

Baryon spectroscopy and structure with functional methods

Gernot Eichmann

IST Lisboa, Portugal

Light Cone 2018 Jefferson Lab, USA

May 18, 2018

Motivation

pentaquarks??

Form factors: resonance transition FFs, spacelike vs. timelike properties

Hadron structure & scattering amplitudes

Extraction of resonances?

1 ⁺	1- 2	3 ⁺	3- 2	<u>5</u> +	5-	7+ 2
N(939) N(1440) N(1710) N(1880)	N(1535) N(1650) N(1895)	N(1720) N(1900)	N(1520) N(1700) N(1875)	N(1680) N(1860) N(2000)	N(1675)	N(1990)
∆(1910)	∆(1620) ∆(1900)	∆(1232) △(1600) △(1920)	∆(1700) ∆(1940)	∆(1905) ∆(2000)	∆(1980)	∆(1950)
Λ(1116) Λ(1600) Λ(1810)	A(1405) A(1670) A(1800)	∆(1890)	A(1520) A(1690)	∆(1820)	A(1830)	
Σ(1189) Σ(1660) Σ(1880)	Σ(1750)	Σ (1385)	Σ(1670) Σ(1940)	Σ(1915)	Σ(1775)	
E(1315)		Ξ(1530) Ω(1672)	Ξ(1820)			

イロト イロト イヨト イヨト

DSEs & BSEs

QCD's classical action:

$$S = \int d^4x \left[\bar{\psi} \left(\partial \!\!\!/ + ig A + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right] \\ = \boxed{ \underbrace{ - \frac{1}{2}}_{0}}_{0} \frac{\partial \!\!\!/ }{\partial \!\!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac$$

DSEs = quantum equations of motion: derived from path integral, relate n-point functions

Bethe-Salpeter equations for hadronic bound states:

Quantum "effective action":

 $\int \mathcal{D}[\psi,\bar{\psi},A] e^{-S} = e^{-\Gamma}$ $- - \frac{1}{2} - \frac{1}{2} = - \frac{1}{2}$

- Poincaré covariance
- · Chiral symmetry
- EM gauge invariance
- Only quark & gluon d.o.f., hadronic poles generated dynamically
- multiscale problems feasible
- · gauge-fixed
- truncations: neglect higher n-point functions to obtain closed system

QCD's n-point functions

Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

Gluon propagator

• Three-gluon vertex

 $\begin{array}{c} F_1 \left[\, \delta^{\mu\nu} (p_1 - p_2)^{\rho} + \delta^{\nu\rho} (p_2 - p_3)^{\mu} \\ + \, \delta^{\rho\mu} (p_3 - p_1)^{\nu} \right] + \dots \end{array}$

Agreement between lattice, DSE & FRG within reach

Huber, EPJ C77 (2017), Cyrol, Mitter, Pawlowski, PRD 97 (2018), ... · Quark-gluon vertex

Truncations

• **3PI system:** all 2 & 3-point functions calculated Williams, Fischer, Heupel, PRD 93 (2016)

 Rainbow-ladder: only quark propagator calculated, kernel = effective gluon exchange

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter

Maris, Tandy, PRC 60 (1999), Qin et al., PRC 84 (2011)

Light meson spectrum beyond rainbow-ladder:

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

 Beyond rainbow-ladder constructions with axial WTI

Chang, Roberts, PRL 103 (2009), PRC 85 (2012), . . .

Truncations

• **3PI system:** all 2 & 3-point functions calculated Williams, Fischer, Heupel, PRD 93 (2016)

 Rainbow-ladder: only quark propagator calculated, kernel = effective gluon exchange

$$\alpha(k^2) = \alpha_{\rm IR} \left(\frac{k^2}{\Lambda^2}, \eta \right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter Maris, Tandy, PRC 60 (1999), Oin et al. PRC 84 (2011)

Eigenvalues in pion channel:

"M = 2m"

Quark propagator has **complex singularities:** no physical threshold

Baryons

Covariant Faddeev equation for baryons:

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

- 3-gluon diagram vanishes ⇒ 3-body effects small? Sanchis-Alepuz, Williams, PLB 749 (2015)
- 2-body kernels same as for mesons, no further approximations:

$$\Psi_{\alpha\beta\gamma\delta}(p,q,P) = \sum_{i} f_i(p^2,q^2,p\cdot q,p\cdot P,q\cdot P) \ \tau_i(p,q,P)_{\alpha\beta\gamma\delta}$$

Lorentz-invariant dressing functions

Dirac-Lorentz tensors carry OAM: s, p, d,...

