LightCone 2018 14-18 May 2018, JLab, USA

"Accessing dihadron fragmentation functions in $\mathrm{e}^{+} \mathrm{e}^{-}$and SIDIS."

Hrayr Matevosyan

SIDIS with one measured hadron

- Measurement of the transverse momentum of the produced hadron in SIDIS provides access to TMD PDFs/FFs.
- SIDIS Process with TM of hadron measured.
- TMD PDF

N / \mathbf{q}	U	L	T
U	f_{1}		h_{1}^{\perp}
\mathbf{L}		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}^{\perp}$	$h_{1} h_{1 T}^{\perp}$

- TMD FF

q / h	U
U	D_{1}
L	
T	H_{1}^{\perp}

ssəןu!ds/Iodun*
2

SIDIS with two measured hadrons

- Measuring two-hadron semi-inclusive DIS: an additional method for accessing TMD PDFs.
- SIDIS Process with TM of hadrons measured.
- TMD PDFs
- TMD PDFs

N/q	U	L	L
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}^{\perp}$	$h_{1} h_{1 T}^{\perp}$

- TMD DiFFs

SYSTEMATICS OF DIHADRON FRAGMENTATION FUNCTIONS

Two-Hadron Kinematics

Total and Relative TM of hadron pair.

$$
\begin{array}{rlrl}
P & =P_{1}+P_{2} & z=z_{1}+z_{2} \\
R & =\frac{1}{2}\left(P_{1}-P_{2}\right) & \xi=\frac{z_{1}}{z}=1-\frac{z_{2}}{z}
\end{array}
$$

\uparrow Two Coordinate systems:
$\bullet \perp$: modelling hadronization

- Lorentz Boost:

$$
\begin{aligned}
\boldsymbol{P}_{1 T} & =\boldsymbol{P}_{1 \perp}+z_{1} \boldsymbol{k}_{T} \\
\boldsymbol{P}_{2 T} & =\boldsymbol{P}_{2 \perp}+z_{2} \boldsymbol{k}_{T} \\
\boldsymbol{k}_{T} & =-\frac{\boldsymbol{P}_{\perp}}{z}
\end{aligned}
$$

\% Relative TM in two systems

$$
\begin{aligned}
\boldsymbol{R}_{\perp} & =\frac{1}{2}\left(\boldsymbol{P}_{1 \perp}-\boldsymbol{P}_{2 \perp}\right) \\
\boldsymbol{R}_{T} & =\frac{z_{2} \boldsymbol{P}_{1 \perp}-z_{1} \boldsymbol{P}_{2 \perp}}{z}
\end{aligned}
$$

Field-Theoretical Definitions

- The quark-quark correlator.

$$
\Delta_{i j}\left(k ; P_{1}, P_{2}\right)=\sum_{X} \int d^{4} \zeta e^{i k \cdot \zeta}\langle 0| \psi_{i}(\zeta)\left|P_{1} P_{2}, X\right\rangle\left\langle P_{1} P_{2}, X\right| \bar{\psi}_{j}(0)|0\rangle
$$

- The definitions of DiFFs from the correlator.

Quark Polarization

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

Unpolarised

$$
\Delta^{\left.\gamma^{-} \gamma_{5}\right]}=\frac{\epsilon_{T}^{i j} R_{T i} k_{T j}}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

$$
\begin{aligned}
\Delta^{\left[i \sigma^{i-} \gamma_{5}\right]} & =\frac{\epsilon_{T}^{i j} R_{T j}}{M_{h}} H_{1}^{\varangle}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& +\frac{\epsilon_{T}^{i j} k_{T j}}{M_{h}} H_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
\end{aligned}
$$

Field-Theoretical Definitions

- The quark-quark correlator.

$$
\Delta_{i j}\left(k ; P_{1}, P_{2}\right)=\sum_{X} \int d^{4} \zeta e^{i k \cdot \zeta}\langle 0| \psi_{i}(\zeta)\left|P_{1} P_{2}, X\right\rangle\left\langle P_{1} P_{2}, X\right| \bar{\psi}_{j}(0)|0\rangle
$$

- The definitions of DiFFs from the correlator.

Quark Polarization

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

Unpolarised
related to "jet handedness"
$\Delta^{\left.\gamma^{-} \gamma_{5}\right]}=\frac{\epsilon_{T}^{i j} R_{T i} k_{T j}}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)$
Longitudinal
$\begin{aligned} \Delta^{\left[i \sigma^{i-} \gamma_{5}\right]} & =\frac{\epsilon_{T}^{i j} R_{T j}}{M_{h}} H_{1}^{\varangle}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\ & +\frac{\epsilon_{T}^{i j} k_{T j}}{M_{h}} H_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)\end{aligned}$
Transverse

Fourier Moments of DiFFs

- Expanded dependence on $\varphi_{R K} \equiv \varphi_{R}-\varphi_{k}$ in cos series

$$
\begin{gathered}
D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \cos \left(\varphi_{K R}\right)\right)=\frac{1}{\pi} \sum_{n=0}^{\infty} \frac{\cos \left(n \cdot \varphi_{K R}\right)}{1+\delta_{0, n}} D_{1}^{[n]}\left(z, \xi,\left|\boldsymbol{k}_{T}\right|,\left|\boldsymbol{R}_{T}\right|\right), \\
F^{[n]}=\int d \varphi_{K R} \cos \left(n \varphi_{K R}\right) F\left(\cos \left(\varphi_{K R}\right)\right)
\end{gathered}
$$

- Integrated DiFFs and Fourier moments

$$
\begin{aligned}
& D_{1}^{a}\left(z, M_{h}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi D_{1}^{a,[0]}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}\right) \\
& G_{1}^{\perp a,[n]}\left(z, M_{h}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi\left(\frac{\boldsymbol{k}_{T}^{2}}{2 M_{h}^{2}}\right) \frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} G_{1}^{\perp a,[n]}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}\right) . \\
& H_{1}^{\varangle,[n]}\left(z, M_{h}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi \frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} H_{1}^{\varangle,[n]}\left(z, \xi,\left|\boldsymbol{k}_{T}\right|,\left|\boldsymbol{R}_{T}\right|\right) \\
& H_{1}^{\perp,[n]}\left(z, M_{h}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi \frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} H_{1}^{\perp,[n]}\left(z, \xi,\left|\boldsymbol{k}_{T}\right|,\left|\boldsymbol{R}_{T}\right|\right)
\end{aligned}
$$

