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• SIDIS Process with TM of hadron measured.

SIDIS with one measured hadron
•  Measurement of the transverse momentum of the 
produced hadron in SIDIS provides access to TMD PDFs/FFs.

• TMD PDFs
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• SIDIS Process with TM of hadrons measured.

SIDIS with two measured hadrons
•  Measuring two-hadron semi-inclusive DIS: an additional 
method for accessing TMD PDFs.

• TMD PDFs
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SYSTEMATICS OF 
 DIHADRON FRAGMENTATION FUNCTIONS
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Two-Hadron Kinematics
✦  Total and Relative TM of hadron pair.

✦  Two Coordinate systems:

A. Bianconi et al: PRD 62, 034008 (2000).

task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.

III. QUARK-QUARK CORRELATION FUNCTION FOR
TWO-HADRON PRODUCTION

In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
with momentum k into two hadrons P1 ,P2 #see Fig. 3$:
namely,

% i j#k;P1 ,P2$!X
X

! d4&

#2'$4

"eik•&(0") i#&$a2
†#P2$a1

†#P1$"X*

"(X"a1#P1$a2#P2$) j#0 $"0*, #9$

where the sum runs over all the possible intermediate states
involving the two final hadrons P1 ,P2. For the Fourier trans-
form only the two space-time points 0 and & matter, i.e., the
positions of quark creation and annihilation, respectively.
Their relative distance & is the conjugate variable to the
quark momentum k.
We choose for convenience the frame where the total pair

momentum Ph!P1#P2 has no transverse component. The
constraint to reproduce on-shell hadrons with fixed mass
(P1

2!M 1
2 ,P2

2!M 2
2) reduces to seven the number of indepen-

dent degrees of freedom. As shown in Appendix A #where
also the light-cone components of a 4-vector are defined$,
they can conveniently be reexpressed in terms of the light-
cone component of the hadron pair momentum, Ph

$ , of the
light-cone fraction of the quark momentum carried by the
hadron pair, zh!Ph

$/k$!z1#z2, of the fraction of hadron

pair momentum carried by each individual hadron, +
!z1 /zh!1$z2 /zh , and of the four independent invariants
that can be formed by means of the momenta k ,P1 ,P2 at
fixed masses M 1 ,M 2, i.e.,

,h!k2, -h!2k•#P1#P2$.2k•Ph ,

-d!2k•#P1$P2$.4k•R , M h
2!#P1#P2$2.Ph

2 ,
#10$

where we define the vector R!(P1$P2)/2 for later use.
By generalizing the Collins-Soper light-cone formalism

!18" for fragmentation into multiple hadrons !12,11", the
cross section for two-hadron semi-inclusive emission can be
expressed in terms of specific Dirac projections of
%(zh ,+ ,Ph

$ ,,h ,-h ,M h
2 ,-d) after integrating over the #hard-

scale suppressed$ light-cone component k# and, conse-
quently, taking & as light-like !2", i.e.,
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1
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$

zh
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The function % [/] now depends on five variables, apart from
the Lorentz structure of the Dirac matrix / . In order to make
this more explicit and to reexpress the set of variables in a
more convenient way, let us rewrite the integrations in Eq.
#11$ in a covariant way using

2Ph
$!

d-h

dk#
, 2k#!

d,h

dk$
, #12$

and the relation
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which leads to the result
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where the dependence on the transverse quark momentum k! T
2

through -h is made explicit by means of Eqs. #A6a$ and
#A7$.
Using Eq. #A6$ makes it possible to reexpress % [/] as a

function of zh ,+ ,k! T
2 and R! T

2 ,k! T•R! T , where R! T is #half of$ the
transverse momentum between the two hadrons in the con-

FIG. 3. Quark-quark correlation function for the fragmentation
of a quark into a pair of hadrons.

A. BIANCONI, S. BOFFI, R. JAKOB, AND M. RADICI PHYSICAL REVIEW D 62 034008

034008-4

P = P1 + P2

R =
1

2
(P1 � P2)

z = z1 + z2

⇠ =
z1
z

= 1� z2
z

RT =
z2P 1? � z1P 2?

zkT = �P?
z

•   : field-theoretical definition of DiFFsT

R? =
1

2
(P 1? � P 2?)

✦  Lorentz Boost:

?•   : modelling hadronization
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✤ Relative TM in two systems



Field-Theoretical Definitions
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• The definitions of DiFFs from the correlator.

• The quark-quark correlator.
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• The definitions of DiFFs from the correlator.

• The quark-quark correlator.
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related to “jet handedness”



Fourier Moments of DiFFs
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• Expanded dependence on                             in cos series

• Integrated DiFFs and Fourier moments
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ACCESS TO TRANSVERSITY PDF From DiFF

• In two hadron production from 
polarized target the cross section 
factorizes collinearly - no TMD! 

• Allows clean access to transversity. 
• Unpolarized and Interference 

Dihadron FFs are needed!

M. Radici, et al: PRD 65, 074031 (2002).

A. Bacchetta and M. Radici, PRD 74, 114007 (2006).

• Empirical Model for       has been fitted to PYTHIA simulations.Dq
1
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FIG. 4: Semi-inclusive dihadron counts from the PYTHIA event generator [53] tuned for HERMES [54] and results of the fit
(a) as a function of Mh, (b) as a function of z. Solid line: p-wave contribution; dashed line: s-wave contribution; dotted line:
sum of the two. The contributions of the η and K0 have been excluded.

which the Monte Carlo generator is actually tuned. The agreement would be improved further if the contribution of
the ω were extended at higher invariant masses by leaving the narrow-width approximation for the ω resonance and
smearing the step function in Eq. (28). Note that the interference is in this case constructive because the signs of the
couplings fρ and f ′

ω have been taken equal. If the two couplings were taken opposite, then a destructive interference
would take place and the model would underestimate the p-wave data at around 0.6 GeV. The agreement with the
total spectrum would then be worsened. Also the fω coupling has been taken to have the same sign of fρ to avoid
destructive interference patterns. It is difficult with the present poor knowledge to make any conclusive statement
about ρ-ω interference in semi-inclusive dihadron production. However, we can at least conclude that in our model
the best agreement with the event generator is achieved when the three couplings fρ, fω and f ′

ω have the same sign.

V. PREDICTIONS FOR POLARIZED FRAGMENTATION FUNCTIONS AND TRANSVERSE-SPIN
ASYMMETRY

Using the parameters obtained from the fit we can plot the results for the fragmentation functions D1,ll, H<)
1,ot, and

D1,ol. The function D1,ll is a pure p-wave function. It depends on |F p|2, the modulus square of Eq. (28), and has
a behavior very similar to Dp

1,oo, the p-wave part of D1,oo. In Fig. 5 (a) we plot the ratio between D1,ll and D1,oo,
integrated separately over 0.2 < z < 0.8. In Fig. 5 (b) we plot the same ratio but with the two functions multiplied
by 2Mh and integrated over 0.3 GeV < Mh < 1.3 GeV. In the same figures, the dotted lines represent the positivity
bound [55]

−
3

2
Dp

1,oo ≤ D1,ll ≤ 3Dp
1,oo. (36)

The functions D1,ol and H<)
1,ot arise from the interference of s and p waves, i.e. from the interferences of channels 1-2,

1-3, and 1-4, proportional to the product (fs fρ), (fs fω), (fs f ′
ω), respectively. Since the relative sign of fs and the

p-wave couplings is not fixed by the fit, we can only predict these functions modulo a sign. For the plots, we assume
that the p-wave couplings have a sign opposite to fs (as suggested by the sign of preliminary HERMES data [48]).

