GPDs and LFWFs:

 Crossing the $x=|\xi|$ line.
Cédric Mezrag

INFN Roma1

May $18^{\text {th }}, 2018$

Definitions

- Generalised Parton Distributions (GPDs):

Definitions

- Generalised Parton Distributions (GPDs):
- are defined according to a non-local matrix element,

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u\right] . \\
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u} \gamma^{+} \gamma_{5} u+\tilde{E}^{q}(x, \xi, t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2 M} u\right] . \\
& \text { D. Müller et al., Fortsch. Phy. 42 } 101 \text { (1994) } \\
& \text { X. Ji, Phys. Rev. Lett. 78, 610 (1997) } \\
& \text { A. Radyushkin, Phys. Lett. B380, 417 (1996) }
\end{aligned}
$$

4 GPDs without helicity transfer +4 helicity flip GPDs

Definitions

- Generalised Parton Distributions (GPDs):
- are defined according to a non-local matrix element,
- depend on three variables (x, ξ, t),

Definitions

- Generalised Parton Distributions (GPDs):
- are defined according to a non-local matrix element,
- depend on three variables (x, ξ, t),
- can split in terms of quark flavour and gluon contributions,

Definitions

- Generalised Parton Distributions (GPDs):
- are defined according to a non-local matrix element,
- depend on three variables (x, ξ, t),
- can split in terms of quark flavour and gluon contributions,
- can be related to the $2+1 \mathrm{D}$ parton number density when $\xi \rightarrow 0$.
M. Burkardt, Phys. Rev. D62, 071503 (2000)

Pion GPD in Impact parameter space from: CM et al., Phys. Lett. B741, 190-196 (2015)

Definitions

- Generalised Parton Distributions (GPDs):
- are defined according to a non-local matrix element,
- depend on three variables (x, ξ, t),
- can split in terms of quark flavour and gluon contributions,
- can be related to the 2+1D parton number density when $\xi \rightarrow 0$.
- are univeral, i.e. are related to the Compton Form Factors (CFFs) of various exclusive processes through convolutions:

$$
\mathcal{H}(\xi, t)=\int \mathrm{d} x C(x, \xi) H(x, \xi, t)
$$

Properties

- Polynomiality Property:

$$
\int_{-1}^{1} \mathrm{~d} x x^{m} H^{q}(x, \xi, t)=\sum_{j=0}^{\left[\frac{m}{2}\right]} \xi^{2 j} C_{2 j}^{q}(t)+\bmod (m, 2) \xi^{m+1} C_{m+1}^{q}(t)
$$

Lorentz Covariance

Properties

- Polynomiality Property:

> Lorentz Covariance

- Positivity property:

$$
\left|H^{q}(x, \xi, t)-\frac{\xi^{2}}{1-\xi^{2}} E^{q}(x, \xi, t)\right| \leq \sqrt{\frac{q\left(\frac{x+\xi}{1+\xi}\right) q\left(\frac{x-\xi}{1-\xi}\right)}{1-\xi^{2}}}
$$

A. Radysuhkin, Phys. Rev. D59, 014030 (1999)
B. Pire et al., Eur. Phys. J. C8, 103 (1999)
M. Diehl et al., Nucl. Phys. B596, 33 (2001) P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)

Positivity of Hilbert space norm

Properties

- Polynomiality Property:

Lorentz Covariance

- Positivity property:

Positivity of Hilbert space norm

- Support property:

$$
\begin{aligned}
& \quad x \in[-1 ; 1] \\
& \text { M. Diehl and T. Gousset, Phys. Lett. B428, } 359 \text { (1998) } \\
& \quad \text { Relativistic quantum mechanics }
\end{aligned}
$$

Properties

- Polynomiality Property:

Lorentz Covariance

- Positivity property:

Positivity of Hilbert space norm

- Support property:

Relativistic quantum mechanics

- Soft pion theorem (pion GPDs only)
M.V. Polyakov, Nucl. Phys. B555, 231 (1999)

CM et al., Phys. Lett. B741, 190 (2015)
Axial-Vector WTI

Properties

- Polynomiality Property:

