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\~. y abstract

LC2018 (JLab, 18 May 2018):

Entanglement on the Light Front
P.J. Mulders

The importance and success of collinearity in QCD at high energies and its simple
quantum mechanical interpretation on the light front in 3D can be combined in a
larger picture of emergent symmetries for the standard model in which both leptons
and quarks originate as non-equivalent maximally entangled states living in a tripartite
space of 1D states. Even if at this stage it does not upset the present successful
phenomenology or make striking predictions , the hope is that it could simplify the
complexity and apparent arbitrariness of the standard model.



December 18 —.
3 : PR SCATI (Italy)

arenceDispIay.py?confld=145"'

(NOT) HAPPY WITH STANDARD MODEL r
In spite of its success!

Three families, colors, space dimensions! 3 -
Left-right (a)symmetry? B-L? T
Mass ranges in standard model?

Naturalness? Missing supersymmetry?

Confinement and collinearity in QCD
(jets, PDFs, TMDs)?



MULTIPARTITE STATES



\,.,, 4 QIT - entangled states and QCD

m Parton-hadron duality in hard QCD scattering: PDFs x FFs
m nucleon is pure state > ensemble of partons [Kharzeev & Levin 1702.03489]
= Parton physics in essence good collinear d.o.f. 377 ¢ and g3 A%
m hard (short distance) process: partons = partons
m emerging partons are pure state(s) 2 ensemble of hadron states

m Entangled (pure) states |®> in %44 ¢ #P with a density matrix p = |®><®| lead
to ensembles (non-pure state) in the reduced spaces.

m EPR bipartite pure state leads to a 50% - 50% ensemble in both subspaces.

Conclusion: both hadrons and partons live in a multipartite Hilbert space !

m Possibly combined with a principle of maximal entanglement (MaxEnt), such as
hinted at in Cervera-Lierta, Latorre, Rojo & Rottoli (1703.02989): maximally
entangled chiral left/right two-particle states are consistent with QED (g,=0) &
electroweak (g,=0), at least if sin ©,, = 2



\‘. J X QIT - pure and entangled states

A pure quantum state: density matrix p = |®><®| of rank 1 which is a projection
operator p2 = p and Tr(p?) = Tr(p) = 1.

m An ensemble of states is characterized by a (hermitean) density matrix
p=>_ In)puln with Tr(p) = " py =1

(for the next points |n> will be choosen orthogonal)
m Measures for purity are among others the concurrence

C? N -1
pure = 0= 2 =1 -y —1—zpn > o < S5 = rompure
m or the von Neumann entropy (in case of set of probabilites Shannon entropy)
N
pure =0 < S =—-Tr(plnp) = an In p,, < In N = non-pure

m Entangled states live in a multipartite Hilbert space, e.g. #4 @ HZ @ H¢ and
cannot be written as a direct product state |®) £ |a) ® [b) ® |c¢) = |abc)

Essence of multipartite spaces is presence of decoupled bases for spaces:
Alice-Bob-Eve, multi-particle, flavor-spin, ...



\, 4 X QIT - signal of entangled states

m For entangled pure states |®> in H* ® #P the density matrix p = |®><®| leads
to a non-pure reduced density matrix p4 = Trp(p) and pp = Tra(p)

m Example: an entangled pure bipartite state can be Schmidt decomposed
[®) = " \/Pnlanby) With |a,> and |b,> state-specific orthogonal bases.