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602

イロト イポト イヨト イヨト

Sac

Form factors

$$I^{\mu} = e \,\bar{u}(p_f) \left(F_1(Q^2) \,\gamma^{\mu} + F_2(Q^2) \,\frac{i}{4m} \,[\gamma^{\mu}, Q] \right) u(p_i)$$

Consistent derivation of current matrix elements & scattering amplitudes

Kvinikhidze, Blankleider, PRC 60 (1999), GE, Fischer, PRD 85 (2012) & PRD 87 (2013)

• quark-photon vertex preserves em. gauge invariance, dynamically generates VM poles:

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602

The role of diquarks

Three-body equation knows nothing of **diquarks**, but dynamically generates them in iteration

Group Lorentz invariants into **multiplets of permutation group S3:** GE, Fischer, Heupel, PRD 92 (2015), GE, Sanchis-Alepuz, in preparation

• Singlet: symmetric variable, carries overall scale:

• Doublet:

 $\mathcal{D}_0 \sim \frac{1}{\mathcal{S}_0} \left[\begin{array}{c} -\sqrt{3} \left(\delta x + 2\delta\omega\right) \\ x + 2\omega \end{array} \right]$

 $S_0 \sim p_1^2 + p_2^2 + p_3^2 + \frac{M^2}{3}$

Mandelstam plane, outside: diquark poles!

イロト イポト イヨト イヨト

• Second doublet:

$$\mathcal{D}_1 \sim \frac{1}{\sqrt{\mathcal{S}_0}} \begin{bmatrix} -\sqrt{3} \left(\delta x - \delta \omega\right) \\ x - \omega \end{bmatrix}$$

The role of diquarks

Three-body equation knows nothing of **diquarks**, but dynamically generates them in iteration

Group Lorentz invariants into **multiplets of permutation group S3:** GE, Fischer, Heupel, PRD 92 (2015), GE, Sanchis-Alepuz, in preparation

• Singlet: symmetric variable, carries overall scale:

$$S_0 \sim p_1^2 + p_2^2 + p_3^2 + \frac{M^2}{3}$$

$$\mathcal{D}_0 \sim \frac{1}{S_0} \left[\begin{array}{c} -\sqrt{3} \left(\delta x + 2\delta \omega \right) \\ x + 2\omega \end{array} \right]$$

$$\mathcal{D}_1 \sim \frac{1}{\sqrt{\mathcal{S}_0}} \left[\begin{array}{c} -\sqrt{3} \left(\delta x - \delta \omega \right) \\ x - \omega \end{array} \right]$$

⇒ Simplify 3-body equation to quark-diquark BSE

< ロ ト < 同 ト < 三 ト < 三 ト

Oettel, Alkofer, Hellstern Reinhardt, PRC 58 (1998), Cloet, GE, El-Bennich, Klähn, Roberts, FBS 46 (2009) GE, Krassnigg, Schwinzerl, Alkofer, Ann. Phys. 323 (2008)

Baryon spectrum

Gernot Eichmann (IST Lisboa)

Strange baryons

Strange baryons

Strange baryons

Resonances!

Resonances!

Gernot Eichmann (IST Lisboa)

Resonances!

DSE / BSE:

Resonance dynamics "on top of" quark-gluon dynamics

Gernot Eichmann (IST Lisboa)

Compton scattering

Structure functions & PDFs in forward limit

Handbag dominance & GPDs in DVCS

TPE corrections to form factors

Guichon, Vanderhaeghen, PRL 91 (2003)

Proton radius puzzle?

Antonigni et al., 2013, Pohl et al. 2013, Birse, McGovern 2012, Carlson 2015

Nucleon polarizabilities

Hagelstein, Miskimen, Pascalutsa, Prog. Part. Nucl. Phys. 88 (2016)

Resonances!