Lorentz Covariance

- Positivity property:

Positivity of Hilbert space norm

- Support property:

Relativistic quantum mechanics

- Soft pion theorem (pion GPDs only)

Axial-Vector WTI
No model (so far) fulfils all the constraints a priori
People emphasise either:

- Polynomiality through Double Distribution modeling,
- Positivity through LFWFs approaches

Double Distributions for spin 0

- Definition in terms of matrix element for $z^{2}=0$:

$$
\begin{aligned}
\left\langle P+\frac{\Delta}{2}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma_{\mu} q\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle= & 2 P_{\mu} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha e^{-i \beta(P \cdot z)+i \alpha \frac{(\Delta \cdot z)}{2}} F^{q}(\beta, \alpha, t) \\
& -\Delta_{\mu} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha e^{-i \beta(P \cdot z)+i \alpha \frac{(\Delta \cdot z)}{2}} G^{q}(\beta, \alpha, t) \\
& + \text { higher twist terms. }
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
A. Radyushkin, Phys. Rev. D56, 5524 (1997)

Double Distributions for spin 0

- Definition in terms of matrix element for $z^{2}=0$:

$$
\begin{aligned}
\left\langle P+\frac{\Delta}{2}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma_{\mu} q\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle= & 2 P_{\mu} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha e^{-i \beta(P \cdot z)+i \alpha \frac{(\Delta \cdot z)}{2}} F^{q}(\beta, \alpha, t) \\
& -\Delta_{\mu} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha e^{-i \beta(P \cdot z)+i \alpha \frac{(\Delta \cdot z)}{2}} G^{q}(\beta, \alpha, t) \\
& + \text { higher twist terms. }
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
A. Radyushkin, Phys. Rev. D56, 5524 (1997)

- Simple relation to GPDs:

$$
H(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi)[F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)]
$$

Double Distributions for spin 0

- Definition in terms of matrix element for $z^{2}=0$:

$$
\begin{aligned}
\left\langle P+\frac{\Delta}{2}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma_{\mu} q\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle= & 2 P_{\mu} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha e^{-i \beta(P \cdot z)+i \alpha \frac{(\Delta \cdot z)}{2}} F^{q}(\beta, \alpha, t) \\
& -\Delta_{\mu} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha e^{-i \beta(P \cdot z)+i \alpha \frac{(\Delta \cdot z)}{2}} G^{q}(\beta, \alpha, t) \\
& + \text { higher twist terms. }
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
A. Radyushkin, Phys. Rev. D56, 5524 (1997)

- Simple relation to GPDs:

$$
H(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi)[F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)]
$$

- Automatically fulfil the polynomiality property

Double Distributions for spin 0

- Definition in terms of matrix element for $z^{2}=0$:

$$
\begin{aligned}
\left\langle P+\frac{\Delta}{2}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma_{\mu} q\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle= & 2 P_{\mu} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha e^{-i \beta(P \cdot z)+i \alpha \frac{(\Delta \cdot z)}{2}} F^{q}(\beta, \alpha, t) \\
& -\Delta_{\mu} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha e^{-i \beta(P \cdot z)+i \alpha \frac{(\Delta \cdot z)}{2}} G^{q}(\beta, \alpha, t) \\
& + \text { higher twist terms. }
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
A. Radyushkin, Phys. Rev. D56, 5524 (1997)

- Simple relation to GPDs:

$$
H(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi)[F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)]
$$

- Automatically fulfil the polynomiality property
- But positivity is not fulfilled a priori

LFWFs

- Lightfront quantization allows to expand hadrons on a Fock basis

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

LFWFs

- Lightfront quantization allows to expand hadrons on a Fock basis

$$
\text { DGLAP: }|x|>|\xi|
$$

- Same N LFWFs
- Truncation unambiguous

ERBL: $|x|<|\xi|$

- N and $N+2$ LFWFs
- Truncation ambiguous

LFWFs

- Lightfront quantization allows to expand hadrons on a Fock basis

$$
\text { DGLAP: }|x|>|\xi|
$$

- Same N LFWFs
- Truncation unambiguous

ERBL: $|x|<|\xi|$

- N and $N+2$ LFWFs
- Truncation ambiguous

LFWFs formalism has the positivity property inbuilt but polynomiality is lost by truncating both in DGLAP and ERBL sectors.