In Fig. 6 (a) we plot the ratio between −|R⃗|/Mh H<)
1,ot and D1,oo, integrated separately over 0.2 < z < 0.8. In Fig. 6

(b) we plot the same ratio but with the two functions multiplied by 2Mh and integrated over 0.3 GeV < Mh < 1.3 GeV.
In the same figures, the dotted lines represent the positivity bound [55]

|R⃗|
Mh

H<)
1,ot ≤

√

3

8
Ds

1,oo

(

Dp
1,oo −

1

3
D1,ll

)

. (37)

As is evident, there are two main contributions:

• the interference between channel 1 (s-wave background) and the imaginary part of 2 (ρ resonance), with a shape
peaked at the ρ mass, i.e. roughly proportional to the imaginary part of the ρ resonance in Eq. (28);
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Experiments
SSA: HERMES, COMPASS. 

IFFs: BELLE.
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will identify a SSA where the transversity distribution ap-
pears in connection with a s-p IFF, and a SSA where the
transversity is connected to a pure p-wave IFF. These two
asymmetries are completely distinct; they could have differ-
ent physical origins and different magnitudes.
In Sec. IV we complete our analysis by including the

intrinsic partonic transverse momentum and k!T-unintegrated
fragmentation functions. Also in this case, in Sec. V we will
present positivity bounds and will carry out the partial wave
expansion. The results for the complete cross section for all
combinations of beam and target polarizations are listed in
Appendixes A and C. Finally, some conclusions are drawn in
Sec. VI.

II. TWO-PARTICLE INCLUSIVE DEEP INELASTIC
SCATTERING

In the following we will describe the kinematics and the
details of the semi-inclusive production of two unpolarized
hadrons in the context of the SIDIS process. However, we
point out that the involved fragmentation functions can be
used also in the case of reactions with a hadronic probe or in
e!e" annihilation !14,15".

A. Kinematics and hadronic tensor

The process is schematically depicted in Fig. 1. An elec-
tron with momentum l scatters off a target nucleon with mass

M, polarization S, and momentum P via the exchange of a
virtual hard photon with momentum q#l"l! (q2#"Q2).
Inside the target, the photon hits a quark with momentum p,
changing its momentum to k#p!q . The quark then frag-
ments into a residual jet and two leading unpolarized hadrons
with masses M 1 ,M 2 , and momenta P1 and P2. We intro-
duce the vectors Ph#P1!P2 and R#(P1"P2)/2. We de-
scribe a 4-vector a as !a",a!,a! T" , i.e., in terms of its light-
cone components a$#(a0$a3)/!2 and the bidimensional
vector a! T . It is convenient to choose the ẑ axis according to
the condition P! T#P! hT#0. In this case, the virtual photon
has a nonvanishing transverse momentum q! T . However, it is
also customary to align the ẑ axis opposite to the direction of
the virtual photon, in which case the outgoing hadron has a
nonvanishing transverse momentum P! h!#"zq! T . These two
directions overlap up to corrections of order 1/Q , which we
will systematically neglect in the following. The y axis is
chosen to point in the direction of the vector product ("q!
% l!!) !22" #see Fig. 2$.
We define the variables x#p!/P!, which represents the

light-cone fraction of target momentum carried by the initial
quark, and z#Ph

"/k", the light-cone fraction of fragmenting
quark momentum carried by the final hadron pair. Analo-
gously, we define the light-cone fraction %#2R"/Ph

" , which
describes how the total momentum of the hadron pair is split
into the two single hadrons.2 The relevant momenta can be
parametrized as

P&#! M 2

2P!
,P!,0! " ,

p&#! p2!p! T
2

2xP!
,xP!,p! T" ,

k&#!Ph
"

z ,
z#k2!k!T

2 $

2Ph
"

,k!T" , #1$

2Note that "1'%'1, and %#2("1, with ( defined in Ref. !3".

FIG. 1. The usual quark handbag diagram
contributing at leading twist to the semi-inclusive
DIS into two leading hadrons: #a$ hadron and par-
ton momenta are shown, in particular the total
momentum Ph#P1!P2 and relative momentum
R#(P1"P2)/2 of the two-hadron system; #b$
target helicity, parton chirality, and two-hadron
partial wave indices are shown.

FIG. 2. Kinematics for the SIDIS of the lepton l on a trans-
versely polarized target leading to two hadrons inside the same
current jet.

A. BACCHETTA AND M. RADICI PHYSICAL REVIEW D 67, 094002 #2003$
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Moments of DiFFs in SIDIS

• Here transversely polarised DiFFs are admixture of cos Fourier 
moments of both unintegrated DiFFs:

H^
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2
H) =

h
H

^[0]
1 +H

?[1]
1

i

H?
1,SIDIS(z,M

2
H) =

h
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1 +H
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1

i

A. Bacchetta, M. Radici: PRD 69, 074026 (2004).

• Generated by                 dependences of unintegrated DiFFs:
'RK ⌘ 'R � 'k

cos('RK)
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Back-to-back two hadron pairs in e+e-
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• Can access both helicity and transverse pol. dependent DiFFs:

G1
!!z ,Mh

2"#! d$! d%R! dkTkT•RT
!G1

!!z ,$ ,kT
2 ,RT

2 ,kT•RT", !1"

where RT is the transverse part of the relative momentum
between the two hadrons and kT is the quark transverse mo-
mentum !see Sec. II for explicit definitions of the above
quantities". This function is related !but not identical" to lon-
gitudinal jet handedness and its resulting asymmetry will be
discussed in detail below !see Sec. V".
The asymmetry involving the transverse momentum inte-

grated chiral-odd IFF H1
" has already been studied in a dif-

ferent !less common" notation in a paper by Artru and Col-
lins &9'. It is the asymmetry of present-day experimental
interest regarding transversity. The extraction of H1

" from the
process e"e#→(h1h2)( h̄1h̄2)X is the goal of a group &10'
that will analyze the off-resonance data from the BELLE
experiment at KEK. In the present article, we provide for a
procedure of integrating and properly weighting the fully
differential cross section to single out the relevant asymme-
try. The extracted IFF will be of use to several ongoing or
starting experiments aiming to measure transversity in the
processes ep↑→(h1h2)X !HERMES, COMPASS" and pp↑

→(h1h2)X !RHIC &10'".
However, the asymmetry involving G1

! also seems of ex-
perimental interest. It can be viewed as the chiral-even coun-
terpart of the Artru-Collins asymmetry. An analogous asym-
metry involving chiral-even fragmentation functions does
not emerge when only one hadron is detected in each jet; this
asymmetry is thus particular to the multi-hadron fragmenta-
tion case. But it can also be viewed as an asymmetry arising
from a correlation between longitudinal jet handedness func-
tions. As such it is relevant for single spin asymmetries with
longitudinally polarized protons, ep!→(h1h2)X and pp!
→(h1h2)X , which are proportional to the well-known quark
helicity distribution function g1 &cf., e.g., Eq. !31" of Ref.
&3''. Since g1 is known to considerable accuracy, one can
extract G1

! from ep!→(h1h2)X and actually predict our lon-
gitudinal jet handedness correlation in e"e#

