Baryon spectroscopy and structure with functional methods

Gernot Eichmann

IST Lisboa, Portugal

Light Cone 2018
Jefferson Lab, USA
May 18, 2018

Motivation

Hadron spectrum:

baryons

glueballs?

hybrids?

tetraquarks?

Form factors: resonance transition FFs, spacelike vs. timelike properties

Hadron structure \& scattering amplitudes

Extraction of resonances?

DSEs \& BSEs

QCD's classical action:

$S=\int d^{4} x\left[\bar{\psi}(\not \partial+i g \notin+m) \psi+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}\right]$

Quantum "effective action":

$\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S}=e^{-\Gamma}$

DSEs = quantum equations of motion:
derived from path integral, relate n-point functions

morron $^{-1}=\operatorname{mommon}^{-1}$

Bethe-Salpeter equations for hadronic bound states:

- Poincaré covariance
- Chiral symmetry
- EM gauge invariance
- Only quark \& gluon d.o.f., hadronic poles generated dynamically
- multiscale problems feasible
- gauge-fixed
- truncations: neglect higher n-point functions to obtain closed system

QCD's n-point functions

- Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

- Gluon propagator

$$
\begin{array}{ll}
D\left(p^{2}\right) \\
p^{2} & \left(\delta^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) \quad \text { womon }
\end{array}
$$

- Three-gluon vertex

$$
\begin{gathered}
F_{1}\left[\delta^{\mu \nu}\left(p_{1}-p_{2}\right)^{\rho}+\delta^{\nu \rho}\left(p_{2}-p_{3}\right)^{\mu} \quad\right. \text { O. } \\
\left.\quad+\delta^{\rho \mu}\left(p_{3}-p_{1}\right)^{\nu}\right]+\ldots \quad \text { ఠooゐか }
\end{gathered}
$$

Agreement between lattice, DSE \& FRG within reach

Huber, EPJ C77 (2017),
Cyrol, Mitter, Pawlowski, PRD 97 (2018), . .

- Quark-gluon vertex

Truncations

- 3PI system: all 2 \& 3-point functions calculated Williams, Fischer, Heupel, PRD 93 (2016)

Light meson spectrum beyond rainbow-ladder:

GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, PPNP 91 (2016)

- Rainbow-ladder: only quark propagator calculated, kernel = effective gluon exchange

$$
\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(k^{2} / \Lambda^{2}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)
$$

adjust scale Λ to observable, keep width η as parameter

Maris, Tandy, PRC 60 (1999),
Qin et al., PRC 84 (2011)

Truncations

- 3PI system: all 2 \& 3-point functions calculated

Williams, Fischer, Heupel, PRD 93 (2016)

- Rainbow-ladder: only quark propagator calculated, kernel = effective gluon exchange

Maris, Tandy, PRC 60 (1999),
adjust scale Λ to observable, keep width η as parameter

Qin et al., PRC 84 (2011)

Eigenvalues in pion channel:

Quark propagator has complex singularities: no physical threshold

Baryons

Covariant Faddeev equation for baryons:
GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

- 3-gluon diagram vanishes $\Rightarrow \mathbf{3}$-body effects small? Sanchis-Alepuz, Williams, PLB 749 (2015)
- 2-body kernels same as for mesons, no further approximations:

$\Psi_{\alpha \beta \gamma \delta}(p, q, P)=\sum_{i} f_{i}\left(p^{2}, q^{2}, p \cdot q, p \cdot P, q \cdot P\right) \tau_{i}(p, q, P)_{\alpha \beta \gamma \delta}$

Lorentz-invariant dressing functions

Dirac-Lorentz tensors carry OAM: s, p, d,...

[^0]
Form factors

$J^{\mu}=e \bar{u}\left(p_{f}\right)\left(F_{1}\left(Q^{2}\right) \gamma^{\mu}+F_{2}\left(Q^{2}\right) \frac{i}{4 m}\left[\gamma^{\mu}, \not Q\right]\right) u\left(p_{i}\right)$

Consistent derivation of current matrix elements \& scattering amplitudes
Kvinikhidze, Blankleider, PRC 60 (1999),
GE, Fischer, PRD 85 (2012) \& PRD 87 (2013)

- rainbow-ladder topologies (1st line):

- quark-photon vertex preserves em. gauge invariance, dynamically generates VM poles:

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602

The role of diquarks

Three-body equation knows nothing of diquarks, but dynamically generates them in iteration

Group Lorentz invariants into multiplets of permutation group S3:
GE, Fischer, Heupel, PRD 92 (2015), GE, Sanchis-Alepuz, in preparation

- Singlet:
symmetric variable, carries overall scale:
$\mathcal{S}_{0} \sim p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+\frac{M^{2}}{3}$
- Second doublet:

$$
\mathcal{D}_{1} \sim \frac{1}{\sqrt{\delta_{0}}}\left[\begin{array}{c}
-\sqrt{3}(\delta x-\delta \omega) \\
x-\omega
\end{array}\right]
$$

- Doublet:

$$
\mathcal{D}_{0} \sim \frac{1}{\mathcal{S}_{0}}\left[\begin{array}{c}
-\sqrt{3}(\delta x+2 \delta \omega) \\
x+2 \omega
\end{array}\right]
$$

Mandelstam plane, outside: diquark poles!

The role of diquarks

Three-body equation knows nothing of diquarks, but dynamically generates them in iteration

Group Lorentz invariants into multiplets of permutation group S3:
GE, Fischer, Heupel, PRD 92 (2015), GE, Sanchis-Alepuz, in preparation

- Singlet:
symmetric variable, carries overall scale:
$\mathcal{S}_{0} \sim p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+\frac{M^{2}}{3}$
- Second doublet:

$$
\mathcal{D}_{1} \sim \frac{1}{\sqrt{\delta_{0}}}\left[\begin{array}{c}
-\sqrt{3}(\delta x-\delta \omega) \\
x-\omega
\end{array}\right]
$$

- Doublet:

$$
\mathcal{D}_{0} \sim \frac{1}{\mathcal{S}_{0}}\left[\begin{array}{c}
-\sqrt{3}(\delta x+2 \delta \omega) \\
x+2 \omega
\end{array}\right]
$$

\Rightarrow Simplify 3-body equation to quark-diquark BSE

Oettel, Alkofer, Hellstern Reinhardt, PRC 58 (1998), Cloet, GE, El-Bennich, Klähn, Roberts, FBS 46 (2009) GE, Krassnigg, Schwinzerl, Alkofer, Ann. Phys. 323 (2008)

Baryon spectrum

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

- Scale Λ set by f_{π}
- Current-quark mass m_{q} set by m_{π}
- c adjusted to $\rho-a_{1}$ splitting
- η doesn't change much

Strange baryons

Strange baryons

Strange baryons

- Strange baryons similar to light baryons:

$$
\begin{aligned}
& \begin{aligned}
& \boldsymbol{\Omega} \rightarrow \boldsymbol{\Delta} \\
& \Sigma, \Xi \rightarrow \mathbf{N}+\boldsymbol{\Delta} \\
& \boldsymbol{\Lambda} \rightarrow \mathbf{N}+\text { singlets }
\end{aligned} \rightarrow \text { rich spectrum! } \\
& \text { - Roper, } \boldsymbol{\Delta}(1600), \boldsymbol{\Lambda}(1405), \boldsymbol{\Lambda}(1520) \text { : } \\
& \text { additional dynamics? }
\end{aligned}
$$

GE, Fischer, in preparation

Resonances!

Resonances!

ρ meson as a dynamical resonance
Williams, 1804.11161

Resonances!

Lattice:

Proper treatment of resonances essential

DSE / BSE:

Resonance dynamics
"on top of" quark-gluon dynamics

Compton scattering

Structure functions
\& PDFs in forward limit

Handbag dominance
\& GPDs in DVCS

TPE corrections to form factors
Guichon, Vanderhaeghen, PRL 91 (2003)

Proton radius puzzle?

Antonigni et al., 2013, Pohl et al. 2013, Birse, McGovern 2012, Carlson 2015

Nucleon polarizabilities
Hagelstein, Miskimen, Pascalutsa, Prog. Part. Nucl. Phys. 88 (2016)

Resonances!