- Lightfront quantization allows to expand hadrons on a Fock basis

$$
\text { DGLAP: }|x|>|\xi|
$$

- Same N LFWFs
- Truncation unambiguous

ERBL: $|x|<|\xi|$

- N and $N+2$ LFWFs
- Truncation ambiguous

LFWFs formalism has the positivity property inbuilt but polynomiality is lost by truncating both in DGLAP and ERBL sectors.

Is there a solution to get all the good properties?

N.Chouika, CM, H. Moutarde, J. Rodriguez-Quintero, EPJC 77 (2017) no.12, 906

Intuitive picture

$$
H(x, \xi)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi)[F(\beta, \alpha)+\xi G(\beta, \alpha)]
$$

- DGLAP (red) and ERBL (green) lines cut $\beta=0$ outside or inside the square
- Every point $(\beta \neq 0, \alpha)$ contributes both to DGLAP and ERBL regions
- For every point $(\beta \neq 0, \alpha)$ we can draw an infinite number of DGLAP lines.

Intuitive picture

$$
H(x, \xi)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi)[F(\beta, \alpha)+\xi G(\beta, \alpha)]
$$

- DGLAP (red) and ERBL (green) lines cut $\beta=0$ outside or inside the square
- Every point $(\beta \neq 0, \alpha)$ contributes both to DGLAP and ERBL regions
- For every point $(\beta \neq 0, \alpha)$ we can draw an infinite number of DGLAP lines.

Is it possible to recover the DDs from the DGLAP region only?

Radon Transform and GPDs

- We can define a D-term such that:

$$
\int_{-1}^{1} \mathrm{~d} x x^{m}(H(x, \xi)-D(x / \xi))=\sum_{i \text { even }}^{m}(2 \xi)^{i} C_{m, i}
$$

yielding the Ludwig-Helgason consistency conditions.

- From Hertle theorem (1983), we know that $H-D$ is in the range of the Radon transform and that:

$$
H(x, \xi)=D(x / \xi)+\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi) F_{D}(\beta, \alpha)
$$

This allows us to identify the DD F_{D} with the Radon transform of $H-D$. This has been first noticed by O. Teryaev (PLB510 2001 125).

- It should be possible to use the limited Radon inverse transform to obtain the DD and thus the ERBL part.

Radon Transform and GPDs

- We can define a D-term such that:

$$
\int_{-1}^{1} \mathrm{~d} x x^{m}(H(x, \xi)-D(x / \xi))=\sum_{i \text { even }}^{m}(2 \xi)^{i} C_{m, i}
$$

yielding the Ludwig-Helgason consistency conditions.

- From Hertle theorem (1983), we know that $H-D$ is in the range of the Radon transform and that:

$$
H(x, \xi)=D(x / \xi)+\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi) F_{D}(\beta, \alpha)
$$

This allows us to identify the DD F_{D} with the Radon transform of $H-D$. This has been first noticed by O. Teryaev (PLB510 2001 125).

- It should be possible to use the limited Radon inverse transform to obtain the DD and thus the ERBL part.

NB: This is equivalent to fixing the DD to the Polyakov-Weiss scheme. The same argument can be done in other schemes, but the D-term remains unknown.

Uniqueness of the Extension

- Since DD are compactly supported, we can use the Boman and Todd-Quinto theorem which tells us

$$
H(x, \xi)=0 \quad \text { for } \quad(x, \xi) \in \text { DGLAP } \Rightarrow F_{D}(\beta, \alpha)=0 \quad \text { for all } \quad(\beta \neq 0, \alpha) \in \Omega
$$

Boman and Todd-Quinto, Duke Math. J. 55, 943 (1987)
insuring the uniqueness of the extension up to D-term like terms.

- The DGLAP region almost completely characterises the entire GPD.