→(h1h2)( h̄1h̄2)X , i.e. the expression given below in Eq.
!38". Any experimental deviation may be related to a CP-
violating effect of the QCD vacuum &11'.
The function G1

! is also relevant for the studies of IFFs in
the processes ep↑→(h1h2)X and pp↑→(h1h2)X . There,
next to the asymmetry proportional to the transversity func-
tion, another G1

! dependent asymmetry &7' occurs, which is
proportional to the transverse momentum dependent distribu-
tion function g1T &12'. This function !extrapolated to x$0)
gives information on violations of the Burkhardt-Cottingham
sum rule. Apart from the intrinsic interest in such an asym-
metry, it also shows the need for appropriate weight func-
tions to separate the asymmetry proportional to g1TG1

! from
the asymmetries proportional to h1H1

" and h1H1
! !where h1

denotes the transversity function".
The other results presented below, i.e. the other terms

arising in the fully differential e"e# cross section, may also

be of interest in the future and the notation used here hope-
fully will facilitate communication between different experi-
mental groups planning or performing two-hadron IFF-
related studies for different processes.
The paper is organized as follows. In Sec. II we first dis-

cuss the kinematics of the process e"e#→(h1h2)( h̄1h̄2)X .
In Sec. III we present the cross section in terms of the inter-
ference fragmentation functions. Next, we investigate exten-
sively the Artru-Collins azimuthal asymmetry !Sec. IV" and
the newly found longitudinal jet handedness asymmetry
!Sec. V". During the discussion of these two asymmetries in
e"e#→(h1h2)( h̄1h̄2)X we also remark on corresponding
asymmetries in two-hadron inclusive deep inelastic scatter-
ing !DIS" involving the same IFFs to facilitate comparison.
We end with conclusions !Sec. VI".

II. KINEMATICS

We will consider the process e"e#→(h1h2)( h̄1h̄2)X ,
schematically depicted in Fig. 1. An electron and a positron
with momenta l and l!, respectively, annihilate into a photon
with timelike momentum q$l"l! and q2$Q2. A quark and
an antiquark are then emitted and fragment each one into a
residual jet and a pair of leading unpolarized hadrons
(h1 ,h2) with momenta P1 ,P2, and masses M 1 ,M 2 &for the
antiquark we have the corresponding notation ( h̄1 , h̄2) with
momenta P̄1 , P̄2 and masses M̄ 1 ,M̄ 2]. We introduce the vec-
tors Ph$P1"P2 , R$(P1#P2)/2, and P̄h$ P̄1" P̄2 , R̄
$( P̄1# P̄2)/2. The two jets are emitted in opposite direc-
tions; therefore, Ph• P̄h(Q2. We can parametrize the mo-
menta as &13'

Ph
)$

zhQ
!2

n#
) "

Mh
2

zhQ!2
n"

) (
zhQ
!2

n#
) ,

P̄h
)$

z̄hQ
!2

n"
) "

M̄ h
2

z̄hQ!2
n#

) (
z̄hQ
!2

n"
) ,

q)$
Q
!2

n#
) "

Q
!2

n"
) "qT

) , !2"

where #qT
2#QT

2%Q2, and n" ,n# are light-like vectors sat-
isfying n"

2 $n#
2 $0 and n"•n#$1. The approximations in

Eq. !2" of neglecting hadron masses with respect to Q2 does

FIG. 1. Kinematics for the e"e#→(h1h2)( h̄1h̄2)X process.

BOER, JAKOB, AND RADICI PHYSICAL REVIEW D 67, 094003 !2003"

094003-2

D. Boer et al: PRD 67, 094003 (2003).
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B. Fully differential cross section

For the case of the e!e" annihilation into four unpolar-
ized !or spinless" hadrons with two leading hadrons in each

current jet !see Fig. 2 for a diagrammatic representation at
leading order", the differential cross section at leading order
in 1/Q and #s is !including now summation over flavor in-
dices with quark charges ea in units of e)

d$!e!e"→!h1h2"! h̄1h̄2"X "

dqTdzd%dMh
2d&Rdz̄d %̄dM̄h

2d& R̄dyd& l

#'
a , ā

ea
2 6#2

Q2 z
2z̄ 2! A!y "F(D1

aD̄1
a)!cos!2&1"B!y "F " !2ĥ•kTĥ• k̄T"kT• k̄T"

H1
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!M 1!M 2"!M̄ 1!M̄ 2"
#

"sin!2&1"B!y "F " ! ĥ•kTĝ• k̄T!ĥ• k̄Tĝ•kT"
H1

!aH̄1
!a

!M 1!M 2"!M̄ 1!M̄ 2"
#!cos!&R!& R̄"2& l"

$B!y "$RT$$R̄T$F " H1
"aH̄1

"a

!M 1!M 2"!M̄ 1!M̄ 2"
#!cos!&1!&R"& l"B!y "$RT$F " ĥ• k̄T H1

"aH̄1
!a

!M 1!M 2"!M̄ 1!M̄ 2"
#

"sin!&1!&R"& l"B!y "$RT$F" ĝ• k̄T H1
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!aH̄1
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#!A!y "$RT$$R̄T$
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$F " ĥ•kTĝ• k̄T G1
!aḠ1
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M 1M 2M̄ 1M̄ 2
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where the convolution F is defined as

F (w!kT , k̄T"DaD̄a)*( dkTd k̄T+2! k̄T!kT"qT"w!kT , k̄T"Da!z ,% ,kT
2 ,RT

2 ,kT•RT"D̄a! z̄ , %̄ , k̄ T
2 ,R̄T

2 , k̄T•R̄T". !20"

The azimuthal dependence is dictated by the fact that any information about the azimuthal asymmetry of the distribution of
the four hadrons must be encoded by the relative position of RT and R̄T with respect to the lepton frame, i.e. by the &R
"& l and & R̄"& l angles, respectively, and by the azimuthal position of the lepton frame itself.

IV. ARTRU-COLLINS AZIMUTHAL ASYMMETRY

In this section, we will obtain an azimuthal asymmetry in the distribution of the four hadrons that arises only due to the
transverse relative momenta of each pair, i.e. only due to the relative position of each pair plane with respect to the lepton
plane !see Fig. 1". For this purpose, the cross section of Eq. !19" must be properly weighted and its dependence on the intrinsic
transverse momenta of the quarks integrated out. We present the procedure in considerable detail, since this will form a crucial
aspect of a practical analysis of experimental data. We will show that only H1

" survives the integration, which is the same
fragmentation function appearing in the single-spin asymmetry that can be built at leading twist in the case of two-hadron
inclusive DIS (5–7). Therefore, under the hypothesis of factorization !collinear factorization in this particular case", the
combined analysis of the two semi-inclusive processes allows us in principle to deduce the fragmentation function from e!e"

and then disentangle the transversity distribution in the corresponding DIS cross section at leading twist.
We define the asymmetry
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!G1
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where RT is the transverse part of the relative momentum
between the two hadrons and kT is the quark transverse mo-
mentum !see Sec. II for explicit definitions of the above
quantities". This function is related !but not identical" to lon-
gitudinal jet handedness and its resulting asymmetry will be
discussed in detail below !see Sec. V".
The asymmetry involving the transverse momentum inte-

grated chiral-odd IFF H1
" has already been studied in a dif-

ferent !less common" notation in a paper by Artru and Col-
lins &9'. It is the asymmetry of present-day experimental
interest regarding transversity. The extraction of H1