Kinematics

GE, Ramalho,
in preparation

Compton form factors

To be multiplied with $\frac{\left(m_{R}^{2}-m^{2}\right)^{2}}{\left(s-m_{R}^{2}\right)\left(u-m_{R}^{2}\right)}=\frac{\delta^{2}}{(\eta-+\delta)^{2}-4 \lambda^{2}}$

Compton form factors

- CS on scalar particle

Compton form factors

Compton form factors

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion

Compton form factors

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s \& u channel

Compton form factors

- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s \& u channel
- Scalar pole in t channel

Compton form factors

GE, Fischer, Weil, Williams, PLB 774 (2017)

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s \& u channel
- Scalar pole in t channel
- Pion pole in t channel $\left(\pi^{0} \rightarrow \gamma^{*} \gamma^{*}\right)$

Polarizabilities

Scalar polarizabilities:

$$
\left[\begin{array}{c}
\alpha+\beta \\
\beta
\end{array}\right]=-\frac{\alpha_{\mathrm{em}}}{m^{3}}\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

Large $\Delta(1232)$ contribution, also $\mathbf{N}(1520)$ non-negligible

Spin polarizabilities:

$$
\begin{aligned}
{\left[\begin{array}{c}
\gamma_{E 1 E 1} \\
\gamma_{M 1 M 1} \\
\gamma_{E 1 M 2} \\
\gamma_{M 1 E 2}
\end{array}\right] } & =\frac{\alpha_{\mathrm{em}}}{2 m^{4}}\left[\begin{array}{c}
c_{6}+4 c_{11}-4 c_{12} \\
-c_{6}-2 c_{10}+4 c_{12} \\
c_{6}+2 c_{10} \\
-c_{6}
\end{array}\right] \\
{\left[\begin{array}{c}
\gamma_{0} \\
\gamma_{\pi}
\end{array}\right] } & =-\frac{2 \alpha_{\mathrm{em}}}{m^{4}}\left[\begin{array}{c}
c_{11} \\
c_{6}+c_{10}+c_{11}-2 c_{12}
\end{array}\right]
\end{aligned}
$$

Spin polarizabilities

Only Δ (1232) important

Compton scattering

Scattering amplitude: GE, Fischer, PRD 85 (2012) \& PRD 87 (2013)

Nucleon resonances
$+$ perturbative handbag \& t-channel meson poles

cat's ears diagrams

- Poincaré covariance and crossing symmetry automatic
- em. gauge invariance and chiral symmetry automatic (as long as all ingredients calculated within same truncation)
- perturbative processes included
- s, t, u channel poles dynamically generated, no need for "offshell hadrons"

Towards multiquarks

- Light scalar mesons $\sigma, \kappa, a_{0}, f_{0}$ as tetraquarks: solution of four-body equation reproduces mass pattern GE, Fischer, Heupel, PLB 753 (2016)

BSE dynamically generates meson poles in wave function:

$$
\begin{array}{ll}
f_{i}\left(\mathcal{S}_{0}, \nabla \triangle\right) & \rightarrow 1500 \mathrm{MeV} \\
f_{i}\left(\mathcal{S}_{0}, \nabla \triangle \bigcirc\right) & \rightarrow 1500 \mathrm{MeV} \\
f_{i}\left(\mathcal{S}_{0}, \nabla \triangle \triangle\right) & \rightarrow 1200 \mathrm{MeV} \\
f_{i}\left(\mathcal{S}_{0}, \nabla \triangle \Delta\right) & \rightarrow 350 \mathrm{MeV}!!
\end{array}
$$

Four quarks rearrange to "meson molecule"

- Similar in meson-meson / diquark-antidiquark approximation (analogue of quark-diquark for baryons)
Heupel, GE, Fischer, PLB 718 (2012)

Backup slides

Tetraquarks in charm region?

- Can we distinguish different tetraquark configurations?

- Four quarks dynamically rearrange themselves into dq- $\overline{d q}$, molecule, hadroquarkonium; strengths determined by four-body BSE:

Resonances?

$\rho \rightarrow \pi \pi$: resonance dynamics only beyond rainbow-ladder, would shift ρ pole into complex plane (above $\pi \pi$ threshold)

But ρ decay width already calculable in rainbow-ladder

Rainbow-ladder vs. lattice:
References: GE et al., PPNP 91 (2016) 1606.09602

Developing numerical tools

Rare pion decay $\pi^{0} \rightarrow e^{+} e^{-}$:

$$
A(t)=\int d \sigma \int d z \cdots \frac{1}{k^{2}+m^{2}} \frac{1}{Q^{2}} \frac{1}{Q^{\prime 2}}
$$

Photon and lepton poles produce branch cuts in complex plane: deform integration contour!