New modeling strategy

- Compute the DGLAP region through overlap of LFWFs \Rightarrow fulfilment of the positivity property
- Extension to the ERBL region using the Radon inverse transform \Rightarrow fulfilment of the polynomiality property

N.Chouika, CM, H. Moutarde, J. Rodriguez-Quintero,

PLB 780 (2018) 287-293

An algebraic model for the Pion BSWF

- Consider the Euclidean Bethe-Salpeter Wave Function based on the Nakanishi representation:

$$
\begin{gathered}
\Psi(k, P)=S(k-P / 2) \Gamma(k, P) S(k+P / 2) \\
S(k)=\frac{i \gamma \cdot k+M}{k^{2}+M^{2}} \quad \Gamma(k, P)=i \mathcal{N} \gamma_{5} \int_{-1}^{1} \frac{\mathrm{~d} z\left(1-z^{2}\right) M^{2}}{\left[\left(k-\frac{1-z}{2} P\right)^{2}+M^{2}\right]}
\end{gathered}
$$

An algebraic model for the Pion BSWF

- Consider the Euclidean Bethe-Salpeter Wave Function based on the Nakanishi representation:

$$
\begin{gathered}
\Psi(k, P)=S(k-P / 2) \Gamma(k, P) S(k+P / 2) \\
S(k)=\frac{i \gamma \cdot k+M}{k^{2}+M^{2}} \quad \Gamma(k, P)=i \mathcal{N} \gamma_{5} \int_{-1}^{1} \frac{\mathrm{~d} z\left(1-z^{2}\right) M^{2}}{\left[\left(k-\frac{1-z}{2} P\right)^{2}+M^{2}\right]}
\end{gathered}
$$

- We can compute from it the 2-body LFWFs:

$$
\begin{aligned}
& \Phi_{\uparrow \downarrow}\left(x, \mathbf{k}_{\perp}\right)=8 \sqrt{15} \pi \frac{M^{3}}{\left(\mathbf{k}_{\perp}^{2}+M^{2}\right)^{2}}(1-x) x \\
& \Phi_{\uparrow \uparrow}\left(x, \mathbf{k}_{\perp}\right)=-8 i \sqrt{15} \pi \frac{M^{2}}{\left(\mathbf{k}_{\perp}^{2}+M^{2}\right)^{2}}(1-x) x
\end{aligned}
$$

An algebraic model for the Pion BSWF

- Consider the Euclidean Bethe-Salpeter Wave Function based on the Nakanishi representation:

$$
\begin{gathered}
\Psi(k, P)=S(k-P / 2) \Gamma(k, P) S(k+P / 2) \\
S(k)=\frac{i \gamma \cdot k+M}{k^{2}+M^{2}} \quad \Gamma(k, P)=i N \gamma_{5} \int_{-1}^{1} \frac{\mathrm{~d} z\left(1-z^{2}\right) M^{2}}{\left[\left(k-\frac{1-z}{2} P\right)^{2}+M^{2}\right]}
\end{gathered}
$$

- We can compute from it the 2-body LFWFs:

$$
\begin{aligned}
& \Phi_{\uparrow \downarrow}\left(x, \mathbf{k}_{\perp}\right)=8 \sqrt{15} \pi \frac{M^{3}}{\left(\mathbf{k}_{\perp}^{2}+M^{2}\right)^{2}}(1-x) x \\
& \Phi_{\uparrow \uparrow}\left(x, \mathbf{k}_{\perp}\right)=-8 i \sqrt{15} \pi \frac{M^{2}}{\left(\mathbf{k}_{\perp}^{2}+M^{2}\right)^{2}}(1-x) x
\end{aligned}
$$

Nakanishi Representation

The present model is very simple, but the Nakanishi formalism is completely general, and can be straigthforwardly apply to more complicated models.