" from the
process e"e#→(h1h2)( h̄1h̄2)X is the goal of a group &10'
that will analyze the off-resonance data from the BELLE
experiment at KEK. In the present article, we provide for a
procedure of integrating and properly weighting the fully
differential cross section to single out the relevant asymme-
try. The extracted IFF will be of use to several ongoing or
starting experiments aiming to measure transversity in the
processes ep↑→(h1h2)X !HERMES, COMPASS" and pp↑

→(h1h2)X !RHIC &10'".
However, the asymmetry involving G1

! also seems of ex-
perimental interest. It can be viewed as the chiral-even coun-
terpart of the Artru-Collins asymmetry. An analogous asym-
metry involving chiral-even fragmentation functions does
not emerge when only one hadron is detected in each jet; this
asymmetry is thus particular to the multi-hadron fragmenta-
tion case. But it can also be viewed as an asymmetry arising
from a correlation between longitudinal jet handedness func-
tions. As such it is relevant for single spin asymmetries with
longitudinally polarized protons, ep!→(h1h2)X and pp!
→(h1h2)X , which are proportional to the well-known quark
helicity distribution function g1 &cf., e.g., Eq. !31" of Ref.
&3''. Since g1 is known to considerable accuracy, one can
extract G1

! from ep!→(h1h2)X and actually predict our lon-
gitudinal jet handedness correlation in e"e#

→(h1h2)( h̄1h̄2)X , i.e. the expression given below in Eq.
!38". Any experimental deviation may be related to a CP-
violating effect of the QCD vacuum &11'.
The function G1

! is also relevant for the studies of IFFs in
the processes ep↑→(h1h2)X and pp↑→(h1h2)X . There,
next to the asymmetry proportional to the transversity func-
tion, another G1

! dependent asymmetry &7' occurs, which is
proportional to the transverse momentum dependent distribu-
tion function g1T &12'. This function !extrapolated to x$0)
gives information on violations of the Burkhardt-Cottingham
sum rule. Apart from the intrinsic interest in such an asym-
metry, it also shows the need for appropriate weight func-
tions to separate the asymmetry proportional to g1TG1

! from
the asymmetries proportional to h1H1

" and h1H1
! !where h1

denotes the transversity function".
The other results presented below, i.e. the other terms

arising in the fully differential e"e# cross section, may also

be of interest in the future and the notation used here hope-
fully will facilitate communication between different experi-
mental groups planning or performing two-hadron IFF-
related studies for different processes.
The paper is organized as follows. In Sec. II we first dis-

cuss the kinematics of the process e"e#→(h1h2)( h̄1h̄2)X .
In Sec. III we present the cross section in terms of the inter-
ference fragmentation functions. Next, we investigate exten-
sively the Artru-Collins azimuthal asymmetry !Sec. IV" and
the newly found longitudinal jet handedness asymmetry
!Sec. V". During the discussion of these two asymmetries in
e"e#→(h1h2)( h̄1h̄2)X we also remark on corresponding
asymmetries in two-hadron inclusive deep inelastic scatter-
ing !DIS" involving the same IFFs to facilitate comparison.
We end with conclusions !Sec. VI".

II. KINEMATICS

We will consider the process e"e#→(h1h2)( h̄1h̄2)X ,
schematically depicted in Fig. 1. An electron and a positron
with momenta l and l!, respectively, annihilate into a photon
with timelike momentum q$l"l! and q2$Q2. A quark and
an antiquark are then emitted and fragment each one into a
residual jet and a pair of leading unpolarized hadrons
(h1 ,h2) with momenta P1 ,P2, and masses M 1 ,M 2 &for the
antiquark we have the corresponding notation ( h̄1 , h̄2) with
momenta P̄1 , P̄2 and masses M̄ 1 ,M̄ 2]. We introduce the vec-
tors Ph$P1"P2 , R$(P1#P2)/2, and P̄h$ P̄1" P̄2 , R̄
$( P̄1# P̄2)/2. The two jets are emitted in opposite direc-
tions; therefore, Ph• P̄h(Q2. We can parametrize the mo-
menta as &13'

Ph
)$

zhQ
!2

n#
) "

Mh
2

zhQ!2
n"

) (
zhQ
!2

n#
) ,

P̄h
)$

z̄hQ
!2

n"
) "

M̄ h
2

z̄hQ!2
n#

) (
z̄hQ
!2

n"
) ,

q)$
Q
!2

n#
) "

Q
!2

n"
) "qT

) , !2"

where #qT
2#QT

2%Q2, and n" ,n# are light-like vectors sat-
isfying n"

2 $n#
2 $0 and n"•n#$1. The approximations in

Eq. !2" of neglecting hadron masses with respect to Q2 does

FIG. 1. Kinematics for the e"e#→(h1h2)( h̄1h̄2)X process.
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Figure 2: Results for Acos(2(FR1�FR2 )) binned in M and z. The black error bars are statistical and the green
bands show the systematic uncertainty.

measured which are thought to be sensitive to the helicity dependent fragmentation function G?
1 .

This function is supposed to vanish in the absence of helicity dependent correlations of the in-
trinsic transverse momentum in the fragmentation process with momentum difference of hadrons
in the pair. Therefore, the existence of this function might be interpreted as a validation of the
so-called TMD framework which forms the base for the theoretical interpretation of a large class
of transverse spin phenomena [21]. However, within the experimental uncertainties no signal is
observed at Belle. In addition to ongoing analysis on the Belle dataset, an upgraded experiment,
Belle-II is currently under construction with the plan to use an upgraded KEKB storage ring, then
called Super-KEKB, to sample about 40 times the luminosity compared to Belle [22]. For the frag-
mentation function program in particular the upgraded particle identification capabilities and the
improved vertex resolution are of importance to select multi-kaon final states and effectively isolate
contributions from charm production. In addition, the hermiticity of the detector as well as energy
and momentum resolution will be improved. Together with the improved capability to reconstruct
low momentum tracks, this will help increase the precision of future measurements of observables
related to the extraction of fragmentation functions.
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circles – neutral B meson pairs and squares – τ pairs.

TABLE II: Integrated asymmetries for the two reconstruction methods and their average kinematics.

⟨z1⟩, ⟨z2⟩ 0.4313
⟨m1⟩, ⟨m2⟩ 0.6186 GeV/c2

⟨sin2 θt/(1 + cos2 θt)⟩ 0.7636
⟨sin θ1d⟩, ⟨sin θ2d⟩ 0.9246
⟨cos θ1d⟩, ⟨cos θ2d⟩ 0.0013

a12 −0.0196 ± 0.0002(stat.) ± 0.0022(syst.)
a12R −0.0179 ± 0.0002(stat.) ± 0.0021(syst.)
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Summary: Large azimuthal asymmetries for two π+π− pairs in opposite hemispheres were extracted from a 672
fb−1 data sample. The asymmetries monotonically decrease as a function of z1,2 and m1,2 and no sign change is
observed in contrast to [18]. The interference fragmentation function can be extracted from those asymmetries and
used in a global fit to the SIDIS data [9, 10] to obtain the transversity distribution function.
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where RT is the transverse part of the relative momentum
between the two hadrons and kT is the quark transverse mo-
mentum !see Sec. II for explicit definitions of the above
quantities". This function is related !but not identical" to lon-
gitudinal jet handedness and its resulting asymmetry will be
discussed in detail below !see Sec. V".
The asymmetry involving the transverse momentum inte-

grated chiral-odd IFF H1
" has already been studied in a dif-

ferent !less common" notation in a paper by Artru and Col-
lins &9'. It is the asymmetry of present-day experimental
interest regarding transversity. The extraction of H1

