RECENT RESULTS ON HADRONIC PHYSICS FROM BELLE AND PROSPECTS AT BELLE II

Anselm Vossen

For the Belle & Belle II Collaborations

Lightcone 2018 5/14 - 5/18

HADRONIC PHYSICS IN e+e⁻ B FACTORIES

- Study of the formation of hadrons \rightarrow e.g. Phys.Rev. D97 (2018) no.7, 072005
- Study of hadronization, microscopic quark properties $\leftarrow \rightarrow$ macroscopic hadron properties
 - Relativisitc, non-perturbative QCD dynamics \rightarrow Fragmentation functions
- Study of the produced hadrons, spectroscopy

BELLE EXPERIMENT (1999 - 2010)

KEKB \rightarrow SUPERKEKB: DELIVER INSTANTANEOUS LUMINOSITY X 40

BELLE II DETECTOR (COMP. TO BELLE)

26 APRIL 2018 00:38 GMT+09:00: FIRST COLLISIONS

CURRENT STATUS AND SCHEDULE

- Phase I (complete)
 - Accelerator commissioning
- Phase 2 (now)
 - First collisions (20±20 fb⁻¹)
 - Partial detector
 - Background study
 - Physics possible
- Phase 3 ("Run I", early 2019)
 - Nominal Belle II start
- Ultimate goal: 50 ab⁻¹

FRAGMENTATION FUNCTIONS WITH ADDITIONAL DEGREES OF FREEDOM: NOVEL PROBES OF THE NUCLEON STRUCTURE AND HADRONIZATION

- Di-hadron fragmentation functions
- Polarized Hyperons

DI-HADRON FRAGMENTATION FUNCTIONS

- Additional degree of freedom $(\vec{R} = \vec{P_1} \vec{P_2})$
 - Plus z, P_T
- Relative momentum of hadrons can carry away angular momentum
 - Partial wave decomposition in $\boldsymbol{\theta}$
 - Relative and total angular momentum \rightarrow In principle endless tower of FFs
 - Analogue of 1h production with spin in final state
- Transverse polarization dependence in collinear framework
- Makes 'new' FFs possible, such as G₁[⊥] :T-odd chiral even. In 1h case, this needs polarized hadron in the final state →See H.
 Matevosyan's talk!
- Similar to Λ FF,chiral-even,T-odd: Important to check factorization

EXAMPLE, ACCESS OF e(x) in SIDIS X-SECTION

• Di-hadron cross section

$$F_{LU}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{m_{hh}} x e^q(x) H_1^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) \right],$$
(WW Approximation

• Single hadron cross-section: mixes other contributions:

$$\begin{split} F_{LU}^{\sin(\phi_h)} &= \frac{2M}{Q} \mathcal{I} \left[-\frac{k_T \hat{P}_{h\perp}}{M_h} \left(xeH_1^{\perp} + \frac{M_h}{Mz} f_1 \tilde{G}^{\perp} \right) \right. \\ &+ \frac{p_T \hat{P}_{h\perp}}{M} \left(xg^{\perp} D_1 + \frac{M_I}{Mz} h_1^{\perp} \tilde{E} \right) \right] \end{split}$$

RECENT BELLE RESULT

(Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005)

12

RESULTS SYSTEMATICS DOMINATED

- Low z: Dominated by PID uncertainties Belle II prospects: Improved PID, higher statistics to improve uncertainties on PID
- High z: Dominated by ISR uncertainties Belle II prospects: better understanding of ISR radiation with better statistics

Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005

BELLE II PROSPECTS

- Partial Wave decomposition (more general: θ dependence)
- Higher order PWs lead to different moments in θ and φ
- In models, evolution of the different PWs different
- Important to have a full picture to understand mixing effects in ratios/partial integrals/acceptance
- Missing info from partial wave estimated to have effects up to 10% e.g. on extraction of transversity

Belle II prospects: Sufficient statistics for full partial wave decomposition

m [GeV]

15

Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005

POLARIZED HYPERON PRODUCTION

- Large Λ transverse polarization in unpolarized pp collision
 PRL36, 1113 (1976); PRL41, 607 (1978)
- Caused by polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?
- Polarizing FF is chiral-even, has been proposed as a test of universality.
 PRL105,202001 (2010)
- OPAL experiment at LEP has studied transverse Λ polarization, no significant signal was observed. Eur. Phys. J. C2, 49 (1998)
- FF counterpart of the Sivers function.

a

ISR data (Phys.Lett. B185 (1987) 209) $x_F = p_L / \max p_L \sim_{LO} x_1 - x_2 \sim_{forward} x_1$

17

- Polarization rises with p_t in the lowest z_{Λ} and highest z_{Λ} bin. But the dependence around 1 GeV in the intermediate z_{Λ} bins \rightarrow Unexpected! (might be related to fragmenting quark flavor dependence on z_1, z_2)
- Correlation with opposite hemisphere light meson \rightarrow quark flav/charge dependence

- Explore low pT region with higher statistics and better tracking resolution
- Feed down correction for pT dependence and associated production
 - (currently only for z dependence, introduces large uncertainties)
 - $\Lambda^{\uparrow} \Lambda^{\uparrow}$ correlations

. . . .

