spin and the transverse dynamics of the partons

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:

new energy, new rapidity domain and new probes

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:

new energy, new rapidity domain and new probes

• 2 ways towards fixed-target collisions with the LHC beams

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode

which clearly support a full physics program

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode

which clearly support a full physics program

• In synergy with & under the advice of the conveners of the CERN Physics Beyond Collider working group [pbc.web.cern.ch], we now prepare a document on the fixed-target physics at the LHC

J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

May 15, 2018 22 / 22

Part V

Backup slides

J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

Heavy-Ion Physics

- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at √s_{NN} = 115 GeV and Pb+p collisions at √s_{NN} = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]]. Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

Hadron structure

- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC). by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η_c production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
 By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- *Hadronic production of* Ξ_{cc} *at a fixed-target experiment at the LHC* By G. Chen *et al.*. Phys.Rev. D89 (2014) 074020.

Feasibility study and technical ideas

- Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC) by Daniel Kikola et al. [arXiv:1702.01546 [hep-ex]]. Few Body Syst. 58 (2017) 139.
- Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production by B. Trzeciak et al. [arXiv:1703.03726 [nucl-ex]] Few Body Syst. 58 (2017) 148
- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

Generalities

 Physics Opportunities of a Fixed-Target Experiment using the LHC Beams By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.

J.P. Lansberg (IPNO)

STSAs with AFTER@LHC

May 15, 2018 27 / 22