 $\pi, \sigma, a_1, ...$

イロト イロト イヨト イヨト

Kinematics

$$\sum_{i=1}^{18} c_i(\eta_+, \eta_-, \omega, \lambda) \bar{u}(p_f) X_i^{\mu\nu}(p, Q, Q') u(p_i)$$
18 CFFs 18 Compton tensor

4 kinematic variables:

$$\begin{split} \eta_{+} &= \frac{Q^{2} + Q'^{2}}{2m^{2}} \\ \eta_{-} &= \frac{Q \cdot Q'}{m^{2}} \\ \omega &= \frac{Q^{2} - Q'^{2}}{2m^{2}} \\ \lambda &= -\frac{p \cdot Q}{m^{2}} \end{split}$$

18 Compton tensors, form minimal basis

- systematic derivation
- similar to Tarrach basis Tarrach, Nuovo Cim. A28 (1975)

 $X'_i = U_{ij} X_j$, $\det U = const.$

CFFs free of kinematics

$$\begin{split} X_1^{\mu\nu} &= \frac{1}{mt} t_{Q^P}^{\rho\mu} t_{QQ}^{\mu\nu} \,, \\ X_2^{\mu\nu} &= \frac{1}{m^2} t_{QQ}^{\rho\mu} t_{QQ}^{\mu\nu} \,, \\ X_3^{\mu\nu} &= \frac{1}{m^3} t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} \,, \\ X_4^{\mu\nu} &= \frac{1}{m^6} t_{QQ}^{\mu\nu} t_{QQ}^{\rho\mu} t_{QQ}^{\mu\nu} \,, \\ X_5^{\mu\nu} &= \frac{\lambda}{mt} \left(t_{QQ}^{\rho\mu} t_{PQ}^{\mu\nu} + t_{QP}^{\rho\mu} t_{QQ}^{\rho\nu} \right) \,, \\ X_6^{\mu\nu} &= \frac{1}{m^2} \varepsilon_{QQ}^{\rho\mu} \,, \\ X_7^{\mu\nu} &= \frac{1}{m^3} \left(t_{QQ}^{\mu\nu} \varepsilon_{QQ}^{\mu\nu} - \varepsilon_{QQ}^{\mu\nu} + t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} \right) \,, \\ X_8^{\mu\nu} &= \frac{\omega}{m3} \left(t_{QQ}^{\mu\nu} \varepsilon_{QQ}^{\mu\nu} + \varepsilon_{QQ}^{\mu\nu} + t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} \right) \,, \end{split}$$

• CS on scalar particle

- CS on scalar particle
- CS on pointlike scalar
- · CS on pointlike fermion

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s & u channel

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s & u channel
- Scalar pole in t channel

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s & u channel
- Scalar pole in t channel
- **Pion pole** in t channel $(\pi^0 \rightarrow \gamma^* \gamma^*)$

Polarizabilities

Scalar polarizabilities:

 $\left[\begin{array}{c} \alpha+\beta\\ \beta \end{array} \right] = -\frac{\alpha_{\rm em}}{m^3} \left[\begin{array}{c} c_1\\ c_2 \end{array} \right]$

Large $\Delta(1232)$ contribution, also N(1520) non-negligible

Spin polarizabilities:

$$\begin{bmatrix} \gamma_{E1E1} \\ \gamma_{M1M1} \\ \gamma_{E1M2} \\ \gamma_{M1E2} \end{bmatrix} = \frac{\alpha_{em}}{2m^4} \begin{bmatrix} c_6 + 4c_{11} - 4c_{12} \\ -c_6 - 2c_{10} + 4c_{12} \\ c_6 + 2c_{10} \\ -c_6 \end{bmatrix}$$
$$\begin{bmatrix} \gamma_0 \\ \gamma_\tau \end{bmatrix} = -\frac{2\alpha_{em}}{m^4} \begin{bmatrix} c_{11} \\ c_6 + c_{10} + c_{11} - 2c_{12} \end{bmatrix}$$

Spin polarizabilities

Gernot Eichmann (IST Lisboa)

Compton scattering

Scattering amplitude: GE, Fischer, PRD 85 (2012) & PRD 87 (2013)

- · Poincaré covariance and crossing symmetry automatic
- em. gauge invariance and chiral symmetry automatic (as long as all ingredients calculated within same truncation)
- · perturbative processes included
- **s, t, u channel poles** dynamically generated, no need for "offshell hadrons"

Towards multiquarks

Backup slides

Tetraquarks in charm region?

 Four quarks dynamically rearrange themselves into dq-dq, molecule, hadroquarkonium; strengths determined by four-body BSE:

Resonances?

Rainbow-ladder vs. lattice:

Gernot Eichmann (IST Lisboa)

Developing numerical tools

- Result agrees with dispersion relations
- Algorithm is stable & efficient
- Can be applied to any integral as long as **singularity locations** known Weil, GE, Fischer, Williams, PRD 96 (2017)
 - → talk by Richard Williams

Rare pion decay $\pi^0 \rightarrow e^+ e^-$: Photon and lepton poles produce branch cuts in complex plane: $\gamma \rightarrow e^+ e^-$: deform integration contour!