" from the
process e"e#→(h1h2)( h̄1h̄2)X is the goal of a group &10'
that will analyze the off-resonance data from the BELLE
experiment at KEK. In the present article, we provide for a
procedure of integrating and properly weighting the fully
differential cross section to single out the relevant asymme-
try. The extracted IFF will be of use to several ongoing or
starting experiments aiming to measure transversity in the
processes ep↑→(h1h2)X !HERMES, COMPASS" and pp↑

→(h1h2)X !RHIC &10'".
However, the asymmetry involving G1

! also seems of ex-
perimental interest. It can be viewed as the chiral-even coun-
terpart of the Artru-Collins asymmetry. An analogous asym-
metry involving chiral-even fragmentation functions does
not emerge when only one hadron is detected in each jet; this
asymmetry is thus particular to the multi-hadron fragmenta-
tion case. But it can also be viewed as an asymmetry arising
from a correlation between longitudinal jet handedness func-
tions. As such it is relevant for single spin asymmetries with
longitudinally polarized protons, ep!→(h1h2)X and pp!
→(h1h2)X , which are proportional to the well-known quark
helicity distribution function g1 &cf., e.g., Eq. !31" of Ref.
&3''. Since g1 is known to considerable accuracy, one can
extract G1

! from ep!→(h1h2)X and actually predict our lon-
gitudinal jet handedness correlation in e"e#

→(h1h2)( h̄1h̄2)X , i.e. the expression given below in Eq.
!38". Any experimental deviation may be related to a CP-
violating effect of the QCD vacuum &11'.
The function G1

! is also relevant for the studies of IFFs in
the processes ep↑→(h1h2)X and pp↑→(h1h2)X . There,
next to the asymmetry proportional to the transversity func-
tion, another G1

! dependent asymmetry &7' occurs, which is
proportional to the transverse momentum dependent distribu-
tion function g1T &12'. This function !extrapolated to x$0)
gives information on violations of the Burkhardt-Cottingham
sum rule. Apart from the intrinsic interest in such an asym-
metry, it also shows the need for appropriate weight func-
tions to separate the asymmetry proportional to g1TG1

! from
the asymmetries proportional to h1H1

" and h1H1
! !where h1

denotes the transversity function".
The other results presented below, i.e. the other terms

arising in the fully differential e"e# cross section, may also

be of interest in the future and the notation used here hope-
fully will facilitate communication between different experi-
mental groups planning or performing two-hadron IFF-
related studies for different processes.
The paper is organized as follows. In Sec. II we first dis-

cuss the kinematics of the process e"e#→(h1h2)( h̄1h̄2)X .
In Sec. III we present the cross section in terms of the inter-
ference fragmentation functions. Next, we investigate exten-
sively the Artru-Collins azimuthal asymmetry !Sec. IV" and
the newly found longitudinal jet handedness asymmetry
!Sec. V". During the discussion of these two asymmetries in
e"e#→(h1h2)( h̄1h̄2)X we also remark on corresponding
asymmetries in two-hadron inclusive deep inelastic scatter-
ing !DIS" involving the same IFFs to facilitate comparison.
We end with conclusions !Sec. VI".

II. KINEMATICS

We will consider the process e"e#→(h1h2)( h̄1h̄2)X ,
schematically depicted in Fig. 1. An electron and a positron
with momenta l and l!, respectively, annihilate into a photon
with timelike momentum q$l"l! and q2$Q2. A quark and
an antiquark are then emitted and fragment each one into a
residual jet and a pair of leading unpolarized hadrons
(h1 ,h2) with momenta P1 ,P2, and masses M 1 ,M 2 &for the
antiquark we have the corresponding notation ( h̄1 , h̄2) with
momenta P̄1 , P̄2 and masses M̄ 1 ,M̄ 2]. We introduce the vec-
tors Ph$P1"P2 , R$(P1#P2)/2, and P̄h$ P̄1" P̄2 , R̄
$( P̄1# P̄2)/2. The two jets are emitted in opposite direc-
tions; therefore, Ph• P̄h(Q2. We can parametrize the mo-
menta as &13'
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2 $0 and n"•n#$1. The approximations in

Eq. !2" of neglecting hadron masses with respect to Q2 does

FIG. 1. Kinematics for the e"e#→(h1h2)( h̄1h̄2)X process.
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Figure 2: Results for Acos(2(FR1�FR2 )) binned in M and z. The black error bars are statistical and the green
bands show the systematic uncertainty.

measured which are thought to be sensitive to the helicity dependent fragmentation function G?
1 .

This function is supposed to vanish in the absence of helicity dependent correlations of the in-
trinsic transverse momentum in the fragmentation process with momentum difference of hadrons
in the pair. Therefore, the existence of this function might be interpreted as a validation of the
so-called TMD framework which forms the base for the theoretical interpretation of a large class
of transverse spin phenomena [21]. However, within the experimental uncertainties no signal is
observed at Belle. In addition to ongoing analysis on the Belle dataset, an upgraded experiment,
Belle-II is currently under construction with the plan to use an upgraded KEKB storage ring, then
called Super-KEKB, to sample about 40 times the luminosity compared to Belle [22]. For the frag-
mentation function program in particular the upgraded particle identification capabilities and the
improved vertex resolution are of importance to select multi-kaon final states and effectively isolate
contributions from charm production. In addition, the hermiticity of the detector as well as energy
and momentum resolution will be improved. Together with the improved capability to reconstruct
low momentum tracks, this will help increase the precision of future measurements of observables
related to the extraction of fragmentation functions.
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TABLE II: Integrated asymmetries for the two reconstruction methods and their average kinematics.

⟨z1⟩, ⟨z2⟩ 0.4313
⟨m1⟩, ⟨m2⟩ 0.6186 GeV/c2

⟨sin2 θt/(1 + cos2 θt)⟩ 0.7636
⟨sin θ1d⟩, ⟨sin θ2d⟩ 0.9246
⟨cos θ1d⟩, ⟨cos θ2d⟩ 0.0013

a12 −0.0196 ± 0.0002(stat.) ± 0.0022(syst.)
a12R −0.0179 ± 0.0002(stat.) ± 0.0021(syst.)
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FIG. 3: a12 modulations for the 9 × 9 z1, z2 binning as a function of z1 for the z2 bins. The shaded (green) areas correspond
to the systematic uncertainties.

Summary: Large azimuthal asymmetries for two π+π− pairs in opposite hemispheres were extracted from a 672
fb−1 data sample. The asymmetries monotonically decrease as a function of z1,2 and m1,2 and no sign change is
observed in contrast to [18]. The interference fragmentation function can be extracted from those asymmetries and
used in a global fit to the SIDIS data [9, 10] to obtain the transversity distribution function.
We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid

operations, and the KEK computer group and the NII for valuable computing and SINET3 network support. We
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How to resolve these?

 13

Revised Formulation of Double-Line Notation Controversy With Double-Line?

What to Do?

Quote from Anatoly Radyushkin:

‘‘I am old enough to know that if something is published, it is not
necessarily correct”

( Nuclear Theory Center, IU and Thomas Jefferson National Accelerator Facility )1/Nc Expansion in QCD Argonne - October 5-6, 2007 8 / 1



Re-derived e+e- Cross Section
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• An error in kinematics was found:

• The new fully differential cross-section expression:

OLD NEW

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).
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• An error in kinematics was found:

• The new fully differential cross-section expression:

OLD NEW

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).