= The reduced density matrix is 4 = Trp(p) = Y |an) pn{an|

m The state is entangled if matrix p, is non-pure (has rank larger than one)
m purity in subspace gives a measure for the entanglement, maximized for an
equal partition of probabilities p, = 1/N.
m For a general bipartite state built from qubit bases |R> and |L> given by w.f.
|®) = a|RR) + b|RL) + c|LR) + d|LL) one has A = 2|ad — bc| — 2/p1po.
m Entangled multipartite states separate in equivalence classes (defined via

Stochastic Local Operations and Classical Communication, SLOCC), where
local refers to the subspace.

m For bipartite states there is just a single class of maximally entangled Bell states
represented by [Bell) = s (|RR) + |LL)) (equivalently|[RR) + [LL)or |RL) + [LR))
Note that p = [Bell)(Bell] = pa = L (|R)(R|+ |L)(L]|)



\‘ Y X Maximizing entanglement for bipartite states

m How can states become entangled?
m Theorem (new) in simple two-state example: scattering increases entanglement

m Assume scattering states |RL) + |LR) are MaxEnt with 20 = 04+ £ J_

S _ [ 6i(6.,.—|—6_) 0

(5 —5_) S cosd_ isind_
0 e!(0+—0- >

1sind_  coso_
on basis |RL> and |LR>
m Then scattering increases entanglement!
in) = /p1|RL) + /p2|LR) ——%  |out) = S'|in)
A =2p1p2 —n A =2|\/pip2cosd_ —i(p; + p2)sind_|

> 2/D1D2
m This generalizes the result in Cervera-Lierta, Latorre, Rojo & Rottoli (1703.02989)

and may lend support to their principle of maximal entanglement (MaxEnt)



\V J QIT - example of multipartite states

m Look at multipartite spaces H4 @ HP @ HC with basis of (pure) quantum states
m Example: a 3D harmonic oscillator: states |n,n n,> or [nIm> or [n>

level | degeneracy (Ngy My, M) SO(3) (n.£) SU(3) (n)
0 1 (0,0,0) 0s 1
1 3 (1,0,0), . .. Op 3
2 6 (2,0,0), (1,1,0), ... 1s @ 0d 6
3 10 (3,0,0), (2,1,0), (1,1,1), ...  1p @ Of 10
4 15 23 ®1d @ 0g 15,

m 3D HO is separable, has rotational [SO(3)] and more [SU(3)] symmetry.
Symmetry eigenstates (involving ABC) are in general entangled states.

= ( Bosons ) E 4

—— 10
+72d—— 6 -
+524— 3 +5/2-
+32d— 1 32— 1
+1/21 +12d— 3%
-1/2- -124—— 3
~3/21 -324d— 1




\‘ J Leptons and partons as multipartite states

m For entangled bipartite states there is just Class: equivalence through

one class of entangled (Bell) states local .operators aqd :
classical communication

" [Bell) = J5(JRL) + |LR)) or (|RR) +|LL))  (SLOCC)

m For entangled tripartite states there are two classes  (jzss: for equivalence

(Dur, Vidal, Cilrac 2000) existence of local unitary
m |GHZ) = —=(|RRR) + |LLL)) (fragile) transformations suffices
m |W) = —=(|LRR) +|RLR) + |RRL)) (robust) UU®...

m Multipartites and R/L basis states relevant for symmetries of standard model:
= 1D field theory: H = H®" with right- and left-movers (chirality states)

_ _ A 5 - | space (3D): leptons, electroweak
m Tripartite states: H* @ H” @ H (GHZ-class)

color: quarks in 1D, strong
(W-class)
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\V 4 A paradigm shift?

m Start with less dimensions (1+3 - 1+1) advantageous

m Convergence: d[¢] = (d-2)/2 = 0, d[E] = (d-1)/2 =2, naturalness, ...
[see Stojkovic — 1406.2696]

m Appropriate quantum states in multipartite space: ontological basis
[see 't Hooft — 1405.1548]

= 3D HO with states |[n,nn,> or [nIm> or |n>; natural basis for spectroscopy
of hadrons in quark model in multipartite space is the (nIm) basis.