- Result agrees with dispersion relations
- Algorithm is stable \& efficient
- Can be applied to any integral as long as singularity locations known
Weil, GE, Fischer, Williams, PRD 96 (2017)
\rightarrow talk by Richard Williams

Towards multiquarks

Transition from quark-gluon to nuclear degrees of freedom:

- 6 ground states, one of them deuteron Dyson, Xuong, PRL 13 (1964)
- Dibaryons vs. hidden color?

Bashkanov, Brodsky, Clement, PLB 727 (2013)

- Deuteron FFs from quark level?

Microscopic origins of nuclear binding?

Weise, Nucl. Phys. A805 (2008)

Form factors

Nucleon em. form factors

 from three-quark equation GE, ARD 84 (2011)- "Quark core without pion cloud"

- similar: $N \rightarrow \Delta \gamma$ transition, axial \& pseudoscalar FFs, octet \& decuplet em. FPs

Review: GE, Sanchis-Alepuz, Williams, Fischer, Alkofer, PPNP 91 (2016), 1606.09602

Form factors

Nucleon charge radii:

 isovector (p-n) Dirac (F1) radius

- Pion-cloud effects missing (\Rightarrow divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments:

 isovector $(p-n)$, isoscalar $(p+n)$
\square DSE \star PDG $ぇ \mu H$ Lattice:
$\triangleleft \nabla \vee$ LHPC (Syritsyn 10, Bratt 10, Green 14
RBC/UKQCD (Yamazaki 09)
$\triangle \triangle$ ETMC (Alexandrou 13, Abdel-Rehim 15)

- PNDME (Bhattacharya 14)
- QCDSF (Collins 11)
- $\operatorname{Lin} 10$
- But: pion-cloud cancels in $\kappa^{s} \Leftrightarrow$ quark core

Exp: $\kappa^{s}=-0.12$
Calc: $\kappa^{s}=-0.12(1)$
GE, PRD 84 (2011)

Nucleon- $\Delta-\gamma$ transition

- Magnetic dipole transition $\left(G_{M}^{*}\right)$ dominant: quark spin flip (s wave). "Core $+25 \%$ pion cloud"
- Electric \& Coulomb quadrupole ratios small \& negative, encode deformation. Reproduced without pion cloud: OAM from p waves! GE, Nicmorus, PRD 85 (2012)

Nucleon resonances

Need em. transition FFs
But vertices are half offshell: need 'consistent couplings'
Pascalutsa, Timmermans, PRC 60 (1999)

- em gauge invariance: $Q^{\mu} \Gamma^{\alpha \mu}=0$
- spin-3/2 gauge invariance: $k^{\alpha} \Gamma^{\alpha \mu}=0$
- invariance under point transformations: $\gamma^{\alpha} \Gamma^{\alpha \mu}=0$
- no kinematic dependencies, "minimal" basis

$J^{P}=\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$
$\mathrm{N}(940)$	$\mathrm{N}(1720)$	N(1535)	$\mathrm{N}(1520)$
N (1440)	$N(1900)$	$\mathrm{N}(1650)$	$N(1700)$
$N(1710)$		$N(1895)$	$N(1875)$
$N(1880)$			
$\Delta(1910)$	Δ (1232)	$\Delta(1620)$	$\Delta(1700)$
	$\Delta(1600)$	$\Delta(1900)$	$\Delta(1940)$
	$\Delta(1920)$		

Most general offshell vertices satisfying these constraints:
GE, Ramalho, in preparation

$$
\begin{aligned}
& \frac{1}{2}^{+} \rightarrow \frac{1}{2}^{ \pm}: \quad \Gamma^{\mu}=\left[\begin{array}{c}
1 \\
\gamma_{5}
\end{array}\right] \sum_{i=1}^{8} F_{i} T_{i}^{\mu}\left\{\begin{array}{l}
t_{Q Q}^{\mu \nu} \gamma^{\nu} \\
{\left[\gamma^{\mu}, \notin\right]} \\
\cdots
\end{array}\right. \\
& \frac{1}{2}^{+} \rightarrow \frac{3}{2}^{ \pm}: \Gamma^{\alpha \mu}=\left[\begin{array}{c}
\gamma_{5} \\
1
\end{array}\right] \sum_{i=1}^{12} F_{i} T_{i}^{\alpha \mu} \quad\left\{\begin{array}{l}
\varepsilon_{k Q}^{\alpha \mu} \\
t_{k Q}^{\alpha \mu} \\
i t_{k \gamma}^{\alpha \beta} t_{Q Q}^{\beta \mu} \\
\ldots
\end{array}\right.
\end{aligned}
$$