ACCESS TO TRANSVERSITY PDF From DiFF

M. Radici, et al: PRD 65, 07403 I (2002).

- In two hadron production from polarized target the cross section factorizes collinearly - no TMD!
- Allows clean access to transversity.
- Unpolarized and Interference

Dihadron FFs are needed!

$$
\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \propto \sin \left(\phi_{R}+\phi_{S}\right) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) / x H_{1}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) / x D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

- Empirical Model for D_{1}^{q} has been fitted to PYTHIA simulations.
A. Bacchetta and M. Radici, PRD 74, I I 4007 (2006).

Experiments

SSA: HERMES, COMPASS. IFFs: BELLE.

Moments of DiFFs in SIDIS

A. Bacchetta, M. Radici: PRD 69, 074026 (2004).

- Here transversely polarised DiFFs are admixture of cos Fourier moments of both unintegrated DiFFs:

$$
\begin{aligned}
& H_{1, S I D I S}^{\varangle}\left(z, M_{H}^{2}\right)=\left[H_{1}^{\varangle[0]}+H_{1}^{\perp[1]}\right] \\
& H_{1, S I D I S}^{\perp}\left(z, M_{H}^{2}\right)=\left[H_{1}^{\perp[0]}+H_{1}^{\varangle[1]}\right]
\end{aligned}
$$

- Generated by $\cos \left(\varphi_{R K}\right)$ dependences of unintegrated DiFFs:

$$
\begin{aligned}
\varphi_{R K} \equiv \varphi_{R} & -\varphi_{k} \\
d \sigma_{U T} & \sim \sin \left(\varphi_{R}+\varphi_{S}\right) \mathcal{C}\left[h_{1}^{\perp} H^{\varangle}\left(\cos \left(\varphi_{R K}\right)\right)\right] \\
& +\sin \left(\varphi_{k}+\varphi_{S}\right) \mathcal{C}\left[h_{1}^{\perp} H^{\perp}\left(\cos \left(\varphi_{R K}\right)\right)\right]+. .
\end{aligned}
$$

Back-to-back two hadron pairs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

$d \sigma\left(e^{+} e^{-} \rightarrow\left(h_{1} h_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right) X\right)$
$\overline{d \boldsymbol{q}_{T} d z d \xi d M_{h}^{2} d \phi_{R} d \bar{z} d \bar{\xi} d \bar{M}_{h}^{2} d \phi_{\bar{R}} d y d \phi^{l}}$

$$
\begin{aligned}
= & \sum_{a, \bar{a}} e_{a}^{2} \frac{6 \alpha^{2}}{Q^{2}} z^{2} \bar{z}^{2}\left\{A(y) \mathcal{F}\left[D_{1}^{a} \bar{D}_{1}^{a}\right]+\cos \left(2 \phi_{1}\right) B(y) \mathcal{F}\left[\left(2 \hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T}-\boldsymbol{k}_{T} \cdot \overline{\boldsymbol{k}}_{T}\right) \frac{H_{1}^{\perp a} \bar{H}_{1}^{\perp a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]\right. \\
& -\sin \left(2 \phi_{1}\right) B(y) \mathcal{F}\left[\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{g}} \cdot \overline{\boldsymbol{k}}_{T}+\hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T} \hat{\boldsymbol{g}} \cdot \boldsymbol{k}_{T}\right) \frac{H_{1}^{\perp a} \bar{H}_{1}^{\perp a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]+\cos \left(\phi_{R}+\phi_{\bar{R}}-2 \phi^{l}\right) \\
& \times B(y)\left|\boldsymbol{R}_{T}\right|\left|\overline{\boldsymbol{R}}_{T}\right| \mathcal{F}\left[\frac{H_{1}^{\Varangle a} \bar{H}_{1}^{\Varangle a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]+\cos \left(\phi_{1}+\phi_{R}-\phi^{l}\right) B(y)\left|\boldsymbol{R}_{T}\right| \mathcal{F}\left[\hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T} \frac{H_{1}^{\Varangle a} \bar{H}_{1}^{\perp a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]
\end{aligned}
$$

$$
-\sin \left(\phi_{1}+\phi_{R}-\phi^{l}\right) B(y)\left|\boldsymbol{R}_{T}\right| \mathcal{F}\left[\hat{\boldsymbol{g}} \cdot \overline{\boldsymbol{k}}_{T} \frac{H_{1}^{\Varangle a} \bar{H}_{1}^{\perp a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]+\cos \left(\phi_{1}+\phi_{\bar{R}}-\phi^{l}\right) B(y)\left|\overline{\boldsymbol{R}}_{T}\right|
$$

$$
\times \mathcal{F}\left[\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \frac{H_{1}^{\perp a} \bar{H}_{1}^{\Varangle a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]-\sin \left(\phi_{1}+\phi_{\bar{R}}-\phi^{l}\right) B(y)\left|\overline{\boldsymbol{R}}_{T}\right| \mathcal{F}\left[\hat{\boldsymbol{g}} \cdot \boldsymbol{k}_{T} \frac{H_{1}^{\perp a} \bar{H}_{1}^{\Varangle a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]+A(y)\left|\boldsymbol{R}_{T}\right|\left|\overline{\boldsymbol{R}}_{T}\right|
$$

$$
\times\left(\sin \left(\phi_{1}-\phi_{R}+\phi^{l}\right) \sin \left(\phi_{1}-\phi_{\bar{R}}+\phi^{l}\right) \mathcal{F}\left[\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T} \frac{G_{1}^{\perp a} \bar{G}_{1}^{\perp a}}{M_{1} M_{2} \bar{M}_{1} \bar{M}_{2}}\right]+\sin \left(\phi_{1}-\phi_{R}+\phi^{l}\right) \cos \left(\phi_{1}-\phi_{\bar{R}}+\phi^{l}\right)\right.
$$