N | configuration | SU(6) x O(3) multiplets
0 (05) [56,07]
1| (0s)2(1p) | 56,1) [70,17]
2 (0s)%(2s) (56,07) [70,07]
(0s)2(2d) | (56,2%) [70,2%]
(0s)(1p)2 | [56,01] [56,2%] (70,0%) (70,1F) (70,2%) [20,1%]

m Chirality (R/L) corresponding in 1D to right- and left-movers, P*, P~ eigenstates
can lead to emergence of chiral structure of quarks and leptons in standard model
and the full SU(3). x [SU(2) x U(1)]gy Symmetry (and even family structure).
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\V 4 A paradigm shift?

m Tripartite space for quarks naturally has color dual to space/electroweak.
m Can explain why color naturally is decoupled from electroweak interactions
m Color invisible in 3D: local gauge invariance! No free quarks or gluons!

m Global color visible in 3D via valence quarks, N vs 1/N, f x D (distribution x
fragmentation), color flow (future and past pointing gauge links), ...
= has a role for Wilson loops generating (gluon) TMDs (1805.05219)

m Natural arena for light-front approach with a ‘preferred’ space direction:
quantization of good fields, dominating the OPE at high energies, these are
asymptotic (free) fields (Kogut & Soper): 37 7 ¢ and g/ A%

m New ways to look at color-kinematic duality, soft collinear effective theory
(SCET), ....
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EMERGENCE OF SPACE-TIME DEPENDENCE
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All Possible Symmetries of the S Matrix™

SipNEY COLEMANT AND JEFFREY MANDULAJ
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachuseits
(Received 16 March 1967)

We prove a new theorem on the impossibility of combining space-time and internal symmetries in any

but a trivial way. The theorem is an improvement on known results in that it is applicable to infinite-param-
eter groups, instead of just to Lie groups. This improvement is gained by using information about the S
matrix; previous investigations used only information about the single-particle spectrum. We define a sym-
metry group of the S matrix as a group of unitary operators which turn one-particle states into one-particle
states, transform many-particle states as if they were tensor products, and commute with the S matrix. Let
G be a connected symmetry group of the .S matrix, and let the following five conditions hold: (1) G contains
a subgroup locally isomorphic to the Poincaré group. (2) For any M >0, there are only a finite number of
one-particle states with mass less than M. (3) Elastic scattering amplitudes are analytic functions of s and ¢,
in some neighborhood of the physical region. (4) The S matrix is nontrivial in the sense that any two one-
particle momentum eigenstates scatter (into something), except perhaps at isolated values of s. (5) The gen-
erators of G, written as integral operators in momentum space, have distributions for their kernels. Then,
we show that G is necessarily locally isomorphic to the direct product of an internal symmetry group and

the Poincaré group.

I. INTRODUCTION

NTIL a few years ago, most physicists believed
that the exact or approximate symmetry groups

of the world were (locally) isomorphic to direct products
of the Poincaré group and compact Lie groups. This
world-view changed drastically with the publication of
the first papers on SU(6)!; these raised the dazzling
possibility of a relativistic symmetry group which was
not simply such a direct product. Unfortunately, all

attempts to find such a group came to disastrous ends,
and the situation was finallv settled hv the discoverv nf

symmetry group of the .S matrix, which contains the
Poincaré group and which puts a finite number of
particles in a supermultiplet. Let the .S matrix be non-
trivial and let elastic scattering amplitudes be analytic
functions of s and ¢ in some neighborhood of the physical
region. Finally, let the generators of G be representable
as integral operators in momentum space, with kernels
that are distributions. Then G is locally isomorphic to

the direct product of the Poincaré group and an in-

ternal symmetry group. (I'his 1S a loose statement ol

the theorem; a more precise one follows below.)

14



\‘ J Basic symmetries including SUSY

m Hilbert space

{(a")"10),b7|0)} a,a’l =1, {b,b"} =1
m Supercharges
Qi = biaj, and Qix = bjay {Ql, Qin} = 3 05{al, an} + 3 o lb], b
i
a,t Qik, ot aL Sk g hamiltonian/number operators (i=j, k=)
1 1