Towards multiquarks

Transition from quark-gluon to nuclear degrees of freedom:

- 6 ground states, one of them deuteron Dyson, Xuong, PRL 13 (1964)
- Dibaryons vs. hidden color? Bashkanov, Brodsky, Clement, PLB 727 (2013)
- Deuteron FFs from quark level?

Microscopic origins of nuclear binding?

· only quarks and gluons

- quark interchange and pion exchange automatically included
- dibaryon exchanges

Form factors

Nucleon em. form factors from three-quark equation GE, PRD 84 (2011)

"Quark core without pion cloud"

 similar: N → Δγ transition, axial & pseudoscalar FFs, octet & decuplet em. FFs

Review: GE, Sanchis-Alepuz, Williams, Fischer, Alkofer, PPNP 91 (2016), 1606.09602

Form factors

Nucleon charge radii:

isovector (p-n) Dirac (F1) radius

Nucleon magnetic moments:

isovector (p-n), isoscalar (p+n)

 Pion-cloud effects missing (⇒ divergence!), agreement with lattice at larger quark masses.

• But: pion-cloud cancels in $\kappa^s \Leftrightarrow$ quark core

Exp: $\kappa^{s} = -0.12$ Calc: $\kappa^{s} = -0.12(1)$

GE, PRD 84 (2011)

< ロ ト < 同 ト < 三 ト < 三 ト

Nucleon- Δ - γ transition

Nucleon resonances

Need em. transition FFs

But vertices are half offshell: need 'consistent couplings' Pascalutsa, Timmermans, PRC 60 (1999)

- em gauge invariance: $Q^{\mu} \Gamma^{\alpha \mu} = 0$
- spin-3/2 gauge invariance: $k^{\alpha} \Gamma^{\alpha \mu} = 0$
- invariance under point transformations: $\gamma^{\alpha} \Gamma^{\alpha\mu} = 0$
- no kinematic dependencies, "minimal" basis

$J^P = \frac{1}{2}^+$	$\frac{3}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$
N(940) N(1440) N(1710) N(1880)	N(1720) N(1900)	N(1535) N(1650) N(1895)	N(1520) N(1700) N(1875)
$\Delta(1910)$	$\Delta(1232)$ $\Delta(1600)$ $\Delta(1920)$	Δ(1620) Δ(1900)	Δ(1700) Δ(1940)

Most general **offshell vertices** satisfying these constraints:

GE, Ramalho, in preparation

$$\begin{split} & \frac{1}{2}^{+} \to \frac{1}{2}^{\pm} : \quad \Gamma^{\mu} = \begin{bmatrix} \mathbf{1} \\ \gamma_{5} \end{bmatrix} \sum_{i=1}^{8} \boldsymbol{F}_{i} \, \boldsymbol{T}_{i}^{\mu} \quad \begin{cases} \boldsymbol{t}_{\boldsymbol{Q}\boldsymbol{Q}}^{\boldsymbol{\mu}} & \\ [\boldsymbol{\gamma}^{\mu}, \boldsymbol{Q}] \\ \cdots \end{cases} \\ & \frac{1}{2}^{+} \to \frac{3}{2}^{\pm} : \quad \Gamma^{\alpha\mu} = \begin{bmatrix} \gamma_{5} \\ \mathbf{1} \end{bmatrix} \sum_{i=1}^{12} \boldsymbol{F}_{i} \, \boldsymbol{T}_{i}^{\alpha\mu} \quad \begin{cases} \boldsymbol{\varepsilon}_{\boldsymbol{k}\boldsymbol{Q}}^{\alpha\mu} & \\ \boldsymbol{t}_{\boldsymbol{k}\boldsymbol{Q}}^{\alpha\mu} & \\ \boldsymbol{t}_{\boldsymbol{k}\boldsymbol{Q}}^{\alpha\mu} & \\ \boldsymbol{t}_{\boldsymbol{k}\boldsymbol{Q}}^{\alpha\mu} & \\ \boldsymbol{t}_{\boldsymbol{k}\boldsymbol{Q}}^{\alpha\mu} & \boldsymbol{\xi}_{\boldsymbol{k}\boldsymbol{Q}}^{\alpha\mu} & \end{cases}$$

Nucleon resonances

Mesons

Pion is Goldstone • **boson:** $m_{\pi}^2 \sim m_a$

Light meson spectrum beyond rainbow-ladder

Williams, Fischer, Heupel, PRD 93 (2016) GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

see also Chang, Roberts, PRL 103 (2009), PRC 85 (2012)

• Charmonium spectrum Fischer, Kubrak, Williams, FPI A 51 (2015)

Pion transition form factor

15

20

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

Self-energy:

Vertex:

Vacuum polarization:

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

see: Sanchis-Alepuz & Williams, J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

So we arrive at a closed system of equations:

 Crossed ladder cannot be added by hand, requires vertex correction!