IFFs in e+e- and SIDIS.

 15

• The asymmetry now involves exactly the same integrated IFF 
as in SIDIS!

• All the previous extractions of the transversity are valid !

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

✦ All the previous extractions of the transversity are valid !
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Figure 2: Results for Acos(2(FR1�FR2 )) binned in M and z. The black error bars are statistical and the green
bands show the systematic uncertainty.

measured which are thought to be sensitive to the helicity dependent fragmentation function G?
1 .

This function is supposed to vanish in the absence of helicity dependent correlations of the in-
trinsic transverse momentum in the fragmentation process with momentum difference of hadrons
in the pair. Therefore, the existence of this function might be interpreted as a validation of the
so-called TMD framework which forms the base for the theoretical interpretation of a large class
of transverse spin phenomena [21]. However, within the experimental uncertainties no signal is
observed at Belle. In addition to ongoing analysis on the Belle dataset, an upgraded experiment,
Belle-II is currently under construction with the plan to use an upgraded KEKB storage ring, then
called Super-KEKB, to sample about 40 times the luminosity compared to Belle [22]. For the frag-
mentation function program in particular the upgraded particle identification capabilities and the
improved vertex resolution are of importance to select multi-kaon final states and effectively isolate
contributions from charm production. In addition, the hermiticity of the detector as well as energy
and momentum resolution will be improved. Together with the improved capability to reconstruct
low momentum tracks, this will help increase the precision of future measurements of observables
related to the extraction of fragmentation functions.
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Helicity-dependent DiFF in e+e-
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H.M. , Kotzinian, Thomas:  arXiv:1712.06384.

• The old asymmetry by Boer et. al. exactly vanishes!  
• Explains the BELLE results.

• The relevant terms involving      :

• Note: any azimuthal moment involving only              is zero. 

Using:                          ,                            

Break-up the convolution: decouple kT on 
both sides



New way to access      DiFF in e+e-
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• A new asymmetry to access 

• The relevant terms involving      :

• Need a qT -weighted asymmetry to get non-zero result 

H.M. , Kotzinian, Thomas:  arXiv:1712.06384.
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• A new asymmetry to access 

• The relevant terms involving      :

• Need a qT -weighted asymmetry to get non-zero result 
additional

H.M. , Kotzinian, Thomas:  arXiv:1712.06384.
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New way to access      DiFF in SIDIS

will identify a SSA where the transversity distribution ap-
pears in connection with a s-p IFF, and a SSA where the
transversity is connected to a pure p-wave IFF. These two
asymmetries are completely distinct; they could have differ-
ent physical origins and different magnitudes.
In Sec. IV we complete our analysis by including the

intrinsic partonic transverse momentum and k!T-unintegrated
fragmentation functions. Also in this case, in Sec. V we will
present positivity bounds and will carry out the partial wave
expansion. The results for the complete cross section for all
combinations of beam and target polarizations are listed in
Appendixes A and C. Finally, some conclusions are drawn in
Sec. VI.

II. TWO-PARTICLE INCLUSIVE DEEP INELASTIC
SCATTERING

In the following we will describe the kinematics and the
details of the semi-inclusive production of two unpolarized
hadrons in the context of the SIDIS process. However, we
point out that the involved fragmentation functions can be
used also in the case of reactions with a hadronic probe or in
e!e" annihilation !14,15".

A. Kinematics and hadronic tensor

The process is schematically depicted in Fig. 1. An elec-
tron with momentum l scatters off a target nucleon with mass

M, polarization S, and momentum P via the exchange of a
virtual hard photon with momentum q#l"l! (q2#"Q2).
Inside the target, the photon hits a quark with momentum p,
changing its momentum to k#p!q . The quark then frag-
ments into a residual jet and two leading unpolarized hadrons
with masses M 1 ,M 2 , and momenta P1 and P2. We intro-
duce the vectors Ph#P1!P2 and R#(P1"P2)/2. We de-
scribe a 4-vector a as !a",a!,a! T" , i.e., in terms of its light-
cone components a$#(a0$a3)/!2 and the bidimensional
vector a! T . It is convenient to choose the ẑ axis according to
the condition P! T#P! hT#0. In this case, the virtual photon
has a nonvanishing transverse momentum q! T . However, it is
also customary to align the ẑ axis opposite to the direction of
the virtual photon, in which case the outgoing hadron has a
nonvanishing transverse momentum P! h!#"zq! T . These two
directions overlap up to corrections of order 1/Q , which we
will systematically neglect in the following. The y axis is
chosen to point in the direction of the vector product ("q!
% l!!) !22" #see Fig. 2$.
We define the variables x#p!/P!, which represents the

light-cone fraction of target momentum carried by the initial
quark, and z#Ph

"/k", the light-cone fraction of fragmenting
quark momentum carried by the final hadron pair. Analo-
gously, we define the light-cone fraction %#2R"/Ph

" , which
describes how the total momentum of the hadron pair is split
into the two single hadrons.2 The relevant momenta can be
parametrized as

P&#! M 2

2P!
,P!,0! " ,

p&#! p2!p! T
2

2xP!
,xP!,p! T" ,

k&#!Ph
"

z ,
z#k2!k!T

2 $

2Ph
"

,k!T" , #1$

2Note that "1'%'1, and %#2("1, with ( defined in Ref. !3".

FIG. 1. The usual quark handbag diagram
contributing at leading twist to the semi-inclusive
DIS into two leading hadrons: #a$ hadron and par-
ton momenta are shown, in particular the total
momentum Ph#P1!P2 and relative momentum
R#(P1"P2)/2 of the two-hadron system; #b$
target helicity, parton chirality, and two-hadron
partial wave indices are shown.

FIG. 2. Kinematics for the SIDIS of the lepton l on a trans-
versely polarized target leading to two hadrons inside the same
current jet.

A. BACCHETTA AND M. RADICI PHYSICAL REVIEW D 67, 094002 #2003$

094002-2
• Weighted moment accesses same      as in e+e- .

H.M. , Kotzinian, Thomas:  arXiv:1712.06384.

• The relevant terms involving      :
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New way to access      DiFF in SIDIS: II

will identify a SSA where the transversity distribution ap-
pears in connection with a s-p IFF, and a SSA where the
transversity is connected to a pure p-wave IFF. These two
asymmetries are completely distinct; they could have differ-
ent physical origins and different magnitudes.
In Sec. IV we complete our analysis by including the

intrinsic partonic transverse momentum and k!T-unintegrated
fragmentation functions. Also in this case, in Sec. V we will
present positivity bounds and will carry out the partial wave
expansion. The results for the complete cross section for all
combinations of beam and target polarizations are listed in
Appendixes A and C. Finally, some conclusions are drawn in
Sec. VI.

II. TWO-PARTICLE INCLUSIVE DEEP INELASTIC
SCATTERING

In the following we will describe the kinematics and the
details of the semi-inclusive production of two unpolarized
hadrons in the context of the SIDIS process. However, we
point out that the involved fragmentation functions can be
used also in the case of reactions with a hadronic probe or in
e!e" annihilation !14,15".

