

Mesons as relativistic bound states in a Minkowski-space approach

Sofia Leitão

IST, University of Lisbon, Portugal

Thomas Jefferson National Accelerator Facility, USA, May 18, 2018

Motivation

"The patchwork quilt of QCD"

"There exists a wide range of **non-perturbative methods**, all of which trying to approach **QCD** from one way or another. One should not see these different techniques as competing, but as patchwork trying to cover all aspects of QCD."

in "A study of the Gribov-Zwanziger action: from propagators to glueballs" PhD Thesis, (2011)

How can we combine knowledge?

 Part I - Results from CST (Covariant Spectator Theory) applied to the study of heavy and heavy-light mesons;

> in collaboration with Alfred Stadler (University of Évora), Elmar Biernat and Teresa Peña (IST) arXiv:1408.1834 in PRD 90 (2014) ; arXiv:1608.08065 in PLB 764 (2017); arXiv:1707.09303 in PRD 96 (2017)

Elmar Biernat's talk, Monday

• **Part II** - Comparison of two Minkowski-space approaches to heavy quarkonia: CST and BLFQ (Basis Light-Front Quantization);

in collaboration with Yang Li, James P. Vary, Pieter Maris (lowa State University)

arXiv:1705.06178 in EPJC 77 (2017)

James Vary's talk, Monday

• Summary and Outlook

Part I - Results from CST applied to the study of mesons

Main goal of this work: construct a *manifestly covariant* theoretical model for *all mesons* interpreted as quark-antiquark bound states, and derived directly in *Minkowski space-time*.

Why?

Manifest covariance: strongly constrains spin-dependence of interactions,

We were able to "test" this!

To complement, for instance, effective field theories, which usually separate physics at different scales (challenging, huge mass range: pion (~0.14 GeV) up to bottomonium (~10 GeV).
Spectroscopy from Upsilon to D mesons

(ground states & higher radial excitations) rms ~ 30 MeV.

 Minkowski space-time is advantageous over Euclidean formulations (although a number of singularities have to be handled numerically) because no analytic continuations are needed to calculate, e.g., form factors, even in the time-like region.

Simple model for the pion electromagnetic form factor.

arXiv:1310.7465 in PRD 90 (2014)

A covariant model for mesons

How?

We use the theoretical framework of **Covariant** Spectator Theory (CST).

* Strong features:

- Flexibility to explore different phenomenological kernels (more easily than in other approaches).
- Linearly rising kernel that preserves covariance "learn" about the Lorentz structure of the confining interaction;
- It has both the correct one-body and nonrelativistic limits
 - well-suited to describe heavy-light systems,
 - "relativistic wave functions" which become proper nonrelativistic wave functions in the nonrelativistic limit.

***** Some limitations:

We do not have a "systematic renormalization scheme" - equations regularized with form factors (cut-off parameters fitted to data).

Ultimately, test CST by comparing the theoretical predictions with experimental data.

CST model for heavy and heavy-light mesons

• **CST equations for quark-antiquark bound-state** - similar to the Bethe-Salpeter equation, but keeping only the contribution from the dominant poles - 3D covariant integral equation.

• Features of 1CSE -

- Particularly suited for unequal masses; analysis of the relative importance of the propagator poles
- Numerical solutions easier (fewer singularities);
- However, it is not a charge-conjugation equation.
 Next step, solve the two-channel Spectator
 Equation (2CSE)

Our solutions possess good J, P quantum numbers

CST model for heavy and heavy-light mesons

- Momentum dependence: "Covariantized" Cornel-type of potential

Linear component:

$$\begin{split} V_{\rm L}(\hat{p}_1 - P/2, \hat{k}_1 - P/2) &= -8\sigma \pi \Biggl[\Biggl(\frac{1}{(\hat{p}_1 - \hat{k}_1)^4} - \frac{1}{\Lambda^4 + (\hat{p}_1 - \hat{k}_1)^4} \Biggr) \\ &- \frac{E_{ip}}{m_i} (2\pi)^3 \delta^3(\mathbf{p} - \mathbf{k}) \int_{\mathbf{k}'_i} \Biggl(\frac{1}{(\hat{p}_1 - \hat{k}'_1)^4} - \frac{1}{\Lambda^4 + (\hat{p}_1 - \hat{k}'_1)^4} \Biggr) \Biggr] \end{split}$$

OGE component (Feynman gauge):

$$V_{\text{OGE}}(\hat{p}_1 - P/2, \hat{k}_1 - P/2) = -4\pi\alpha_s \left(\frac{1}{(\hat{p}_1 - \hat{k}_1)^2} - \frac{1}{(\hat{p}_1 - \hat{k}_1)^2 - \Lambda^2}\right)$$