.. & unitary rotations
m For boson and fermion fields

1 1

» = o (a + aT) and & = ﬁ (b + bT) Single (free) field
Q = Vw(a'b—bta) F =, H]
Qel=¢  {Q.6=1{Q,[Q.¢l} =F=iDy =Dp=1w
Q. F] = [Q.{Q,&}] = iD¢ iD= id + gA
m Implement symmetries via constraints F T
... and a nontrivial vacuum (not everything is for free!) unitary rotations

qu(t) — Texp (—7; /O t ds-D) qb}
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\‘ 4 Basic starting point

m Right-Left symmetry
m Supersymmetry (Wess-Zumino structure)

m Bosons: #V2 = top e g
= ¢5 +1i0p

= Fermions: £v/2 = [ _?ZL ]

m Space-time structure via covariant derivatives and supercharges

m Different ‘kinds’ of particles corresponding to SLOCC equivalence classes where
the fun starts in tripartite space with the following basis:

Y Y Y Y
- A - L - A - L
6 1t (@, e R (&
} — I; +1 } — I +1
-1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2
1 ; — I3 4 :A/ — I;
4, @, T (&, G —1+—&
| |
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\,‘ y Emerging symmetries & space-time

Generators
Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
B ¢r Eryr and (¢p) = (¢L)=1/V2 m P+, P K, SU(3)

(Wess-Zumino)
U(1)g x U(1), x SU(3)
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\‘ Y Emerging symmetries & space-time

Generators
Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
® ¢r/r Eryp and (pg) = (¢r) =1/vV2 m PP K, SUG3)
(Wess-Zumino - gauge theory)
m ID:ps o¢p—> AT O m H P K SU(3)

’iDa¢i — ’i&,gbi + 9o Z Ag(Ta);gbj
a=1,...8 P(1,1) x SU(3)

£(2)
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\‘. 4 Emerging symmetries & space-time

Generators

Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
B dr; Spr and (¢r) = (¢r)=1/V2 m P+ P K, SU(3)

(Wess-Zumino - gauge theory) Z(2)
m 1ID:1¢s ¢p—> A3 ¥ m H P K SU(3) =

. 4 o
a=1,...8
/ / / 2(3)

m 3D: 95 Ap ¥ m H,P,K3J  SUQ2)XU(1)

iD= i0ud' +9 > AL(T.);¢
a=1,2,3,8 P(3,1) x SU(2) x U(1)
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\, Yy Emerging symmetries & space-time

Generators
Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
B dr; Spr and (¢r) = (¢r)=1/V2 m P+ P K, SU(3)
(Wess-Zumino - gauge theory) Z(2)
m ID:ps o¢p—> AT O m H P K SU(3) =
. 4 o
a=1,...8
4 / / Z(3)
m 3D: 95 Ap ¥ m H,P,K3J  SUQ2)XU(1)
iDud' =i0ud' +g Y ALUTL)i¢
a=1,2,3,8 P(3,1) x SU(2) x U(1)
m and.... A(4)
o 7 o __ 0 nZ wo_ 0 ot
niy —— Ny Y= TL?‘_ 0 — Y = oH 0

in order to match space-time and field symmetries and respect Coleman-Mandula

20
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MULTIPARTITE BOSONS IN THE STANDARD MODEL
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"/

Q
1D bosonic basis states for standard mod@kﬂp

m Basis of each 1D spaces: P(1,1) x SU3): ¢ = (6%, 9%, ¢°),& = ((£,€2,¢)
m Assign Y-I; using the SU(3) symmetry.

(!

Y
A

+ 1

(@,

-1/2

Y

1
(o,

m built on vacuum |0,0,0>
(SO(3) and Z(3) invariant, with nonzero vev)

4

E.g.
@ & PR =
(0, @O 4=

1

exp(—l—% Z Qa)\a)

a=1,2,3,8

Y
1
(&
[ 1
172 1/2
Y ,
E —1 &
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“ Bosonic field potential

m Nonzero vacuum expectation bpl
value with SO(3) x Z(3) .
invariant g.s. 05t

¢\/§ _ 6i7r/4¢R + 6—@'7r/4¢L
= ¢s +i¢p

00}

(¢) =1/V2
(ps) =1, (¢p) =0
(pr) = (¢1) = 1/V2

05|

m Wess-Zumino
V = %M2 (<¢2 +¢*2 . 1)2 . (¢2 . ¢*2)2)
= gM* (46500 + (1 — 65 + 6p)")
= i M? (¢ — 01)° + (1 — 20ReL)?)