Algebraic Results

$$
\begin{gathered}
\left.H_{\pi^{+}}^{u}(x, \xi, t)\right|_{\xi \leq x}=\frac{15}{2} \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}} \frac{1}{(1+\zeta)^{2}}\left(3+\frac{1-2 \zeta}{1+\zeta} \frac{\operatorname{arctanh}\left(\sqrt{\frac{\zeta}{1+\zeta}}\right)}{\sqrt{\frac{\zeta}{1+\zeta}}}\right) \\
\zeta=\frac{-t}{4 M^{2}} \frac{(1-x)^{2}}{1-\xi^{2}}
\end{gathered}
$$

Algebraic Results

$$
\begin{gathered}
\left.H_{\pi^{+}}^{u}(x, \xi, t)\right|_{\xi \leq x}=\frac{15}{2} \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}} \frac{1}{(1+\zeta)^{2}}\left(3+\frac{1-2 \zeta}{1+\zeta} \frac{\operatorname{arctanh}\left(\sqrt{\frac{\zeta}{1+\zeta}}\right)}{\sqrt{\frac{\zeta}{1+\zeta}}}\right) \\
\zeta=\frac{-t}{4 M^{2}} \frac{(1-x)^{2}}{1-\xi^{2}}
\end{gathered}
$$

Few comments

- Simple LFWFs yield quite complicated GPDs in the DGLAP region;
- Yet algebraic results can be obtained both for the DD and the GPD in the ERBL region;
- Provide us with a benchmarck for numerical approaches

Algebraic Results

$\left.H_{\pi^{+}}^{u}(x, \xi, t)\right|_{\xi \leq x}=\frac{15}{2} \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}} \frac{1}{(1+\zeta)^{2}}\left(3+\frac{1-2 \zeta}{1+\zeta} \frac{\operatorname{arctanh}\left(\sqrt{\frac{\zeta}{1+\zeta}}\right)}{\sqrt{\frac{\zeta}{1+\zeta}}}\right)$,

$$
\zeta=\frac{-t}{4 M^{2}} \frac{(1-x)^{2}}{1-\xi^{2}},
$$

Few comments

- Simple LFWFs yield quite complicated GPDs in the DGLAP region;
- Yet algebraic results can be obtained both for the DD and the GPD in the ERBL region;
- Provide us with a benchmarck for numerical approaches

Another model have been inverted by Müller and Hwang (PLB660 (2008) 350-359)

Numerical Inversion

- For more complicated LFWFs, algebraic inversion is not possible, we need to develop a systematic numerical method to handle it.

Numerical Inversion

- For more complicated LFWFs, algebraic inversion is not possible, we need to develop a systematic numerical method to handle it.
- Difficulty: The limited inverse Radon transform is a severely ill-posed problem in the sens of Hadamard.

Numerical Inversion

- For more complicated LFWFs, algebraic inversion is not possible, we need to develop a systematic numerical method to handle it.
- Difficulty: The limited inverse Radon transform is a severely ill-posed problem in the sens of Hadamard.
- Using finite element analysis with LSMR regularisation we obtained:

CM, J. Segovia, L. Chang, C.D. Roberts, arXiv:1711.09101

Faddeev Framework

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.

Faddeev Framework

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- Used kernels predict the existence of strong diquarks correlations inside the nucleon.

Faddeev Framework

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- Used kernels predict the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks, whose mass is roughly $2 / 3$ of the nucleon mass,
- Axial-Vector (AV) diquarks, whose mass is around $3 / 4$ of the nucleon one.

Faddeev Framework

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- Used kernels predict the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks, whose mass is roughly $2 / 3$ of the nucleon mass,
- Axial-Vector (AV) diquarks, whose mass is around $3 / 4$ of the nucleon one.
- Can we understand the nucleon wave function in terms of quark-diquarks correlations?

Wave Function Model

- Algebraic parametrisation inspired by the results obtained from DSEs and Faddeev equations.
- It is based on Nakanishi representation, which is completely general.
- This is an exploratory work: we want to know what we can or cannot do.
- We also assume the dynamical diquark correlations, both scalar and $A V$, and compare in the end with Lattice QCD one.

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \underset{\text { Braun et al., Nucl. Pi }}{\rightarrow} \underset{\left(x_{1}, x_{2}, x_{3}\right),}{ }
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C 巾 n u_{\downarrow}^{j}\left(z_{2}\right)\right) \nmid d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \not \hbar d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:
- The operator then selects the relevant component of the wave function.