$$
\times \mathcal{F}\left[\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{g}} \cdot \overline{\boldsymbol{k}}_{T} \frac{G_{1}^{\perp a} \overline{\boldsymbol{G}}_{1}^{\perp a}}{M_{1} M_{2} \bar{M}_{1} \bar{M}_{2}}\right]+\cos \left(\phi_{1}-\phi_{R}+\phi^{l}\right) \sin \left(\phi_{1}-\phi_{\bar{R}}+\phi^{l}\right) \mathcal{F}\left[\hat{\boldsymbol{g}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T} \frac{G_{1}^{\perp a} \bar{G}_{1}^{\perp a}}{M_{1} M_{2} \bar{M}_{1} \bar{M}_{2}}\right]+\cos \left(\phi_{1}-\phi_{R}+\phi^{l}\right)
$$

$$
\begin{equation*}
\left.\left.\times \cos \left(\phi_{1}-\phi_{\bar{R}}+\phi^{l}\right) \mathcal{F}\left[\hat{\boldsymbol{g}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{g}} \cdot \overline{\boldsymbol{k}}_{T} \frac{G_{1}^{\perp a} \bar{G}_{1}^{\perp a}}{M_{1} M_{2} \bar{M}_{1} \bar{M}_{2}}\right]\right)\right\} \tag{19}
\end{equation*}
$$

- Can access both helicity and transverse pol. dependent DiFFs:

$$
A^{\cos \left(\varphi_{R}+\varphi_{\bar{R}}\right)} \sim \frac{H_{1}^{\varangle}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

$$
A^{\cos \left(2\left(\varphi_{R}-\varphi_{\bar{R}}\right)\right)} \sim \frac{G_{1}^{\perp}\left(z, M_{h}^{2}\right) \bar{G}_{1}^{\perp}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

Moments of DiFFs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

- In asymmetry: helicity-dependent DiFF in the.

$$
G_{1}^{\perp}\left(z, M_{h}^{2}\right)=\int d \xi \int d \varphi_{R} \int d^{2} \boldsymbol{k}_{T}\left(\boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

- In asymmetry: IFF.

$$
H_{1, e^{+} e^{-}}^{\varangle}\left(z, M_{h}^{2}\right)=\int d \xi \int d \varphi_{R} \int d^{2} \boldsymbol{k}_{T}\left|\boldsymbol{R}_{T}\right| H_{1}^{\varangle}\left(z_{h}, \xi, k_{T}^{2}, R_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

- Differ from SIDIS !

$$
H_{1, e^{+} e^{-}}^{\varangle}\left(z, M_{h}^{2}\right)=H_{1}^{\varangle,[0]} \quad H_{1, S I D I S}^{\varangle}\left(z, M_{H}^{2}\right)=\left[H_{1}^{\varangle[0]}+H_{1}^{\perp[1]}\right]
$$

Moments of DiFFs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

- In asymmetry: helicitv fent DiFF in the.

$$
G_{1}^{\perp}\left(z, M_{h}^{2}\right)=\int d \xi \int
$$

- In asymmetry: IFF.

$$
H_{1, e^{+} e^{-}}^{\varangle}\left(z, M_{h}^{2}\right)=\int d \xi
$$

-Differ from SIDIS!

$$
H_{1, e^{+} e^{-}}^{\varangle}\left(z, M_{h}^{2}\right)=H_{1}^{\varangle,[0]} \quad H_{1, S I D I S}^{\varangle}\left(z, M_{H}^{2}\right)=\left[H_{1}^{\varangle[0]}+H_{1}^{\perp[1]}\right]
$$

-Might strongly affect combined analysis!

Back-to-back two hadron pairs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

- Can access both helicity and transverse pol. dependent DiFFs:

$$
A^{\cos \left(\varphi_{R}+\varphi_{\bar{R}}\right)} \sim \frac{H_{1}^{\varangle}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

$$
A^{\cos \left(2\left(\varphi_{R}-\varphi_{\bar{R}}\right)\right)} \sim \frac{G_{1}^{\perp}\left(z, M_{h}^{2}\right) \bar{G}_{1}^{\perp}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

\checkmark BELLE results.
Phys.Rev.Lett. I 07 (201I) 072004

PoS DIS2015 (2015) 216

Back-to-back two hadron pairs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

- Can access both helicity and transverse pol. dependent DiFFs:

$$
A^{\cos \left(\varphi_{R}+\varphi_{\bar{R}}\right)} \sim \frac{H_{1}^{\varangle}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

$$
A^{\cos \left(2\left(\varphi_{R}-\varphi_{\bar{R}}\right)\right)} \sim \frac{G_{1}^{\perp}\left(z, M_{h}^{2}\right) \bar{G}_{1}^{\perp}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

\downarrow BELLE results.

Phys.Rev.Lett. I 07 (201I) 072004

PoS DIS2015 (2015) 216

How to resolve these?

Quote from Anatoly Radyushkin:

Re-derived $\mathrm{e}^{+} \mathrm{e}^{-}$Cross Section

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

- An error in kinematics was found:

- The new fully differential cross-section expression:

$$
\begin{aligned}
& \frac{d \sigma\left(e^{+} e^{-} \rightarrow\left(h_{1} h_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right) X\right)}{d^{2} \boldsymbol{q}_{T} d z d \xi d \varphi_{R} d M_{h}^{2} d \bar{z} d \bar{\xi}^{\prime} d \varphi_{\bar{R}} d \bar{M}_{h}^{2} d y}=\frac{3 \alpha^{2}}{\pi Q^{2}} z^{2} \bar{z}^{2} \sum_{a, \bar{a}} e_{a}^{2}\left\{A(y) \mathcal{F}\left[D_{1}^{a} \bar{D}_{1}^{\bar{a}}\right]\right. \\
& \quad+B(y) \mathcal{F}\left[\frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{k}}_{T}\right|}{\bar{M}_{h}} \cos \left(\varphi_{k}+\varphi_{\bar{k}}\right) H_{1}^{\perp a} \bar{H}_{1}^{\perp \bar{a}}\right]+B(y) \mathcal{F}\left[\frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|}{\bar{M}_{h}} \cos \left(\varphi_{R}+\varphi_{\bar{R}}\right) H_{1}^{\varangle a} \bar{H}_{1}^{\varangle \bar{a}}\right] \\
& \quad+B(y) \mathcal{F}\left[\frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|}{\bar{M}_{h}} \cos \left(\varphi_{k}+\varphi_{\bar{R}}\right) H_{1}^{\perp a} \bar{H}_{1}^{\varangle \bar{a}}\right]+B(y) \mathcal{F}\left[\frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{k}}_{T}\right|}{\bar{M}_{h}} \cos \left(\varphi_{R}+\varphi_{\bar{k}}\right) H_{1}^{\varangle a} \bar{H}_{1}^{\perp \bar{a}}\right] \\
& \quad-A(y) \mathcal{F}\left[\frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}^{2}} \frac{\left|\boldsymbol{k}_{T}\right|}{\left|\overline{\boldsymbol{R}}_{T}\right|\left|\overline{\boldsymbol{k}}_{T}\right|} \bar{M}_{h}^{2}\right. \\
&
\end{aligned}
$$

Re-derived $\mathrm{e}^{+} \mathrm{e}^{-}$Cross Section

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

- An error in kinematics was found:

- The new fully differential cross-section expression:

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow\left(h_{1} h_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right) X\right)}{d^{2} \boldsymbol{q}_{T} d z d \xi d \varphi_{R} d M_{h}^{2} d \bar{z} d \bar{\xi} d \varphi_{\bar{R}} d \bar{M}_{h}^{2} d y}=\frac{3 \alpha^{2}}{\pi Q^{2}} z^{2} \bar{z}^{2} \sum_{a, \bar{a}} e_{a}^{2}\left\{A(y) \mathcal{F}\left[D_{1}^{a} \bar{D}_{1}^{\bar{a}}\right]\right.
$$

$$
\mathcal{F}\left[w D^{a} \bar{D}^{\bar{a}}\right]=\int d^{2} \boldsymbol{k}_{T} d^{2} \overline{\boldsymbol{k}}_{T} \delta^{2}\left(\boldsymbol{k}_{T}+\overline{\boldsymbol{k}}_{T}-\boldsymbol{q}_{T}\right) w\left(\boldsymbol{k}_{T}, \overline{\boldsymbol{k}}_{T}, \boldsymbol{R}_{T}, \overline{\boldsymbol{R}}_{T}\right) D^{a} D^{\bar{a}} .
$$

$$
\left.-A(y) \mathcal{F}\left[\frac{\left|\boldsymbol{R}_{T}\right|\left|\boldsymbol{k}_{T}\right|}{M_{h}^{2}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|\left|\overline{\boldsymbol{k}}_{T}\right|}{\bar{M}_{h}^{2}} \sin \left(\varphi_{k}-\varphi_{R}\right) \sin \left(\varphi_{\bar{k}}-\varphi_{\bar{R}}\right) G_{1}^{\perp a} \bar{G}_{1}^{\perp \bar{a}}\right]\right\} .
$$

IFFs in $\mathrm{e}^{+} \mathrm{e}^{-}$and SIDIS.

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 0740 I9 (20 | 8).

- The asymmetry now involves exactly the same integrated IFF as in SIDIS!

$$
\begin{aligned}
& A^{\cos \left(\varphi_{R}+\varphi_{\bar{R}}\right)}=\frac{1}{2} \frac{B(y)}{A(y)} \frac{\sum_{a, \bar{a}} e_{a}^{2} H_{1}^{\varangle a}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle \bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{a, \bar{a}} e_{a}^{2} D_{1}^{a}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)} \\
& D_{1}\left(z, M_{h}^{2}\right) \equiv z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi D_{1}^{[0]}\left(z, \xi,\left|\boldsymbol{k}_{T}\right|,\left|\boldsymbol{R}_{T}\right|\right) \\
& H_{1, e^{+} e^{-}}^{\varangle}\left(z, M_{h}^{2}\right)=H_{1}^{\varangle,[0]}+H_{1}^{\perp,[1]} \equiv H_{1, S I D I S}^{\varangle}\left(z, M_{h}^{2}\right)
\end{aligned}
$$

- All the previous extractions of the transversity are valid!

Helicity-dependent DiFF in $\mathrm{e}^{+} \mathrm{e}^{-}$

H.M., Kotzinian, Thomas: arXiv:I7I2.06384.

- The relevant terms involving G_{1}^{\perp} :
$d \sigma_{L} \sim \mathcal{F}\left[\frac{\left(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}\right)_{3}}{M_{h}^{2}} \frac{\left(\overline{\boldsymbol{R}}_{T} \times \overline{\boldsymbol{k}}_{T}\right)_{3}}{\bar{M}_{h}^{2}} G_{1}^{\perp a}\left(\boldsymbol{R}_{T} \cdot \boldsymbol{k}_{T}\right) \bar{G}_{1}^{\perp \bar{a}}\left(\overline{\boldsymbol{R}}_{T} \cdot \overline{\boldsymbol{k}}_{T}\right)\right]$
- Note: any azimuthal moment involving only $\varphi_{R}, \varphi_{\bar{R}}$ is zero. Break-up the convolution: $\int d^{2} \boldsymbol{q}_{T} \delta^{2}\left(\boldsymbol{k}_{T}+\overline{\boldsymbol{k}}_{T}-\boldsymbol{q}_{T}\right)$ \qquad
Using: $\varphi_{k} \rightarrow \varphi_{k}^{\prime}+\varphi_{R}, \int d^{2} \boldsymbol{k}_{T} \sin \left(\varphi_{k}\right) \cos \left(n \varphi_{k}\right)=0$

$$
\left\langle f\left(\varphi_{R}, \varphi_{\bar{R}}\right)\right\rangle_{L}=0
$$

- The old asymmetry by Boer et. al. exactly vanishes!
- Explains the BELLE results.

$$
A^{\Rightarrow}=\frac{\left\langle\cos \left(2\left(\varphi_{R}-\varphi_{\bar{R}}\right)\right)\right\rangle}{\langle 1\rangle}=0!
$$

New way to access G_{1}^{\perp} DiFF in $\mathrm{e}^{+} \mathrm{e}^{-}$

H.M., Kotzinian, Thomas: arXiv:I7|2.06384.