BELLE LEGACY IN HADRONIC PHYSICS – QUARKONIUM (-LIKE) PRODUCTION

- B decays
 - Charmonium only
 - All quantum numbers available
- Direct production / Initial State Radiation (ISR)
 - E_{CM} or below
 - J^{PC}=I⁻⁻
- Two-photon interaction
 - J^{PC} = 0-+, 0++, 2++
- Double charmonium production
 - Seen for $J^{PC}=I^{--}(J/\psi, \psi(2S))$ plus J=0 states (C=I?)
- Quarkonium transitions
 - Hadronic/radiative decays between states

19

QUARKONIUM STUDIES AT BELLE II BUILD ON THE SUCCESSFUL BELLE PROGRAM

- XYZ revolution kicked off by discovery of X(3872) at Belle 2003
 - Strong violation of isospin symmetry in decays $ho J/\psi$, $\omega J/\psi$
 - More states not consistent with quarkonium, usually higher than expected transitions to lower quarkonia.
- Precision study of Charmonium: States above the DDbar threshold are a strongsuit of B factories \rightarrow can access energy spectrum continuously)
- Precision studies of Bottomium states and transitions

Z: EVIDENTLY EXOTIC, NEEDS 4 QUARKS

• APS highlight 2013

(d)

RECENT SPECTROSCOPY RESULTS

- Phys. Rev. D 95, 112003 (2017) Observation of an alternative χc0(2P) candidate in e+e-→J/ψDD
- Phys. Rev. D 97, 012002 (2018) Angular analysis of the $e+e \rightarrow D(*)\pm D*\mp$ process near the open charm threshold using initial-state radiation
- Phys. Rev. D 97, 012005 (2018) Measurements of the absolute branching fractions of $B+\rightarrow Xcc^-K+$ and $B+\rightarrow D^-(*)0\pi+$ at Belle
- Phys. Rev. D 96, 051102 (2017) Search for $\Lambda + c \rightarrow \phi p \pi o$ and branching fraction measurement of $\Lambda + c \rightarrow K \pi + p \pi o$
- Phys. Rev. D 95, 012001 (2017) Search for the 0—— Glueball in Y(1S) and Y(2S) decays
 - Phys. Rev. D 96, 052005 (2017) Study of η and dipion transitions in Y(4S) decays to lower bottomonia
- Phys. Rev. D 96, 112002 (2017) Search for light tetraquark states in Y(1S) and Y(2S) decays

WISHLIST

- More data will help Quarkonium
 - Map out resonances
 - Can reach Y(6S) with same boost as Y(4S)
 - More data at/above Y(4S)→search molecular structures near open bottom thresholds
 - Experimental information of charmonium > Ddbar threshold very incomplete,
 - More data below $Y(4S) \rightarrow$ test predictions for unobserved bottomium states
 - Determine transitions and quantum numbers
 - Precision scans of bottomium sector, comparison with charmonium states should shed light on some properties (spin symmetry suppression not as strong)
 - Need enough data for amplitude analysis to check if found states are the expected ones

BELLE II EARLY PHYSICS PROSPECTS

Existing B-Factories ~1.5 ab⁻¹: opportunity for other results in Phase 2/3?

- Early phase 3: Above Y(4S)
 - Study of Y(nS) states in (hadronic) transitions
 - Study of exotic four-quark states (e.g. Z_b at Y(6S))
 - BB** threshold? : R_b dip versus $\pi\pi\Upsilon$ rise

SUMMARY & OUTLOOK

- Belle II will integrate 50x Belle luminosity (= 50 ab⁻¹)over ~6 years
- State of the art detector
- Precision studies of Quarkonia, hadronization
- Physics program with first data focusing on E_{CM} >Y(4S) already promising!
- Precision hadronization studies crucial for JLab12 SIDIS program

BACKUP

BELLE II EARLY PHYSICS PROSPECTS

• Existing B-Factories ~1.5 ab⁻¹: opportunity for other results in Phase 2/3?