A. Kinematics and hadronic tensor

The process is schematically depicted in Fig. 1. An elec-
tron with momentum l scatters off a target nucleon with mass

M, polarization S, and momentum P via the exchange of a
virtual hard photon with momentum q#l"l! (q2#"Q2).
Inside the target, the photon hits a quark with momentum p,
changing its momentum to k#p!q . The quark then frag-
ments into a residual jet and two leading unpolarized hadrons
with masses M 1 ,M 2 , and momenta P1 and P2. We intro-
duce the vectors Ph#P1!P2 and R#(P1"P2)/2. We de-
scribe a 4-vector a as !a",a!,a! T" , i.e., in terms of its light-
cone components a$#(a0$a3)/!2 and the bidimensional
vector a! T . It is convenient to choose the ẑ axis according to
the condition P! T#P! hT#0. In this case, the virtual photon
has a nonvanishing transverse momentum q! T . However, it is
also customary to align the ẑ axis opposite to the direction of
the virtual photon, in which case the outgoing hadron has a
nonvanishing transverse momentum P! h!#"zq! T . These two
directions overlap up to corrections of order 1/Q , which we
will systematically neglect in the following. The y axis is
chosen to point in the direction of the vector product ("q!
% l!!) !22" #see Fig. 2$.
We define the variables x#p!/P!, which represents the

light-cone fraction of target momentum carried by the initial
quark, and z#Ph

"/k", the light-cone fraction of fragmenting
quark momentum carried by the final hadron pair. Analo-
gously, we define the light-cone fraction %#2R"/Ph

" , which
describes how the total momentum of the hadron pair is split
into the two single hadrons.2 The relevant momenta can be
parametrized as

P&#! M 2

2P!
,P!,0! " ,

p&#! p2!p! T
2

2xP!
,xP!,p! T" ,

k&#!Ph
"

z ,
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2Note that "1'%'1, and %#2("1, with ( defined in Ref. !3".

FIG. 1. The usual quark handbag diagram
contributing at leading twist to the semi-inclusive
DIS into two leading hadrons: #a$ hadron and par-
ton momenta are shown, in particular the total
momentum Ph#P1!P2 and relative momentum
R#(P1"P2)/2 of the two-hadron system; #b$
target helicity, parton chirality, and two-hadron
partial wave indices are shown.

FIG. 2. Kinematics for the SIDIS of the lepton l on a trans-
versely polarized target leading to two hadrons inside the same
current jet.

A. BACCHETTA AND M. RADICI PHYSICAL REVIEW D 67, 094002 #2003$

094002-2
• Weighted moment accesses same      as in e+e- .

Consider a polarized beam.

• The relevant terms involving      :



Helicity DiFFs at COMPASS
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‣ SIDIS extraction in COMPASS
3

III. DATA ANALYSIS

This work comprises the analysis of combined data,
obtained by scattering naturally polarized µ+ with a
nominal momentum of 160GeV/c during a dedicated
data taking in 2007, respectively of 200GeV/c in 2011,
o↵ a longitudinally polarized solid state NH

3

target. A
priori the Q2-evolution and the kinematic dependences
of the considered asymmetries are unknown. Still, from
general considerations, these kind of e↵ects are expected
to be small or negligible within experimental accuracy.
Hence, we find it reasonable to merge both data sets,
although di↵erent beam energies were used.

The standard COMPASS DIS cuts were applied. In
particular was the four-momentum transfer limited to
Q2 > 1 (GeV/c)2, the fractional energy transfer of the
muon set to 0.1 < y < 0.9 and the invariant mass of the
hadronic system required to beW > 5GeV/c2. To match
COMPASS kinematics, the Bjorken variable was limited
to 0.0025 < x < 0.7. Per selected event, all possible com-
binations of hadron pairs were included in the analysis.
The fractional energy for each hadron was required to
be z

1/2

> 0.1 and the Feynman variable x
F,1/2

> 0.1.
To further exclude exclusive events from the sample, the
missing energy

E
miss

=
(P + q � P

h

)2 � q2

2M
=

M2

X

�M2

2M
, (10)

was required to fulfill E
miss

> 3GeV. Here, M and
M

X

stand for the mass of the proton, respectively the
mass of the undetected recoiling system. Finally, a cut
R

T

> 0.07 was applied, to ensure the well-definition of
the corresponding hadronic plane, hence the angle �

R

.

A further remark should be given concerning the
polarization of the target. Since it is practically po-
larized along beam direction, there enters a transverse
spin contribution when considering the frame where the
z-axis points along the direction of the virtual photon. In
this analysis, this contribution of transverse polarization
components along the photon axis is neglected due to its
strong suppression in COMPASS kinematics.

All azimuthal asymmetries are extracted in bins of x,
z = z

1

+ z
2

and the invariant mass M
inv

, including a
correction per kinematic bin regarding the beam polar-
ization, the target polarization, the dilution of the target,
as well as for respective depolarization factors.

IV. RESULTS

Our results for the asymmetries arising at leading
twist are shown in Fig. 3 and Fig. 4, where the statistical
errors are represented by the error bars and the system-
atic uncertainties are indicated by color bands on the
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Figure 2. Measured integrated azimuthal asymmetries arising
in the di-hadron cross-section up to subleading twist, consid-
ering scattering o↵ longitudinally polarized protons. Shown
are the mean values when integrating over the entire kine-
matic range. The upper nine values correspond to asymme-
tries arising in a TMD approach at leading twist while the last
two refer to the asymmetries at subleading twist in a collinear
approach.

bottom of each plot. No eminent kinematic dependence
is observed on any of the considered variables. The
asymmetries are found to be quite narrowly distributed
around zero over the entire kinematic ranges.

Fig. 5 shows our results for the two asymmetries at

subleading twist. The single spin asymmetry A
sin(�R)

UL

is
found to be clearly positive within experimental preci-
sion, averaging

A
sin(�R)

UL

= 0.0050± 0.0010(stat)± 0.0007(sys). (11)

This measurement confirms non-zero results from CLAS,
measured in the high x-region. As already motivated in
Sec. II the presented results can serve to access the still
unknown PDF h

L

(x).

The double spin asymmetry A
cos(�R)

LL

was found to av-
erage

A
cos(�R)

LL

= �0.0135± 0.0064(stat)± 0.0046(sys). (12)

The fact, that this asymmetry is found to be small
within the experimental precision could consequently
corroborate the Wandzura-Wilzcek assumption of negli-
gible quark-gluon correlations on the fragmentation side,

✦                                are  convolutions of          and          !

‣Low <x> = 0.05 ! 
‣Limited statistics.



MODELLING 
DIHADRON FRAGMENTATION FUNCTIONS
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POLARIZATION IN QUARK-JET FRAMEWORK
✦ Extended quark-jet:

F q!Q(z,p?; s,0) = ↵s

F q!Q(z,p?; s,S) ⇠ Tr[⇢S
0
⇢S] ⇠ 1 + S0 · S

 22

Bentz, Kotzinian, H.M, Ninomiya, Thomas, Yazaki: PRD 94 034004 (2016).

F q!Q(z,p?; s,S) = ↵s + �s · S
‣ Intermediate quarks in quark-jet are unobserved!

‣The probability for the process            ,  initial spin    to    q ! Q s S

‣Remnant quark’s     uniquely determined by           and    !S0 z,p? s

‣Process probability is the same as transition to unpolarized state.

