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"The J/y is the Hydrogen atom of QCD"
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Perturbative S-matrix

H="Ho+ H; Ho \’&>m = F; \@>m

o

Sfizouxf,t%oo\{TeXp{—i/ dt?{j(t)}}\i,t%—o@m

— 0

Formally exact IP expression, provided the in- and ouz-states
have a non-vanishing overlap with the the physical i, f states.

Bound states have no overlap with free in- and out-states at t = £ o

No Feynman diagram % E g E é’ é > é
: vy o+ + + ...
has a bound state pole. <

— < <

Expanding around free states is inadequate for bound states.
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Expanding around a stationary action

A stationary action implies a classical gauge field:

5S[AM]
5 An

—0 /[dA“] exp (¢S[A*]/h) =  h—0

We should expand around in and out states with their classical gauge field

Positronium is bound by its classical potential V(r) = — a/r

The i — 0 limit selects an optimal expansion for bound states.
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The "Potential Picture”

H =Hy +H; Hy = Ho+Hi(Ay)

o0

Spi = vif,t — o {Texp [—z/ dmf(t)} } it — —00)y,

Hy i)y, = Eili)y
Particles will propagate in the classical field, as appropriate for bound states.

Can provide a unique framework for bound state calculations.

Now: Stay at (H 1)0 (Born) level. Consider bound asymptotic states.

To do: Derivation of and higher order contributions to the PP.
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The classical field for Positronium

6Sqep _ ~V2A%(t,x) = eyl (t, )y (t, @)

5 AO(t, i
"o Atw) = [y —wtity)

The classical field is the expectation value of Ain the state

1, T2) = Y(t, x1)Y(t, T2) |0) ~\ s
~ s / ' ~
(1, 2] A’ () |21, 22) o « r\\/.//////\‘,\\

(1, 2| 1, 2) | — x| T — 2

= cA'(x; 21, z2)

Note: * A0is determined instantaneously for all x

e It depends on x1, x>

84

o eA(x)) = —eA”(x3) = — @) — x| is the classical —a/r potential
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The Schrodinger equation

Hy (@1, 2) = / de i (t,@)[ = iV - +my° + Jed’(@; @1, 2)] U (1, @)

M)y, = /dwl dao 15(5131) ®(x1 — z2) P(x2) |0)
Hy | M) v =M M) v gives the bound state equation for ®(x1—x2) :

iy - 3 + my?]®(x) + D(x) [iv - % —my’] = [M =V (z|)|®(z)

with V(|x|) = —— This BSE reduces to the Schrodinger
| equation for non-relativistic kinematics.

The i — 0 limit is required for its derivation.
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Classical field in QCD

Global gauge invariance allows classical gauge field for neutral atoms,
but not for color singlet hadrons in QCD

0 — (@ B (@ 0 o
AV = lx — x| |z — o9 Aa(w) =0
Positronium Proton
QED QCD

However, a classical gluon field 1s allowed for quarks of fixed colors C:

Ag(m;C’) # 0 ZA?L(:B;C’):O
C
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Three consequences of i — 0 in QCD

. 't ~
1. The suppression of loops, s~ 043 Gribov hep-ph/9902279
stops the running of o * '

Sept. 2013

ol v T decays (N3°LO)

S(Q) ® Lattice QCD (NNLO)

( a DIS jets (NLO)

03} 0 Heavy Quarkonia (NLO)

o e'¢ jets & shapes (res. NNLO)
O(S(O)/J'IJ ~ (.14 ® 7 pole fit (N3LO)

v pp—> jets (NLO)

Estimates for the frozen
coupling indicate

= PQCD corrections to J(h0) 02}
can be relevant.

0.1}
2. In the absence of loops, the = QCD 05(Mg) = 0.1185 % 0.0006

QCD scale Apcp cannot arise 1 0 o[Gev] 1000
from renormalization.

3. Poincaré invariance, unitarity etc. should hold at each power of i
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The QCD scale Aqep

At O(h9) (no loops) the QCD scale can arise only via a boundary condition

5
5 A

Secp =0 = OiFL = —gfanc ALFC + g0 TP 0
A homogeneous, O (") solution with A° = (0 and hence VZ?A? = 0
Aa) =Y [dy(eey) ehu) T e(y)  appears unique:

B,C

» Linear in x for translation invariance: A% (x;) — A%(x3) # flx1 + x2)

e x -y for rotational invariance
e x-independent field energy density Z \Vflg(a:) | must be universal

= determines % up to a scale A [GeV]



Classical color field for mesons

Ay das 9 (1) DAP (1 — 2) $F (22) [0) $AB () = —— 548
AB/ 1 dxo 1 2 2 () Novs ()
A (a ZKZ/dy (@ y) V] (y) TP v (y)
B.C
<£131 D) ‘AO |CB14,$§4>

= Kk(x1,x2) T - (1 — X2) TfA

1 for each quark color A

<33i47 L } 5’3147 Ty')

— AV(x;x1, 70, A) = [:1: — %(a:l +w2)} Nt TA46A2 O ()

S

T — T2

Z (VA (x; 1, T2, A)]2 = 12A*  Universal field energy

a

Another hadron feels

0/ . AA __
ZA‘L(w’CBl’@’A)O(TrT =0 no field at any x

V(ZEl — 132 — 2gZTAA Ao(ml,ml,wg,A) Ag(mg;wl,a}Q,A)] = gAQ‘wl —CBQ‘
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Classical color field for baryons