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C \phi u_{\downarrow}^{j}\left(z_{2}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

- The operator then selects the relevant component of the wave function.
- Our ingredients are:
- Perturbative-like quark and diquark propagator
- Nakanishi based diquark Bethe-Salpeter-like amplitude (green disks)
- Nakanishi based quark-diquark amplitude (dark blue ellipses)

Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Pion

Pion figure from L. Chang et al., PRL 110 (2013)

Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Pion

Pion figure from L. Chang et al., PRL 110 (2013)

- This results provide a broad and concave meson DA parametrisation
- The endpoint behaviour remains linear

Our Result

Asymptotic DA

- Results evolved from 0.51 to 2 GeV with both scalar and AV diquark
- Nucleon DA is skewed compared to the asymptotic one
- It is also broader than the asymptotic results
- These properties are consequences of our quark-diquark picture
- Can be extended to the radial excitations (Roper)

Comparison with lattice

$$
<x_{i}>_{\varphi}=\int \mathcal{D} x x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602

Gonclusion

Conclusion

GPDs Theory

- We can now fulfil positivity and polynomiality a priori.
- We have a systematic way to do it.

Nakanishi Parametrisation

- Simple algebraic Nakanishi-like models for the pion and nucleon.
- Algebraic models have their successes and their limitations.
- Aim : numerical solution from Dyson-Schwinger Equations.

Phenomenology

- Final goal: DVCS/TCS/DVMP cross sections.
- Use PARTONS to achieve it.

Thank you for your attention

Back up slides

PARTONS

http://partons.cea.fr

PARTONS

Main Page Reference documentation +

Main Page

What is PARTONS?

18

PARTONS is a C++ software framework dedicated to the phenomenology of Generalized Parton Distributions (GPDS). GPDS provide a comprehensive description of the partonic structure of the nucleon and contain a wealth of new information. In particular, GPDs provide a description of the nucleon as an extended object, referred to as 3 -dimensional nucleon tomography, and give an access to the orbital angular momentum of quarks.

PARTONS provides a necessary bridge between models of GPDs and experimental data measured in various exclusive channels, like Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP). The experimental programme devoted to study GPDs has been carrying out by several experiments, like HERMES at DESY (closed), COMPASS at CERN, Hall-A and CLAS at JLab. GPD subject will be also a key component of the physics case for the expected Electron Ion Collider (EIC).
PARTONS is useful to theorists to develop new models, phenomenologists to interpret existing measurements and to experimentalists to design new experiments. A detailed description of the project can be found here.

Get PARTONS

Here you can learn how to get your own version of PARTONS. We offer two ways.
You can use our provided virtual machine with an out-of-the-box PARTONS runtime and development environment. This is the easiest way to start your experience with PARTONS.
Using PARTONS with our provided Virtual Machine
 farms.

Using PARTONS on GNU/Linux
Using PARTONS on Mac OS x

Configure PARTONS

$$
\begin{aligned}
H(x, \xi, t)= & (1-x) \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi) h_{P}(\beta, \alpha, t) \\
h_{P}(\beta, \alpha, t)= & \frac{15}{2} \theta(\beta)\left[1+\frac{-t}{4 M^{2}}\left((1-\beta)^{2}-\alpha^{2}\right)\right]^{-3} \\
& \times\left[1-3\left(\alpha^{2}-\beta^{2}\right)-2 \beta+\frac{-t}{4 M^{2}}\left(1-\left(\alpha^{2}-\beta^{2}\right)^{2}-4 \beta(1-\beta)\right)\right]
\end{aligned}
$$

From the algebraic DD we can deduce the GPD in ERBL region

$$
\left.H(x, \xi, 0)\right|_{|x| \leq \xi}=\frac{15}{2} \frac{(1-x)\left(\xi^{2}-x^{2}\right)}{\xi^{3}(1+\xi)^{2}}\left(x+2 x \xi+\xi^{2}\right)
$$

Numerical Basis

- Use of a P_{1} (planar by pieces) basis
- We have to trade of precision and noise:

In ill-posed inverse problem, small errors coming from our discretisations can trigger significant increases in the numerical noise.