23



“ Wess-Zumino potential

M2 (6% + ¢ = 1)° — (¢° — ¢**)?)
M? (x*sin?(20) + (x* cos(20) — 1)?)
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Q
\ Y Bosonic excitations: electroweak and strong @U@E@
/|

m 3D Electroweak symmetry breaking is SU(2) x U(1) »> U(1)QED
/
iD,¢ =10,¢ + = (Z WZA + B )\S)Cb

e WL+ WL )6+ (g Wik + S22 B,Y )0 )

m SU(3) embedding for electroweak gives embarrasingly good ‘zeroth order’ results:
m Implies weak mixing angle sin6,, = 1/2 (Weinberg 1972)
m gives M2 = M?/2, M,,2 = 3M,?/4, M, = M/2

~

m 1D strong sector: £ = 50"¢s0,0s — 3 F* Fu + (D — M — go pg)p
8 instantaneous gluons and a scalar field, resembling XQCD,,, (Kaplan 1306.5818)
and dynamics governed by via Wilson loop.

W[C] = exp <—ig]{Cds“Au(s)) gF., = dW|[C]/éc™°

m Wilson loops may be the portal towards 3D tomography of nucleon
(see 1805.05219 and refs therein)

25



MULTIPARTITE FERMIONS IN THE STANDARD MODEL
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\‘ J Leptons and quarks as fermionic tripartite classes

«— tripartite entangled

<«— Dbipartite entangled

@ <«— product states

Different local classes of tripartite pure states. The
direction ot the arrows indicates which noninvertible
transformations between classes are possible (taken
from Dur, Vidal, Cirac 2000)

Note: this states that maximally Bell) = pa = % (|R)(R| + |L){L])
entangled GHZ- and W-class

states can also be bipartite IGHZ) = pap = 3 (|RR)(RR| + |LL)(LL|)

entangled, but note the 5 .
difference in reduced spaces (W) = pap = 5[Bell)(Bell| + 3|RR)(RE|
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w Standard model particle content

Important: multipartite classification Y

gives a natural explanation for the e,

electroweak symmetry structure in

the standard model &
R
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\ J Fermionic excitations: leptons and quarks

m Tripartite states (R: 123 & L: 12 3)

m Aligned (RRR, LLL) GHZ states
SO(3) - asymptotic/space
I, U, andV allowed
Three A(4) singlets

m Mingled (RRL, RLL) W-states

non-asymptotic

I, U, orV allowed
Three A(4) triplets Vy=-1/2 >«

29



\‘ 4 Fermionic excitations: electroweak identification

m LEPTONS
Aligned (RRR, LLL)
m SO(3) > asymptotic/space
I, U, andV allowed
m Three A(4) singlets (families)
m Family mixing is
tri-bimaximal
m QUARKS
Mingled (RRL, RLL)
®m non-asymptotic
I, U, orV allowed
m Three A(4) triplets (families)
N

m Resembles the rishon model
(Harari & Seiberg 1982)

uR/
’LLL I dL
VR 2= ,/ eR
ur dp, £ UL
QY dr, dr ,/dR ur - I =1
(—-: ------ pass-=t =2 F—
SO dr, 5 dr, dpr
UR dr \\\ UR
b €L g% SR\ vy
V dr ur ; UR ™~
L Y
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\V y Concluding remarks

m Can a multipartite Hilbert space provide a simpler basis of the degrees of
freedom in the standard model, still having the right basic ingredients and
symmetries?

m It looks promising and it may provides a new view for many phenomena in QCD
(Confinement, quark-hadron duality, importance of SCET for PDFs, FFs including
TMDs, multitude of effective models for QCD)

m However, there are still many open ends!
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