"Constant" component:

$$V_{\rm C}(\hat{p}_1 - P/2, \hat{k}_1 - P/2) = (2\pi)^3 \frac{E_{ik}}{m_i} C \delta^3(\mathbf{p} - \mathbf{k})$$

- Lorentz structure:

$$\mathcal{V}(\hat{p},\hat{k}) = [(1-y)(\mathbf{1}_1 \otimes \mathbf{1}_2 + \gamma_1^5 \otimes \gamma_2^5) - y\gamma_1^\mu \otimes \gamma_{\mu 2}]V_{\mathsf{L}}(\hat{p},\hat{k}) - \gamma_1^\mu \otimes \gamma_{\mu 2}[V_{\mathsf{G}}(\hat{p},\hat{k}) + V_{\mathsf{C}}(\hat{p},\hat{k})]$$

Ward-Takahashi Identities

mixing parameter y in V_L : y = 0 (pure S+PS)... y = 1 (pure V)

				Da	ita :	set					
	State	$J^{P(C)}$	Mass (MeV)	S1	S2	S3			State	$J^{P(C)}$	Mass (MeV)
	$\Upsilon(4S)$	$1^{}$	10579.4 ± 1.2		٠	•			X(3915)	0^{++}	3918.4 ± 1.9
	$\chi_{b1}(3P)$	1^{++}	10512.1 ± 2.3			•			$\psi(3770)$	$1^{}$	$3773.13 {\pm} 0.35$
	$\Upsilon(3S)$	$1^{}$	$10355.2 {\pm} 0.5$		٠	•			$\psi(2S)$	$1^{}$	$3686.097 {\pm} 0.010$
	$\eta_b(3S)$	0^{-+}	10337						$\eta_c(2S)$	0^{-+}	3639.2 ± 1.2
	$h_b(2P)$	1^{+-}	10259.8 ± 1.2			•		$c\overline{c}$	$h_c(1P)$	1^{+-}	$3525.38 {\pm} 0.11$
	$\chi_{b1}(2P)$	1^{++}	$10255.46{\pm}0.22{\pm}0.50$			•			$\chi_{c1}(1P)$	1^{++}	$3510.66 {\pm} 0.07$
	$\chi_{b0}(2P)$	0^{++}	$10232.5{\pm}0.4{\pm}0.5$		٠	•			$\chi_{c0}(1P)$	0^{++}	$3414.75 {\pm} 0.31$
$b\overline{b}$	$\Upsilon(1D)$	$1^{}$	10155						$J/\Psi(1S)$	$1^{}$	$3096.900{\pm}0.006$
	$\Upsilon(2S)$	$1^{}$	$10023.26 {\pm} 0.31$				$\eta_c(1S)$	0^{-+}	$2983.4 {\pm} 0.5$		
	$\eta_b(2S)$	0^{-+}	9999 ± 4		•	•		<u> </u>	$D_{s1}(2536)^{\pm}$	1^{+}	$2535.10{\pm}0.06$
	$h_b(1P)$	1^{+-}	9899.3 ± 0.8			•		cs	$D_{s1}(2460)^{\pm}$	1^{+}	$2459.5 {\pm} 0.6$
	$\chi_{b1}(1P)$	1^{++}	$9892.78 {\pm} 0.26 {\pm} 0.31$			•		a d	$D_1(2420)^{\pm,0}$	1^{+}	2421.4
	$\chi_{b0}(1P)$	0^{++}	$9859.44{\pm}0.42{\pm}0.31$		٠	•		cq {	$D_0^*(2400)^0$	0^{+}	2318 ± 29
	$\Upsilon(1S)$	$1^{}$	$9460.30 {\pm} 0.26$		•	• •	cel	$D_{s0}^{*}(2317)^{\pm}$	0^{+}	2317.7 ± 0.6	
	$\eta_b(1S)$	0^{-+}	9399.0 ± 2.3	•	٠	•		Co ($D_s^{*\pm}$	1^{-}	2112.1 ± 0.4
$b\overline{c}$	$B_c(2S)^{\pm}$	0^{-}	6842 ± 6			•		$c\overline{q}$	$D^{*}(2007)^{0}$	1^{-}	2008.62
DC [B_c^+	0^{-}	$6275.1 {\pm} 1.0$	•	٠	•		$c\overline{s}$	D_s^{\pm}	0^{-}	$1968.27 {\pm} 0.10$
$b\overline{s}$	$B_{s1}(5830)$	1^{+}	$5828.63 {\pm} 0.27$			•		$c\overline{q}$	$D^{\pm,0}$	0^{-}	1867.23
$b\overline{q}$	$B_1(5721)^{+,0}$	1^{+}	$5725.85 {\pm} 1.3$			•		-			
h≣∫	B_s^*	1^{-}	5415.8 ± 1.5		٠	•					
03 [B_s^0	0^{-}	$5366.82 {\pm} 0.22$	•	٠	•					
$b\overline{a}^{\int}$	B^*	1^{-}	$5324.65 {\pm} 0.25$		٠	•			S1: 9 PS	5 mes	sons
04 [$B^{\pm,0}$	0^{-}	5279.45	•	•	•			S2: 25 PS	S+V+8	S mesons