	Scans/	$\Upsilon(5S)$		$\Upsilon(4S)$		$\Upsilon(3S)$		$\Upsilon(2S)$		$\Upsilon(1S)$	
Experiment	Off. Res.	10876	MeV	10580	MeV	10355	MeV	10023	MeV	9460	MeV
	$\rm fb^{-1}$	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1	0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R_b scan		433	471	30	122	14	99	-	-
Belle	100	121	36	711	772	3	12	25	158	6	102
Potential impact with O(10-100) fb ⁻¹											

Phys.Rev.Lett.102:012001,2009, (Babar) PRD 82, 091106 (2010). 0810.3829. (Belle)

- Phase 2: Above Y(4S)
 - Study of exotic four-quark states (e.g. Zb at Y(6S))
 →Study possible with limited tracking resolution
 - **BB**^{**} threshold? : R_b dip versus $\pi\pi\Upsilon$ rise
 - <6fb⁻¹ accumulated by Belle at E_{CM} =Y(6S)
- Early phase 3: Below Υ (4S)
 - Υ (2S,3S) access to bottomonium
 - Scan for direct production of $\Upsilon(I^3D_I)$ triplet, $\eta_b(IS,2S)$ studies

OTHER PERKS

- More statistics and better vertexing will help with charm corrections
- Systematics will also be reduced since the main sources are dependent on MC statistics
- Better PID will help with multi-kaon final states

BARYON FORMATION

PRODUCTION OF CHARMED AND NON CHARMED BARYONS

• $\Xi^{-}, \Xi(1530), \Omega^{-} \Sigma_{c}, \Omega_{c}, \Xi_{c}$ not shown

31

MASS DEPENDENCE CONFIRMS DIQUARK MODEL

OUTLINE

- Belle (I) Legacy
 - Quarkonium (like)
 - Hadronization (Fragmentation function measurements)
- SuperKEKB and Belle II
 - Upgrade
 - Status
 - Early Physics program
 - Outlook

BACKGROUND UNFOLDING

- Σ^* decays to Λ strongly, is included in the signal.
- Feed-down from $\Sigma^0(22.5\%)$, $\Lambda_c(20\%)$ decays need to be understood.
- The Σ^0 -enhanced ($\Sigma^0 \rightarrow \Lambda + \gamma$) (Br~100%). and Λ_c enhanced($\Lambda_c \rightarrow \Lambda + \pi^+$)(Br~1.07%) data sets are selected and studied.
- The measured polarization can be expressed as:

$$P^{mea.} = (1 - \sum_{i} F_{i})P^{true} + \sum_{i} F_{i}P_{i},$$

- F_i is the fraction of feed-down component i, estimated from MC. P_i is polarization of component i.
- Polarization of Λ from Σ^0 decays is found has opposite sign with that of inclusive Λ .

- KEKB: asymmetric e⁺ (3.5 GeV) e⁻ (8 GeV) collider: $-\sqrt{s} = 10.58 \text{ GeV}, e^+e^- \rightarrow Y(nS) \rightarrow B/B + \text{ continuum}$ $-\sqrt{s} = 10.52 \text{ GeV}, e^+e^- \rightarrow qqbar (u,d,s,c) 'continuum'$
- Ideal (at the time) detector for high precision measurements:

 tracking acceptance θ [17 °;150°]: Azimuthally symmetric
 particle identification (PID): dE/dx, Cherenkov, ToF, EMcal, MuID
- $\Upsilon(5S)$ $\Upsilon(4S)$ $\Upsilon(3S)$ $\Upsilon(2S)$ $\Upsilon(1S)$ Scans/ Experiment | Off. Res. | 10876 MeV | 10580 MeV | 10355 MeV | 10023 MeV | 9460 MeV fb^{-1} fb^{-1} 10⁶ fb^{-1} 10⁶ fb^{-1} 10⁶ fb^{-1} 10^{6} fb^{-1} 10⁶ CLEO 0.117.10.41617.11.21.2101.2215BaBar 54 R_b scan 4334713012214 99_ Belle 121367111007723 12251581026

- Available data:
 - ~I ab⁻¹ total
 - ~1.8 *10⁹ events at 10.58 GeV,
 ~220 *10⁶ events at 10.52 GeV

BELLE LEGACY IN HADRONIC PHYSICS – QUARKONIUM (-LIKE) PRODUCTION

- B decays
 - Charmonium only
 - All quantum numbers available
- Direct production / Initial State Radiation (ISR)
 - E_{CM} or below
 - J^{PC}=I⁻⁻
- Two-photon interaction
 - J^{PC} = 0-+, 0++, 2++
- Double charmonium production
 - Seen for $J^{PC}=I^{--}(J/\psi, \psi(2S))$ plus J=0 states (C=I?)
- Quarkonium transitions
 - Hadronic/radiative decays between states

QUARKONIUM STUDIES AT BELLE II BUILD ON THE SUCCESSFUL BELLE PROGRAM

- XYZ revolution kicked off by discovery of X(3872) at Belle 2003
- Precision study of Charmonium: States above the DDbar threshold are a strongsuit of B factories \rightarrow can access energy spectrum continuously)
- Precision studies of Bottomium states and transitions

(Choi et al, PRL91 (26) 262001)