- The relevant terms involving G_{1}^{\perp} :
$d \sigma_{L} \sim \mathcal{F}\left[\frac{\left(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}\right)_{3}}{M_{h}^{2}} \frac{\left(\overline{\boldsymbol{R}}_{T} \times \overline{\boldsymbol{k}}_{T}\right)_{3}}{\bar{M}_{h}^{2}} G_{1}^{\perp a}\left(\boldsymbol{R}_{T} \cdot \boldsymbol{k}_{T}\right) \bar{G}_{1}^{\perp \bar{a}}\left(\overline{\boldsymbol{R}}_{T} \cdot \overline{\boldsymbol{k}}_{T}\right)\right]$
- Need a q_{T}-weighted asymmetry to get non-zero result

$$
\begin{aligned}
& \left\langle\frac{q_{T}^{2}\left(3 \sin \left(\varphi_{q}-\varphi_{R}\right) \sin \left(\varphi_{q}-\varphi_{\bar{R}}\right)+\cos \left(\varphi_{q}-\varphi_{R}\right) \cos \left(\varphi_{q}-\varphi_{\bar{R}}\right)\right)}{M_{h} \bar{M}_{h}}\right\rangle \\
& =\frac{12 \alpha^{2} A(y)}{\pi Q^{2}} \sum_{a, \bar{a}} e_{a}^{2}\left(G_{1}^{\perp a,[0]}-G_{1}^{\perp a,[2]}\right)\left(\bar{G}_{1}^{\perp \bar{a},[0]}-G_{1}^{\perp \bar{a},[2]}\right),
\end{aligned}
$$

- A new asymmetry to access $G_{1}^{\perp a} \equiv G_{1}^{\perp a,[0]}-G_{1}^{\perp a,[2]}$

$$
A_{e^{+} e^{-}}^{\Rightarrow}\left(z, \bar{z}, M_{h}^{2}, \bar{M}_{h}^{2}\right)=4 \frac{\sum_{a, \bar{a}} G_{1}^{\perp a}\left(z, M_{h}^{2}\right) G_{1}^{\perp \bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{a, \bar{a}} D_{1}^{a}\left(z, M_{h}^{2}\right) D_{1}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

New way to access G_{1}^{\perp} DiFF in $\mathrm{e}^{+} \mathrm{e}^{-}$

H.M. , Kotzinian, Thomas: arXiv:I7|2.06384.

- The relevant terms involving G_{1}^{\perp} :
$d \sigma_{L} \sim \mathcal{F}\left[\frac{\left(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}\right)_{3}}{M_{h}^{2}} \frac{\left(\overline{\boldsymbol{R}}_{T} \times \overline{\boldsymbol{k}}_{T}\right)_{3}}{\bar{M}_{h}^{2}} G_{1}^{\perp a}\left(\boldsymbol{R}_{T} \cdot \boldsymbol{k}_{T}\right) \bar{G}_{1}^{\perp \bar{a}}\left(\overline{\boldsymbol{R}}_{T} \cdot \overline{\boldsymbol{k}}_{T}\right)\right]$
- Need a qт-weighted asymmetry to get non-zero result
additional $\sin \left(\varphi_{k}-\varphi_{R}\right)$

$$
\begin{aligned}
& \left\langle\frac{q_{T}^{2}\left(3 \sin \left(\varphi_{q}-\varphi_{R}\right) \sin \left(\varphi_{q}-\varphi_{\bar{R}}\right)+\cos \left(\varphi_{q}-\varphi_{R}\right) \cos \left(\varphi_{q}-\varphi_{\bar{R}}\right)\right)}{M_{h} \bar{M}_{h}}\right\rangle \\
& =\frac{12 \alpha^{2} A(y)}{\pi Q^{2}} \sum_{a, \bar{a}} e_{a}^{2}\left(G_{1}^{\perp a,[0]}-G_{1}^{\perp a,[2]}\right)\left(\bar{G}_{1}^{\perp \bar{a},[0]}-G_{1}^{\perp \bar{a},[2]}\right),
\end{aligned}
$$

- A new asymmetry to access $G_{1}^{\perp a} \equiv G_{1}^{\perp a,[0]}-G_{1}^{\perp a,[2]}$

$$
A_{e^{+} e^{-}}^{\Rightarrow}\left(z, \bar{z}, M_{h}^{2}, \bar{M}_{h}^{2}\right)=4 \frac{\sum_{a, \bar{a}} G_{1}^{\perp a}\left(z, M_{h}^{2}\right) G_{1}^{\perp \bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{a, \bar{a}} D_{1}^{a}\left(z, M_{h}^{2}\right) D_{1}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

New way to access G_{1}^{\perp} DiFF in SIDIS

H.M. , Kotzinian, Thomas: arXiv:I7|2.06384.