q represents a light quark (u or d)

We use $m_u = m_d \equiv m_q$

S3: 39 PS+V+S+AV mesons

Data set

S1 S2 S3

Global fits with fixed quark masses and y=0

- First step: we perform global fits to the heavy + heavy-light meson spectrum.
- Adjustable model parameters: $\sigma, \alpha_s, C, \qquad \Lambda = 2m_1$
- Model parameters **not adjusted** in the fits:

Constituent quark masses (in GeV): $m_b = 4.892, m_c = 1.600, m_s = 0.448, m_q = 0.346$ Scalar + pseudoscalar confinement: y = 0

- Models
 - Model MOS1: fitted to 9 pseudoscalar meson masses only (set S1)
 - Model M0s2: fitted to 25 pseudoscalar, vector and scalar meson masses (set S2)

Spectroscopy with fixed constituent quark masses

JLab, May 18, 2018

Global fits with fixed quark masses and y=0

• The results of the two fits are remarkably similar!

rms differences to experimental masses (set S3):

Model	σ [GeV ²]	α_s	C [GeV]	_	Model	$\Delta_{\rm rms}$ [GeV]
$M0_{S1}$	0.2493	0.3643	0.3491		$M0_{S1}$	0.037
$M0_{S2}$	0.2247	0.3614	0.3377		$M0_{S2}$	0.036

• Kernel parameters are already well determined through pseudoscalar states

Almost 100% L=0, S=0	$\langle 0^{-} \mathbf{L} \cdot \mathbf{S} 0^{-} \rangle = 0$	Spin-orbit force vanishes			
(S-wave, spin singlet)	$\langle 0^- S_{12} 0^-\rangle=0$	Tensor force vanishes			
	$\langle 0^- \mathbf{S}_1 \cdot \mathbf{S}_2 0^- \rangle = -3/4$	Spin-spin force acts in singlet only			

Good test for a covariant kernel:

- Pseudoscalar states do not constrain spin-orbit and tensor forces, and cannot separate spin-spin from central force.
- But they should be determined through covariance.
- Model M0S1 indeed predicts spin-dependent forces correctly!

SL et al., PLB 764, 38 (2017)

Fits with variable quark masses and confinement (S+PS)-V mixing y

• In a new series of fits we treat quark masses and mixing parameter y as adjustable parameters.

Model	σ (GeV ²)	$lpha_s$	C (GeV)	y	m_b (GeV)	m_c (GeV)	m_s (GeV)	m_q (GeV)	N_s	$\delta_{ m rms}$	Δ_{rms} (GeV)
MO_{S1}	0.2493	0.3643	0.3491	0.0000	4.892	1.600	0.4478	0.3455	9	0.017	0.037
$M1_{S1}$	0.2235	0.3941	0.0591	0.0000	4.768	1.398	0.2547	0.1230	9	0.006	0.041
MO_{S2}	0.2247	0.3614	0.3377	0.0000	4.892	1.600	0.4478	0.3455	25	0.028	0.036
$M1_{S2}$	0.1893	0.4126	0.1085	0.2537	4.825	1.470	0.2349	0.1000	25	0.022	0.033
$M1_{S2^{\prime}}$	0.2017	0.4013	0.1311	0.2677	4.822	1.464	0.2365	0.1000	24	0.018	0.033
M1 _{S3}	0.2022	0.4129	0.2145	0.2002	4.875	1.553	0.3679	0.2493	39	0.030	0.030
MO_{S3}	0.2058	0.4172	0.2821	0.0000	4.917	1.624	0.4616	0.3514	39	0.031	0.031

- The quality of fits in not much improved.
- Best model M1S3 has y=0 (but minimum very shallow).

The mass spectrum alone does not constrain much the parameter y and the quark constituent masses!

- To investigate wether or not other physical observables (e.g. decay constants) are more stringent with respect to y and the masses.
- Vector contributions to the linear confining interaction between 0% and ~30% lead essentially to the same agreement with the data.