M) = > / day des das Pl (1) 5 (@2) 0] (23) AP (21, 0, 23) [0)  PABC = ABCH
A,B,C

Expectation value of A%(x) = x Z /dy (@ y) V5 (y) TP Yo (y)
B,C

in wg(wl)wg(mg)wg(wg) 0) (A # B # C) determines the classical field:

62

d(wla L2, w3)

Ao(z; 1, T2, 3, ABC) = |& — (1 + T2 + x3)] - (TA%¢, + TBBxy + T x5)

1
where d(xi,x2,x3) = ﬁ\/(wl —x9)2 + (X2 — x3)% + (X3 — X1)?
Z {VxAg(a:; T1, X2, I3, ABC)]2 — 12A4 Universal field energy

Z eABC A (x: @y, o, 3, ABC) =0 No classical field for singlet state
A,B,C

2
V(mla L2, CBB) — QA d(wla L2, .’133)
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Bound state equation for mesons (rest frame)

Hy |M),, = M |M),, Bound state condition implies, with x = x1—x>

AV {707, <I>(:13)} +m ho, (I)(w)} = [M — V(az)}(l)(az)
V() = gh\|e| = V|

Expanding the 4 x 4 wave function F A
} £
in a basis of 16 Dirac structures F,-(x) Z >\( )

we may use rotational, parity and charge conjugatlon invariance to determine
which I';(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j]: —np =nc = (=1 75, 75, 13- ®, 3a-x x L

N
%

s=1,0l=j+1]: np=nc =+ 71, a =z, Ya-z, a-xx L, Ya-zx L, YYya-L

[
0™~ trajectory [s =1,
0T T trajectory |

[

(—1)

=4l mp=nc=—(-1) Ypa-x, VYpsa-exL, a-L y"a-L
(—1)
= (—-1)

0"~ trajectory [exotic] : np = W, 5o+ L

—> There are no solutions for quantum numbers that would be exotic
in the quark model (despite the relativistic dynamics)



Example: O trajectory wf's

) . np = (=1y+
(@) = [ lia- V4m) + 1 AYa@)  pe= (1)
) , »
Radial equation:  F} + (; + MV_ V)Fl’ + H(M — V)2 —m?* — ](J; 1)]F1 =0

Local normalizability at » = 0 and at V(r) = M determines the discrete M

m=>0
Mass spectrum:
4
Llnear Regge E ] o [ [ [ [ [ o [ o o
trajectories 3+ © © o o o o o o o o
with daughters
2 - [ o o [ [ o [ [ o o

Spectrum similar to
dual models
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Parton distributions have a sea component

In D=1+1 dimensions the sea component 1s prominent at low /e :

/ - O 1 D. D. Dietrich, PH, M. Jiarvinen
m/ie =Uu. arXiv 1212.4747
xg;f (xg;) xg;jf (xg;)
10 (a) L (b)
Sl 12}
10} .
6l sl (log scale 1n x3))
4t ol
4t
2 5
2 2 2 2 ° ° » xBj 2 2 M o . x
0.2 04 0.6 0.8 1.0 0.001 0.01 0.05 0.1

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

Note: Enhancement at low x is due to bd (sea), not to bid" (valence) component.

String breaking is not included.
Paul Hoyer Jlab 11 May 2018

Bj



States withP=M =0 ©

We required the wave function to be normalizable at r =0 and V'r = M
For M = 0 the two points coincide. Regular, massless solutions are found.

€6 99

The massless 0+ meson “0”” may mix with the perturbative vacuum.
This spontaneously breaks chiral invariance.

\U> — /dwl da 1@(371) (I)a(fBl — 5132)@@(332) |O> =0 \0>
, , o 1 2 v 1.2
Form=0and V'=1: CI)J(LIJ)—NU[JO(ZT ) toa-x— Ji(37 )}
/'/i
where Jo and J; are Bessel functions.

]5“ ‘0> — () State has vanishing four-momentum in any frame

It may form a non-trivial condensate.
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A chiral condensate (m = 0) !

Since | 0 ) has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

Ansatz:  |x) = exp(d) |0) implies (x| |x) = 4N,

An infinitesimal chiral rotation of the condensate generates a pion

U3 = exp[i5 [ dm vt @nsv@)]  Uy(8) 1) = (1- 287 )

where 7 is the massless 0 state with wave function ®__ = V5P
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Small quark mass: m > 0

The massless (M = 0) sigma 0+* state has wave function

Do(x) = f1(r) +io - for) +ivy -z ga(r)

Radial functions
are Laguerre fn’s

An M5 > 0 pion O state has rest frame wave function

r(x) = [Fi(r) +ia -z Fa(r) + 1 Fa()]vs  £y(0) = 22k (0)

M
7 2 / 1 2 2
F/ + (;Jr M—r>F1+ (M —7r)?—m?|F, =0
(|7t ()7 [x) = iP" fre " = Fy(0) = iMqfr
B M2 - M2
~ i —iP-x = N
(x[(z)ysv(x) T |x) = —1 5 fre Fi(0) =1 - fr

Relations are satisfied for any P.

A smooth m — 0 requires M;?> < m, which 1s OK at lowest order in m.
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