Nucleon resonances

N (1535) transition FFs:
no kinematic constraintsFit

Example:
$N(1535)$ helicity amplitudes
\bar{Y} PDG

- CLAS data
userweb.jlab.org/~mokeev/resonance_electrocouplings
- - - MAID

Tiator, Drechsel, Kamalov, Vanderhaeghen, EPJ 198 (2011)

Mesons

- Pion is Goldstone boson: $m_{\pi}{ }^{2} \sim m_{q}$

- Light meson spectrum beyond rainbow-ladder

- Charmonium spectrum

Fischer, Kubrak, Williams, EPJ A 51 (2015)

- Pion transition form factor

GE, Fischer, Weil, Williams, PLB 774 (2017)

nPI effective action

nPI effective actions provide symmetry-preserving closed truncations.
3PI at 3-loop: all two- and three-point functions are dressed; 4, 5, ... do not appear.

see: Sanchis-Alepuz \& Williams,
J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

Self-energy:

$$
\Sigma=\frac{\delta \Gamma_{2}}{\delta D}=-\cdots
$$

Vertex:

$$
\frac{\delta \Gamma_{2}}{\delta V}=0 \Rightarrow-\infty+\infty=0
$$

Vacuum polarization:

$$
\Sigma^{\prime}=\frac{\delta \Gamma_{2}}{\delta D^{\prime}}=-=-=+\frac{1}{2}=-\frac{1}{2}=-=
$$

$$
=-\frac{1}{2}-\bigcirc
$$

BSE kernel:

nPI effective action

nPI effective actions provide symmetry-preserving closed truncations.
3PI at 3-loop: all two- and three-point functions are dressed; 4, 5, ... do not appear.

see: Sanchis-Alepuz \& Williams,
J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

So we arrive at a closed system of equations:

- Crossed ladder cannot be added by hand, requires vertex correction!

nPI effective action

nPI effective actions provide symmetry-preserving closed truncations.
3PI at 3-loop: all two- and three-point functions are dressed; 4, 5, ... do not appear.

see: Sanchis-Alepuz \& Williams,
J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

So we arrive at a closed system of equations:

- Crossed ladder cannot be added by hand, requires vertex correction!
- without 3-loop term: rainbow-ladder with tree-level vertex $\Rightarrow 2 \mathrm{PI}$
- but still requires DSE solutions for propagators!
- Similar in QCD. nPI truncation guarantees chiral symmetry, massless pion in chiral limit, etc.

The role of diquarks

Mesons and 'diquarks' closely related: after taking traces, only factor $1 / 2$ remains \Rightarrow diquarks 'less bound' than mesons

Pseudoscalar \& vector mesons already good in rainbow-ladder Scalar \& axialvector mesons too light, repulsion beyond RL

$\Leftrightarrow \quad$ Scalar \& axialvector diquarks sufficient for nucleon and Δ
$\Leftrightarrow \quad$ Pseudoscalar \& vector diquarks important for remaining channels

Baryon spectrum I

Three-quark vs. quark-diquark in rainbow-ladder:
GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

```
M [GeV]
```


- qqq and q-dq agrees: N, Δ, Roper, $\mathrm{N}(1535)$
- \# levels compatible with experiment: no states missing
- N, Δ and their 1st excitations (including Roper) agree with experiment
- But remaining states too low \Rightarrow wrong level ordering between Roper and $N(1535)$

Baryon spectrum

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

- Scale Λ set by f_{π}
- Current-quark mass m_{q} set by m_{π}
- c adjusted to $\rho-a_{1}$ splitting
- η doesn't change much

Baryon spectrum

M [GeV]

Level ordering between Roper and $\mathbf{N}(1535)$:
dynamics of ps diquark produces 2 nearby states: $\mathbf{N (1 5 3 5) , ~} \mathbf{N (1 6 5 0)}$

SC, AV,
60\% PS

M

SC, AV,
80\% PS

Strange baryons

	[nn] \{nn\}	[ns] \{ns\}	\{ss\}
N	- \bigcirc		
Δ	-		
Λ	\bigcirc	- 0	
Σ	\bigcirc	- 0	
Ξ		- -	-
Ω			-

Complex eigenvalues?