Fits with variable quark masses and confinement (S+PS)-V mixing y

CST amplitudes or "wave-functions"

• Equation for the vertex function,

$$\Gamma_{1CS}(\hat{p}_1, p_2) = -\int \frac{d^3k}{(2\pi)^3} \frac{m_1}{E_{1k}} \sum_K V_K(\hat{p}_1, \hat{k}_1) \Theta_1^{K(\mu)} \frac{m_1 + \hat{k}_1}{2m_1} \Gamma_{1CS}(\hat{k}_1, k_2) \frac{m_2 + \hat{k}_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K(\hat{p}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2} \frac{m_2 + k$$

we solve it for the following matrix elements

CST vertex functions
CST "wave functions"
$$\Gamma_{\lambda\lambda'}^{+\rho'}(p) \equiv \bar{u}_{1}^{+}(\mathbf{p},\lambda)\Gamma(p)u_{2}^{\rho'}(\mathbf{p},\lambda')$$

$$\Psi_{1,\lambda_{1}\lambda_{2}}^{+\rho}(k) \equiv \sqrt{\frac{m_{1}m_{2}}{E_{1k}E_{2k}}} \frac{\rho}{E_{2k} - \rho(E_{1k} - \mu)} \Gamma_{\lambda_{1}\lambda_{2}}^{+\rho}(k)$$

• We expand in a basis

$$\Psi_{1,\lambda\lambda'}^{+
ho}(p) = \sum_{j} \underline{\psi_{j}^{
ho}(p)} \chi_{\lambda}^{\dagger}(\hat{\mathbf{p}}) K_{j}^{
ho}(\hat{\mathbf{p}}) \chi_{\lambda'}(\hat{\mathbf{p}})$$

J^P	$K_1^-(\hat{\mathbf{p}})$	Wave	$K_2^-(\hat{\mathbf{p}})$	Wave	$K_1^+(\hat{\mathbf{p}})$	Wave	$K_2^+(\hat{\mathbf{p}})$	Wave
0-	1	S	-	-	$\boldsymbol{\sigma}\cdot\hat{\mathbf{p}}$	P	-	-
0+	$\boldsymbol{\sigma}\cdot\mathbf{\hat{p}}$	P	-	-	1	S	-	-
1-	$\sigma \cdot \hat{\xi}$	\boldsymbol{S}	$\frac{1}{\sqrt{2}} \left(3\boldsymbol{\xi} \cdot \hat{\mathbf{p}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} - \boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}} \right)$	D	$\sqrt{3}\boldsymbol{\xi}\cdot\hat{\mathbf{p}}$	P_s	$\sqrt{rac{3}{2}}\left(oldsymbol{\sigma}\cdot\hat{oldsymbol{\xi}}oldsymbol{\sigma}\cdot\hat{f p}-oldsymbol{\xi}\cdot\hat{f p} ight)$	P_t
1 ⁺	$\sqrt{3}\boldsymbol{\xi}\cdot\hat{\mathbf{p}}$	P_s	$\sqrt{\frac{3}{2}} \left(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} - \boldsymbol{\xi} \cdot \hat{\mathbf{p}} \right)$	P_t	$\boldsymbol{\sigma}\cdot\hat{\boldsymbol{\xi}}$	\boldsymbol{S}	$rac{1}{\sqrt{2}}\left(3m{\xi}\cdot\hat{\mathbf{p}}m{\sigma}\cdot\hat{\mathbf{p}}-m{\sigma}\cdot\hat{m{\xi}} ight)$	D

which explicitly displays its orbital-angular-momentum content.

CST amplitudes or "wave-functions"

JLab, May 18, 2018

Importance of the relativistic components

JLab, May 18, 2018

JLab, May 18, 2018

Vector bottomonium

We observed that, without the linear confining piece, the level ordering between S and D states would be interchanged!