- The relevant terms involving G_{1}^{\perp} :

$$
\begin{gathered}
d \sigma_{U L} \sim S_{L} \mathcal{G}\left[\frac{k_{T} R_{T} \sin \left(\varphi_{k}-\varphi_{R}\right)}{M_{h}^{2}} g_{1 L}^{a} G_{1}^{\perp a}\right] \\
\mathcal{G}\left[w f^{q} D^{q}\right] \equiv \int d^{2} \boldsymbol{p}_{T} \int d^{2} \boldsymbol{k}_{T} \delta^{2}\left(\boldsymbol{k}_{T}-\boldsymbol{p}_{T}+\frac{\boldsymbol{P}_{h \perp}}{z}\right)
\end{gathered}
$$

$$
\times w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right) f^{q}\left(x, \boldsymbol{p}_{T}^{2}\right) D^{q}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

- Weighted moment accesses same G_{1}^{\perp} as in $\mathrm{e}^{+} \mathrm{e}^{-}$.

$$
\begin{aligned}
& \left\langle\frac{P_{h \perp} \sin \left(\varphi_{h}-\varphi_{R}\right)}{M_{h}}\right\rangle_{U L} \sim S_{L} \sum_{a} e_{a}^{2} g_{1 L}^{a}(x) z G_{1}^{\perp a}\left(z, M_{h}^{2}\right) \\
& A_{S I D I S}^{\Rightarrow}\left(x, z, M_{h}^{2}\right)=S_{L} \frac{\sum_{a} g_{1 L}^{a}(x) z G_{1}^{\perp a}\left(z, M_{h}^{2}\right)}{\sum_{a} f_{1}^{a}(x) D_{1}^{a}\left(z, M_{h}^{2}\right)}
\end{aligned}
$$

New way to access G_{1}^{\perp} DiFF in SIDIS: II

- The relevant terms involving G_{1}^{\perp} :

Consider a polarized beam.

$$
d \sigma_{L U} \sim \lambda_{e} \mathcal{G}\left[\frac{k_{T} R_{T} \sin \left(\varphi_{k}-\varphi_{R}\right)}{M_{h}^{2}} f_{1}^{a} G_{1}^{\perp a}\right]
$$

- Weighted moment accesses same G_{1}^{\perp} as in $\mathrm{e}^{+} \mathrm{e}^{-}$.

$$
\left\langle\frac{P_{h \perp} \sin \left(\varphi_{h}-\varphi_{R}\right)}{M_{h}}\right\rangle_{L U} \sim \lambda_{e} \sum_{a} e_{a}^{2} f_{1}^{a}(x) z G_{1}^{\perp a}\left(z, M_{h}^{2}\right)
$$

$$
A_{S I D I S}^{\overleftrightarrow{s}}\left(x, z, M_{h}^{2}\right) \sim \lambda_{e} \frac{C^{\prime}(y)}{A^{\prime}(y)} \frac{\sum_{a} f_{1}^{a}(x) z G_{1}^{\perp a}\left(z, M_{h}^{2}\right)}{\sum_{a} f_{1}^{a}(x) D_{1}^{a}\left(z, M_{h}^{2}\right)}
$$

Helicity DiFFs at COMPASS

- SIDIS extraction in COMPASS

$$
\begin{aligned}
d \sigma_{U L} \sim & -A(y) \mathcal{G}\left[\frac{k_{T} R_{T} \sin \left(\varphi_{k}-\varphi_{R}\right)}{M_{h}^{2}} g_{1 L}^{a} G_{1}^{\perp a}\right] \\
& +B(y) \mathcal{G}\left[\frac{p_{T} k_{T} \sin \left(\varphi_{p}+\varphi_{k}\right)}{M M_{h}} h_{1 L}^{\perp a} H_{1}^{\perp a}\right] \\
& +B(y) \mathcal{G}\left[\frac{p_{T} R_{T} \sin \left(\varphi_{p}+\varphi_{R}\right)}{M M_{h}} h_{1 L}^{\perp a} H_{1}^{\varangle a}\right]
\end{aligned}
$$

$$
\mathcal{G}\left[w f^{q} D^{q}\right] \equiv \int d^{2} \boldsymbol{p}_{T} \int d^{2} \boldsymbol{k}_{T} \delta^{2}\left(\boldsymbol{k}_{T}-\boldsymbol{p}_{T}+\frac{\boldsymbol{P}_{h \perp}}{z}\right)
$$

$$
\times w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right) f^{q}\left(x, \boldsymbol{p}_{T}^{2}\right) D^{q}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

$\downarrow A^{\sin \left(n\left(\varphi_{h}-\varphi_{R}\right)\right)}$ are convolutions of $g_{1 L}$ and G_{1}^{\perp} !

- Low <x> = 0.05 !
- Limited statistics.

$\mathcal{M O D E L L I N G}$
 DIHADRON FRAGMENTATION FUNCTIONS

POLARIZATION IN QUARK-JET FRAMEWORK

\uparrow Extended quark-jet:
Bentz, Kotzinian, H.M, Ninomiya, Thomas, Yazaki: PRD 94034004 (2016).

- The probability for the process $q \rightarrow Q$ initial spin S to S

$$
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{S}\right)=\alpha_{\mathbf{s}}+\boldsymbol{\beta}_{\mathbf{s}} \cdot \mathbf{S}
$$

- Intermediate quarks in quark-jet are unobserved!

We need the induced final state spin S^{\prime}.

$$
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{S}\right) \sim \operatorname{Tr}\left[\rho^{\mathbf{S}^{\prime}} \rho^{\mathbf{S}}\right] \sim 1+\mathbf{S}^{\prime} \cdot \mathbf{S}
$$

- Remnant quark's \mathbf{S}^{\prime} uniquely determined by z, \mathbf{p}_{\perp} and s !

$$
\mathbf{S}^{\prime}=\frac{\boldsymbol{\beta}_{\mathbf{s}}}{\alpha_{\mathrm{s}}}
$$

- Process probability is the same as transition to unpolarized state.

$$
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{0}\right)=\alpha_{s}
$$

REMNANT QUARK'S POLARISATION

\downarrow We can express the spin of the remnant quark $\mathrm{S}^{\prime}=\frac{\beta_{\mathrm{s}}}{\alpha_{\mathrm{s}}}$ in terms of quark-to-quark TMD splittings.