Excited states: some EVs

 are complex conjugate?Typical for unequal-mass systems, already in Wick-Cutkosky model
Wick 1954, Cutkosky 1954
Connection with "anomalous" states?
Ahlig, Alkofer, Ann. Phys. 275 (1999)

$K(M) G(M) \phi_{i}(M)$

$\phi_{i}(M)$

If $G=G^{\dagger}$ and $G>0$:
Cholesky decomposition $G=L^{\dagger} L$

$$
\begin{array}{ll}
K L^{\dagger} L \phi_{i}=\lambda_{i} \phi_{i} & \Rightarrow \begin{array}{l}
\text { Hermitian problem } \\
\left(L K L^{\dagger}\right)\left(L \phi_{i}\right)=\lambda_{i}\left(L \phi_{i}\right)
\end{array} \quad \text { with same EVs! }
\end{array}
$$

K and G are Hermitian (even for unequal masses!) but $K G$ is not

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for unequal-mass systems, already in Wick-Cutkosky model
Wick 1954, Cutkosky 1954
Connection with "anomalous" states?
Ahlig, Alkofer, Ann. Phys. 275 (1999)

If $G=G^{\dagger}$ and $G>0$:
Cholesky decomposition $G=L^{\dagger} L$

$$
\begin{array}{ll}
K L^{\dagger} L \phi_{i}=\lambda_{i} \phi_{i} & \Rightarrow \begin{array}{l}
\text { Hermitian problem } \\
\left(L K L^{\dagger}\right)\left(L \phi_{i}\right)=\lambda_{i}\left(L \phi_{i}\right)
\end{array} \quad \text { with same EVs! }
\end{array}
$$

\Rightarrow all EVs strictly real
\Rightarrow level repulsion
\Rightarrow "anomalous states" removed?

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for unequal-mass systems, already in Wick-Cutkosky model
Wick 1954, Cutkosky 1954
Connection with "anomalous" states?
Ahlig, Alkofer, Ann. Phys. 275 (1999)

Eigenvalue spectrum for pion channel

GE, FBS 58 (2017)
only pos. EVs in G only neg. EVs in G

If $G=G^{\dagger}$ and $G>0$:
Cholesky decomposition $G=L^{\dagger} L$

$$
\begin{array}{ll}
K L^{\dagger} L \phi_{i}=\lambda_{i} \phi_{i} & \Rightarrow \begin{array}{l}
\text { Hermitian problem } \\
\left(L K L^{\dagger}\right)\left(L \phi_{i}\right)=\lambda_{i}\left(L \phi_{i}\right)
\end{array} \quad \text { with same EVs! }
\end{array}
$$

\Rightarrow all EVs strictly real
\Rightarrow level repulsion
\Rightarrow "anomalous states" removed?

Muon g-2

- Muon anomalous magnetic moment:
total SM prediction deviates from exp. by $\sim 3 \sigma$

- Theory uncertainty dominated by QCD: Is QCD contribution under control?

Hadronic vacuum polarization

$a_{\mu}\left[10^{-10}\right]$	Jegerlehner, Nyffeler, Phys. Rept. $477(2009)$	
Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
• LBL	10.5	(2.6)
SM:	11659	182.8
Diff:	26.1	(4.9)

- LbL amplitude: ENJL \& MD model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Pauk 2014

Muon g-2

- Muon anomalous magnetic moment:
total SM prediction deviates from exp. by $\sim 3 \sigma$

- Theory uncertainty dominated by QCD: Is QCD contribution under control?

Hadronic vacuum polarization

$a_{\mu}\left[10^{-10}\right]$	Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)	
Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
•LBL	$\mathbf{1 0 . 5}$	$\mathbf{(2 . 6)}$
SM:	11659182.8	(4.9)
Diff:	26.1	(8.0)

- LbL amplitude at quark level, derived from gauge invariance:

GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

- no double-counting, gauge invariant!
- need to understand structure of amplitude GE, Fischer, Heupel, PRD 92 (2015)

[^0]: Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602