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

see: Sanchis-Alepuz & Williams, J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

So we arrive at a closed system of equations:

- Crossed ladder cannot be added by hand, requires vertex correction!
- without 3-loop term: rainbow-ladder with tree-level vertex ⇒ 2PI
- but still requires **DSE solutions** for propagators!
- Similar in QCD. nPl truncation guarantees chiral symmetry, massless pion in chiral limit, etc.

The role of diquarks

Mesons and 'diquarks' closely related: after taking traces, only factor 1/2 remains ⇒ diquarks 'less bound' than mesons

Pseudoscalar & vector mesons already good in rainbow-ladder

Scalar & axialvector mesons too light, repulsion beyond RL

 $= \frac{1}{2} K$

 \Leftrightarrow

 \Leftrightarrow

- Scalar & axialvector diquarks sufficient for nucleon and Δ
- Pseudoscalar & vector diquarks important for remaining channels

Baryon spectrum I

Three-quark vs. quark-diquark in rainbow-ladder: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

- qqq and q-dq agrees: N, Δ, Roper, N(1535)
- · # levels compatible with experiment: no states missing
- N, Δ and their 1st excitations (including Roper) agree with experiment
- But remaining states too low ⇒ wrong level ordering between Roper and N(1535)

Baryon spectrum

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Baryon spectrum

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K \frac{L^{\dagger}L}{L} \phi_{i} = \lambda_{i} \phi_{i}$ $(LKL^{\dagger}) (L\phi_{i}) = \lambda_{i} (L\phi_{i})$

⇒ Hermitian problem with same EVs!

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K L^{\dagger} L \phi_{i} = \lambda_{i} \phi_{i}$ $(LKL^{\dagger}) (L\phi_{i}) = \lambda_{i} (L\phi_{i})$

⇒ Hermitian problem with same EVs!

- ⇒ all EVs strictly real
- ⇒ level repulsion
- ⇒ "anomalous states" removed?

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K \frac{L^{\dagger}L}{L^{\dagger}} \phi_{i} = \lambda_{i} \phi_{i}$ $(LKL^{\dagger}) (L\phi_{i}) = \lambda_{i} (L\phi_{i})$

⇒ Hermitian problem with same EVs!

- \Rightarrow all EVs strictly real
- \Rightarrow level repulsion
- ⇒ "anomalous states" removed?

Muon g-2

• Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p}^{p} = ie \, \bar{u}(p') \left[F_1(q^2) \, \gamma^{\mu} - F_2(q^2) \, \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \right] u(p)$$

• Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

¥

Hadronic light-by-light scattering

$a_{\mu} [10^{-10}]$		Jegerlehne Phys. Rept.	r, Nyffeler, 477 (2009)	
Exp:	11	659 208.9	(6.3)	_
QED:	11	658 471.9	(0.0)	
EW:		15.3	(0.2)	
Hadronic:				
• VP (LO+H	O)	685.1	(4.3)	
• LBL		10.5	(2.6)	?
SM:	11	659 182.8	(4.9)	
Diff:		26.1	(8.0)	

LbL amplitude: ENJL & MD model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Pauk 2014

Muon g-2

• Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p}^{p} = ie \, \bar{u}(p') \left[F_1(q^2) \, \gamma^{\mu} - F_2(q^2) \, \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \right] u(p)$$

• Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

¥

$a_{\mu} [10^{-10}]$		Jegerlehne Phys. Rept.	r, Ny 471	yffeler, 7 (2009)	
Exp: 1	1	659 208.9		(6.3)	_
QED: 1	1	658 471.9		(0.0)	
EW:		15.3		(0.2)	
Hadronic:					
• VP (LO+HO)		685.1		(4.3)	
• LBL		10.5		(2.6)	?
SM: 1	1	659 182.8		(4.9)	-
Diff:		26.1		(8.0)	_

• LbL amplitude at quark level, derived from gauge invariance: GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

- no double-counting, gauge invariant!
- need to understand structure of amplitude GE, Fischer, Heupel, PRD 92 (2015)