$$
\begin{aligned}
& \alpha_{q} \equiv D\left(z, \boldsymbol{p}_{\perp}^{2}\right)+\left(\boldsymbol{p}_{\perp} \times \boldsymbol{s}_{T}\right) \cdot \hat{z} \frac{1}{z \mathcal{M}} H^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
& \frac{\beta_{q \|} \equiv}{} s_{L} G_{L}\left(z, \boldsymbol{p}_{\perp}^{2}\right)-\left(\boldsymbol{p}_{\perp} \cdot s_{T}\right) \frac{1}{z \mathcal{M}} H_{L}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
& \boldsymbol{\beta}_{q \perp} \equiv \boldsymbol{p}_{\perp}^{\prime} \frac{1}{z \mathcal{M}} D_{T}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right)-\boldsymbol{p}_{\perp} \frac{1}{z \mathcal{M}} s_{L} G_{T}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
&+\boldsymbol{s}_{T} H_{T}\left(z, \boldsymbol{p}_{\perp}^{2}\right)+\boldsymbol{p}_{\perp}\left(\boldsymbol{p}_{\perp} \cdot \boldsymbol{s}_{T}\right) \frac{1}{z^{2} \mathcal{M}^{2}} H_{T}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right)
\end{aligned}
$$

-Input Elementary Splitting Functions: Model or Parametrization!

$$
F^{q \rightarrow Q}\left(z, \boldsymbol{p}_{\perp} ; \boldsymbol{s}, \boldsymbol{S}\right)
$$

Q / q	U	L	T
U	D_{1}		H_{1}^{\perp}
L		$G_{1 L}$	$H_{1 L}^{\perp}$
T	$D_{1 T}^{\perp}$	$G_{1 T}$	$H_{1 T} H_{1 T}^{\perp}$

MC SIMULATION OF FULL HADRONIZATION

H.M., Kotzinian, Thomas: Phys. Rev. D95 0402 I, (20 I7)
\uparrow We can consider many hadron emissions.

- We can sample the $h, z, p_{\perp}^{2}, \varphi_{h}$ using

$$
f^{q \rightarrow h}\left(z, p_{\perp}^{2}, \varphi_{h} ; \mathbf{S}_{T}\right)
$$

\checkmark Determine the momenta in the initial frame and calculate

$$
\Delta N=\left\langle N_{q}^{h_{1} h_{2}}(z, z+\Delta z, \varphi, \varphi+\Delta \varphi, \ldots)\right\rangle
$$

\uparrow Calculate the remnant quark's spin: $\mathbf{S}^{\prime}=\frac{\boldsymbol{\beta}_{\mathrm{s}}}{\alpha_{\mathrm{s}}}$
\uparrow We only need the "elementary" splittings.

$$
f^{q \rightarrow h} \quad f^{q \rightarrow Q}
$$

Feasibility of new measurements of G_{1}^{\perp}

- The analysing powers of DiFFs from quark-jet framework.

Phys. Rev. D96 074010, (2017); Phys. Rev. D97, 014019 (2018).

- G_{1}^{\perp} naturally smaller than H_{1}^{\varangle}, but should be measurable!

\uparrow Reanalyze BELLE and COMPASS data.
\uparrow Measure it at BELLE II and JLab I 2 GeV .

CONCLUSIONS

- DiFFs provide information on the polarization of the fragmenting quark.
* Two problems appeared recently:
- Inconsistency of IFF definitions in SIDIS and $\mathbf{e}^{+} \mathbf{e}^{-}$asymmetries.
- No signal for the helicity-dependent DiFF from BELLE.
* Re-derived cross section for $\mathrm{e}^{+} \mathrm{e}^{-}$resolved both issues.
* New asymmetries to measure G_{1}^{\perp} in SIDIS and $\mathbf{e}^{+} \mathbf{e}^{-}$: test Universality!

BACKUP SLIDES

Hadronization: $e^{-} e^{+} \rightarrow h X$

- The conjecture of Confinement:
-NO free quarks or gluons have been directly observed: only HADRONS.

- Hadronization: describes the process where colored quarks and gluons form colourless hadrons (in deep inelastic scattering).

Fragmentation Functions

- The non-perturbative, universal functions encoding parton hadronization are the: Fragmentation Functions (FF).

$$
\frac{1}{\sigma} \frac{d}{d z} \sigma\left(e^{-} e^{+} \rightarrow h X\right)=\sum_{i} \mathcal{C}_{i}\left(z, Q^{2}\right) \otimes D_{i}^{h}\left(z, Q^{2}\right)
$$

- Unpolarized FF is the number density for parton i to produce hadron h with LC momentum fraction z.

$$
D_{i}^{h}\left(z, Q^{2}\right)
$$

- z is the light-cone mom. fraction of the parton carried by the hadron

$$
z=\frac{p^{-}}{k^{-}} \approx z_{h}=\frac{2 E_{h}}{Q} \quad a^{ \pm}=\frac{1}{\sqrt{2}}\left(a^{0} \pm a^{3}\right)
$$

FACTORIZATION AND UNIVERSALITY

- SEMI INCLUSIVE DIS (SIDIS)

$$
\begin{aligned}
& \sigma^{e P \rightarrow e h X}=\sum_{q} f_{q}^{P} \otimes \sigma^{e q \rightarrow e q} \otimes D_{q}^{h} \\
& e^{+} e^{-} \\
& \sigma^{e^{+} e^{-} \rightarrow h X}=\sum_{q} \sigma^{e^{+} e^{-} \rightarrow q \bar{q}} \otimes\left(D_{q}^{h}+D_{\bar{q}}^{h}\right)
\end{aligned}
$$

- DRELL-YAN (DY)

$$
\sigma^{P P \rightarrow l^{+} l^{-} X}=\sum_{q, q^{\prime}} f_{q}^{P} \otimes f_{\bar{q}}^{P} \otimes \sigma^{q \bar{q} \rightarrow l^{+} l^{-}}
$$

- Hadron Production

$$
\sigma^{P P \rightarrow h X}=\sum_{q, q^{\prime}} f_{q}^{P} \otimes f_{q^{\prime}}^{P} \otimes \sigma^{q q^{\prime} \rightarrow q q^{\prime}} \otimes D_{q}^{h}
$$