JLab, May 18, 2018

Decay constants for heavy-quarkonia

Quark content	n	Meson	$J^{P(C)}$	PDG	Lattice	DSE I	DSE II	BLFQ	$M_{Q\bar{Q}}\Lambda_{OGE}$ (this work)
	1	$\eta_b(1S) = 0^{-+}$		-	667^{+6}_{-6}	773	756	589	795
	2	$\eta_b(2S)$	0^{-+}	-	-	419(8)	285	427	596
	3	$\eta_b(3S)$	0^{-+}	-	-	534(57)	333	331	536 l
	4	$\eta_b(4S)$	0^{-+}	-	-	-	40(15)	-	503
	_								1
	1	$\Upsilon(1S)$	1	689^{+5}_{-5}	649^{+31}_{-31}	768	707	689	703
$b\bar{b}$	2	$\Upsilon(2S)$	$1^{}$ 479^{+4}_{-4}		481^{+39}_{-39}	467(17)	393	484	573
	3	1^3D_1	1	-	-	41(7)	371(2)	4.2	26
	4	$\Upsilon(3S)$	$1^{}$ 414^{+4}_{-4}		-	-	9(5)	366	536 a
	5	2^3D_1	1	-	-	-	165(50)	-	38 t
	6	$\Upsilon(4S)$	1	328^{+17}_{-18}	-	-	20(15)	-	518
	1	$\eta_c(1S)$	0^{-+}	330^{+13}_{-13}	393^{+9}_{-9}	401	378	368	547
	2	$\eta_c(2S)$	0^{-+}	211^{+35}_{-42}	-	244(12)	82	280	461
	3	$\eta_c(3S)$	0^{-+}	-	-	145(145)	206	-	417
$c\bar{c}$	4	$\eta_c(4S)$	0-+	-	-	-	87	-	387
	1	J/ψ	1	407^{+5}_{-5}	405^{+6}_{-6}	450	411	404	525
	2	$\psi(2S)$	1	290^{+2}_{-2}	-	30(3)	155	290	531
	3	$\psi(3770)$	1	97.7^{+3}_{-3}	-	118(91)	45	0.9	98

(in preparation...)

- The obtained **decay constants** are in reasonable agreement with experiment and other theoretical approaches.
- extremely sensitive to the UV asymptotic behavior,
- Fitting the decay constants, we
 may infer what is the "correct" fall-off of the wave-functions.

Part II - Comparison of two Minkowski-space approaches

Goals of this work: ullet

(i) to compare two fully relativistic methods in the case of heavy quarkonia: CST and Basis Light-Front Quantization (BLFQ). Yang Li, James P. Vary, Pieter Maris et al.

(ii) to establish a connection between equal-time wave functions and light-front wave functions.

- Why?
 - Comparative studies are both important and needed.

robustness tests, better control of model dependencies

It would be very useful to import the knowledge from equal-time methods towards the determination of Light-front wave functions, as they are used in a variety of high-energy hadronic processes and experimentally observable quantities.

Relation between equal-time and light-front wave functions? $\Psi(k;P)$

integrate over $k^0 \rightarrow \Psi_{IF}(\mathbf{k}; P)$ integrate over $k^- \rightarrow \Psi_{LF}(\mathbf{k}_{\perp}, x; P)$

Advantage: Both CST and BLFQ are formulated directly in Minkowski-space!

CST light-front wave functions

• **Idea**: Investigate to what extent this *prescription* can be applied to heavy quarkonia!

Comparing LFWFs

- For the **dominant components**: qualitative features in perfect agreement, even for the higher radial excitations
- For the **subdominant components**: extra components emerge from the CST amplitude's and are absent in BLFQ because there positive energy and negative energy states do not mix.

Light-cone distributions

• Leading twist **Distribution amplitudes (DAs)**

Pseudoscalar quarkonia

JLab, May 18, 2018

Light-cone distributions

• Similar to the DAs, Parton distribution functions (PDFs) depend on the UV cut-off scale.

$$f(x;\mu) = \frac{1}{2x(1-x)} \sum_{s,\bar{s}} \int_0^{\leq \mu^2} \frac{d^2 \mathbf{k}_\perp}{(2\pi)^3} |\psi_{s\bar{s}}(\mathbf{k}_\perp, x)|^2$$

Summary and Outlook

- We have used the **CST approach** to construct a **covariant interaction model** that provides an **accurate global description** of **heavy** and **heavy-light mesons**.
 - Several phenomenological aspects can be observed with the analysis of the wave functions.
 - To do: Use a running coupling constant and replace the fixed constituent quark mass by a running quark mass.
 - Use the obtained wave functions in the calculation of other experimentally observable quantities (elastic and transition form factors, etc...).
- Showed **some of the advantages** of performing comparative studies
 - Using the BHL map, we were able to observe the same overall features as in *genuine* LFWF (the solutions from BLFQ)
 - To do: Test the validity of the BHL map in the heavy-light case. Compare the CST LFWFs with other phenomenological LFWFs (e.g. LFWFs motivated by the soft-wall AdS/QCD model).
 - Near future: Explore the established methods of the light-front field theory, and apply them using the new CST LFWFs. Compute relevant scattering processes.

Thank you for your attention!

JLab, May 18, 2018

Analysis of the poles

Complete set of CST equations