We need the induced final state spin    .S0

S0 =
�s

↵s



REMNANT QUARK’S POLARISATION

Q/q U L T
U
L
T

D1 H?
1

D?
1T

G1L

G1T

H?
1L

H?
1TH1T

F q!Q(z,p?; s,S)

 23

✦ We can express the spin of the remnant quark               
     in terms of quark-to-quark  TMD splittings.

↵q ⌘D(z,p2
?) + (p? ⇥ sT ) · ẑ

1

zM H?(z,p2
?)

�qk ⌘sL GL(z,p
2
?)� (p? · sT )

1

zMH?
L (z,p2

?)

�q? ⌘p0
?

1

z MD?
T (z,p

2
?)� p?

1

zMsLGT (z,p
2
?)

+ sT HT (z,p
2
?) + p?(p? · sT )

1

z2M2
H?

T (z,p2
?)

S0 =
�s

↵s

✦Input  Elementary Splitting Functions: Model or Parametrization!



MC SIMULATION OF FULL HADRONIZATION

✦ We can consider many hadron emissions.

✦ We only need the “elementary” splittings.

fq!h fq!Q

 24

✦ We can sample the                       usingh, z, p2?,'h

fq!h(z, p2?,'h;ST )

✦ Calculate the remnant quark’s spin:

✦ Determine the momenta in the initial frame and calculate

S0 =
�s

↵s

�N = hNh1h2
q (z, z +�z,','+�', ...)i

H.M., Kotzinian, Thomas: Phys. Rev. D95 04021, (2017)



Feasibility of new measurements of 
✦ The analysing powers of DiFFs from quark-jet framework.

‣       naturally smaller than      , but should be measurable!G?
1 H^

1

 25

u π+π -, NL =6
z1,2 ≥ 0.1

H!
1

H⊥
1
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1

R
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✦ Reanalyze BELLE  and COMPASS data. 
✦ Measure it at BELLE II and JLab 12GeV.

new 
definition

G?
1

Phys. Rev. D96 074010, (2017);  Phys. Rev. D97, 014019 (2018).



CONCLUSIONS

❖DiFFs provide information on the polarization of the fragmenting quark.

❖  Two problems appeared recently:

• Inconsistency of IFF definitions in SIDIS and e+e-  asymmetries.

• No signal for the helicity-dependent DiFF from BELLE.

❖  Re-derived cross section for e+e- resolved both issues.

❖  New asymmetries to measure      in SIDIS and e+e- : test Universality! 
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G?
1



BACKUP SLIDES

27



Hadronization:

28

✦ Hadronization: describes the process where colored quarks and 
gluons form colourless hadrons (in deep inelastic scattering).

q̄

q

γ, Z

e−

e+

electro-weak pQCD

detected protons, pions ...

hadronization

e�e+ ! hX

 28

• The conjecture of Confinement: 

✦NO free quarks or gluons have been directly observed: 
only HADRONS.

 28



Fragmentation Functions

‣The non-perturbative, universal functions encoding parton 
hadronization are the: Fragmentation Functions (FF).

Dh
i (z,Q

2)

h

q

‣z is the light-cone mom. fraction of the parton carried by the hadron

‣ Unpolarized FF is the number density for parton i to produce 
hadron h with LC momentum fraction z.

z =
p�

k�
⇡ zh =

2Eh

Q
a± =

1p
2
(a0 ± a3)

 29

1

�

d

dz
�(e�e+ ! hX) =

X

i

Ci(z,Q2)⌦Dh
i (z,Q

2)

 29



FACTORIZATION AND UNIVERSALITY

X

X

h

X

X

h

X

e
e’

• SEMI INCLUSIVE DIS (SIDIS)

�eP!ehX =
X

q

fP
q ⌦ �eq!eq ⌦Dh

q

�PP!hX =
X

q,q0

fP
q ⌦ fP

q0 ⌦ �qq0!qq0 ⌦Dh
q

q

q

X

X

l −

l + �PP!l+l�X =
X

q,q0

fP
q ⌦ fP

q̄ ⌦ �qq̄!l+l�

• DRELL-YAN (DY)

• Hadron Production

e^−

e ^ +

q

q
�e+e�!hX =

X

q

�e+e�!qq̄ ⌦ (Dh
q +Dh

q̄ )

•  e+e�
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Number Densities

 31

• The full number density:

• The differential number of hadron pairs:

dNh1h2
q = Fh1h2

q (z, ⇠,kT ,RT ; s) dz d⇠ d2kT d2RT



DIFFS FROM THE NUMBER DENSITY

✦ Can only calculate number density form MC simulations.

✦ Extract DiFFs from specific angular modulations.

✦ Unpolarized DiFF: straight forward integration of number density.

 32

✦ Need                  to extract helicity dependent DiFF!cot('RK)

D1(z,M
2
h) =

Z
d⇠

Z
d'R

Z
d2kT F (z, ⇠,kT ,RT ; sL)

H.M., Kotzinian, Thomas: Phys. Rev. D96 074010, (2017)

F (z, ⇠,kT ,RT ; sL) =D1(z, ⇠,k
2
T ,R

2
T , cos('RK))

�sL
RT kT sin('RK)

M2
h

G?
1 (z, ⇠,k

2
T ,R

2
T , cos('RK))

G̃?,[n]
1 (z,M2

h) =

Z
d⇠

Z
d2kT

RT kT
M2

h

G?,[n]
1 (z, ⇠,k2

T ,R
2
T )

˜G?,[n]
1 (z,M2

h) = � 1

sL

Z
d⇠

Z
d2kT

Z
d'R

cos(n 'RK)

sin('RK)

F (z, ⇠,kT ,RT )

˜G?
1 ⌘ ˜G?,[1]

1 = � 1

sL

Z
d⇠

Z
d2kT

Z
d'R cot('RK)F (z, ⇠,kT ,RT )

Note: here we use the definition by Boer et. al.



LONGITUDINAL POLARISATION
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✦ DiFF for longitudinally polarized quark:

˜G?
1 (z) = � 1

sL

Z
d⇠

Z
d2RT

Z
d2kT cot('RK)F (z, ⇠,kT ,RT ; sL).

✦ The extraction method works:  the angular dependence for NL=2.

sL (kT ⇥RT ) · ẑ

F
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FO
FO cot(!RK)

u π+ π -, NL = 2−0.05
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2

FE('RK) =
F ('RK) + F (2⇡ � 'RK)

2

(given large enough statistics!)



Results for   
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✦ Results for helicity DiFFs, several moments, various pairs. Cuts:z1,2 � 0.1

✦                cut enhances the analysing power at high-z for larger NL !z1,2 � 0.1
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✦  Non-zero signal for various channels, sign change for               pairs !⇡+⇡+
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TRANSVERSELY POL. DIFFS FROM NUMBER DENSITY

✦ Slightly more complicated procedure:

✦ SIDIS DiFFs:

✦ n-th moment of DiFFs:
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H^,SIDIS
1 (z) =
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sT

⌦
sin('R � 's)F

E
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⌦
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F ('R,'k; sT ) =D1(cos('RK))

+ aR sin('R � 's)H
^
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H
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H
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D
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cos(n · 'RK)

sin('RK)

F
E

H.M., Kotzinian, Thomas, Phys. Rev. D 97, 014019 (2018).



Analysing Power for Transverse Spin

✦ Comparing the analysing powers for all polarized DiFFs.

✦  Alternate signs for the two DiFFs.

✦ Significant differences between SIDIS and 0-th moments!

✦ Signals for all possible hadron pairs.
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