Number Densities

- The full number density:

$$
\begin{aligned}
& F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; \boldsymbol{s}\right)=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& +s_{L} \frac{\left(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}\right) \cdot \hat{\boldsymbol{z}}}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& \quad+\frac{\left(\boldsymbol{s}_{T} \times \boldsymbol{R}_{T}\right) \cdot \hat{\boldsymbol{z}}}{M_{h}} H_{1}^{\varangle}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& \quad+\frac{\left(\boldsymbol{s}_{T} \times \boldsymbol{k}_{T}\right) \cdot \hat{\boldsymbol{z}}}{M_{h}} H_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
\end{aligned}
$$

- The differential number of hadron pairs:

$$
d N_{q}^{h_{1} h_{2}}=F_{q}^{h_{1} h_{2}}\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; \boldsymbol{s}\right) d z d \xi d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{R}_{T}
$$

DIFFS FROM THE NUMBER DENSITY

H.M., Kotzinian, Thomas: Phys. Rev. D96 0740 I0, (20I7)
\downarrow Can only calculate number density form MC simulations.
\downarrow Extract DiFFs from specific angular modulations.

$$
\begin{aligned}
& F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; s_{L}\right)=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \cos \left(\varphi_{R K}\right)\right) \\
& -s_{L} \frac{R_{T} k_{T} \sin \left(\varphi_{R K}\right)}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \cos \left(\varphi_{R K}\right)\right)
\end{aligned}
$$

\uparrow Unpolarized DiFF: straight forward integration of number density.

$$
D_{1}\left(z, M_{h}^{2}\right)=\int d \xi \int d \varphi_{R} \int d^{2} \boldsymbol{k}_{T} F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; s_{L}\right)
$$

\downarrow Need $\cot \left(\varphi_{R K}\right)$ to extract helicity dependent DiFF!

$$
\tilde{G}_{1}^{\perp[n]}\left(z, M_{h}^{2}\right)=\int d \xi \int d^{2} \boldsymbol{k}_{T} \frac{R_{T} k_{T}}{M_{h}^{2}} G_{1}^{\perp,[n]}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}\right)
$$

$$
\tilde{G}_{1}^{\perp,[n]}\left(z, M_{h}^{2}\right)=-\frac{1}{s_{L}} \int d \xi \int d^{2} \boldsymbol{k}_{T} \int d \varphi_{R} \frac{\cos \left(n \varphi_{R K}\right)}{\sin \left(\varphi_{R K}\right)} F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right)
$$

$$
\begin{aligned}
& \text { Note here we use the definition by Boer et al. } \\
& \tilde{G}_{1}^{\perp} \equiv \tilde{G}_{1}^{\perp},[1] \\
& =-\frac{1}{s_{L}} \int d \xi \int d^{2} \boldsymbol{k}_{T} \int \operatorname{d} \varphi_{R} \cot \left(\varphi_{R K}\right) F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right)
\end{aligned}
$$

LONGITUDINAL POLARISATION

\downarrow DiFF for longitudinally polarized quark: $s_{L}\left(\boldsymbol{k}_{T} \times \boldsymbol{R}_{T}\right) \cdot \hat{z}$

$$
\tilde{G}_{1}^{\perp}(z)=-\frac{1}{s_{L}} \int d \xi \int d^{2} \boldsymbol{R}_{T} \int d^{2} \boldsymbol{k}_{T} \cot \left(\varphi_{R K}\right) F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; s_{L}\right) .
$$

\downarrow The extraction method works: the angular dependence for $\mathrm{N}_{\mathrm{L}}=2$.

Results for G_{1}^{\perp}

\downarrow Results for helicity DiFFs, several moments, various pairs. Cuts: $z_{1,2} \geq 0.1$

\star Non-zero signal for various channels, sign change for $\pi^{+} \pi^{+}$pairs!
$\uparrow z_{1,2} \geq 0.1$ cut enhances the analysing power at high-z for larger \mathbf{N}_{L} !

TRANSVERSELY POL. DIFFS FROM NUMBER DENSITY

H.M., Kotzinian, Thomas, Phys. Rev. D 97, 0 I40I9 (2018).

- Slightly more complicated procedure:

$$
\begin{aligned}
F\left(\varphi_{R}, \varphi_{k} ; s_{T}\right)= & D_{1}\left(\cos \left(\varphi_{R K}\right)\right) \\
& +a_{R} \sin \left(\varphi_{R}-\varphi_{s}\right) H_{1}^{\triangleleft}\left(\cos \left(\varphi_{R K}\right)\right) \\
& +a_{K} \sin \left(\varphi_{k}-\varphi_{s}\right) H_{1}^{\perp}\left(\cos \left(\varphi_{R K}\right)\right)
\end{aligned}
$$

\downarrow n-th moment of DiFFs:

$$
\begin{aligned}
& H_{1}^{\varangle,[n]}=\frac{2}{s_{T}}\left\langle\cos \left(\varphi_{k}-\varphi_{s}\right) \frac{\cos \left(n \cdot \varphi_{R K}\right)}{\sin \left(\varphi_{R K}\right)} F\right\rangle \\
& H_{1}^{\perp,[n]}=-\frac{2}{s_{T}}\left\langle\cos \left(\varphi_{R}-\varphi_{s}\right) \frac{\cos \left(n \cdot \varphi_{R K}\right)}{\sin \left(\varphi_{R K}\right)} F\right\rangle
\end{aligned}
$$

- SIDIS DiFFs:

$$
\begin{aligned}
& H_{1}^{\varangle, S I D I S}(z)=\frac{2}{s_{T}}\left\langle\sin \left(\varphi_{R}-\varphi_{s}\right) F\right\rangle \\
& H_{1}^{\perp, S I D I S}(z)=\frac{2}{s_{T}}\left\langle\sin \left(\varphi_{k}-\varphi_{s}\right) F\right\rangle
\end{aligned}
$$

Analysing Power for Transverse Spin

\uparrow Comparing the analysing powers for all polarized DiFFs.

\downarrow Alternate signs for the two DiFFs.
\downarrow Significant differences between SIDIS and 0-th moments!
\checkmark Signals for all possible hadron pairs.

