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e Light ion physics at EIC

Energy, luminosity, polarization, detection

Physics objectives

High—energy
process
Forward e Deuteron and spectator tagging
dotcted
electe Light-front nuclear structure
Neutron structure extraction
Final-state interactions
Strikman, Weiss, PRC97 (2018) 035209 [INSPIRE]
High-energy scattering Recent applications: Diffraction and
shadowing at small x, tensor polarization
LF methods Cosyn, Guzey, Sargsian, Strikman, CW, in preparation
Low-energy nuclear structure

e Future plans


https://inspirehep.net/record/1603107
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Light ions: Physics objectives

e Neutron structure

O Flavor decomposition of PDFs/GPDs/TMDs,
singlet vs. non-singlet QCD evolution, polarized gluon

Eliminate nuclear binding, non-nucleonic DOF!

e Nucleon interactions in QCD

Nuclear modification of quark/gluon densities
Q‘ Short-range correlations, non-nucleonic DOF
QCD origin of nuclear forces

Associate modifications with interactions!

e Coherent phenomena in QCD

N Coherent interaction of high—energy probe
with multiple nucleons, shadowing, saturation

|dentify coherent response!

[Nucleus rest frame view] ) ]
Common challenge: Multitude of possible nuclear

configurations during high-energy process.
Need to “control” configurations!



Light ions: Deuteron, spectator tagging

S=1 e Polarized deuteron

pn wave function simple, known well
incl. light-front WF for high-energy procs

Neutron spin—polarized

+ D-wave C

Intrinsic A isobars suppressed by Isospin = 0O
|deuteron) = |pn) + €|AA)

e Spectator nucleon tagging

€ Identifies active nucleon

©

Controls configuration through recoil momentum:

0 Spatial size, S <+ D wave

Tagging in fixed-target experiments

CLAS6/12 BONUS, recoil momenta p = 70-150 MeV
[Nucleus rest frame view]



Light ions: Deuteron, spectator tagging

High—energy
process

.
P, N

Forward
detection

e Spectator tagging with colliding beams

Spectator nucleon moves forward
with approx. 1/2 beam momentum

Detection with forward detectors integrated

in interaction region and beams optics
LHC pp/pA/AA, Tevatron pp, RHIC pp, ultraperipheral AA

e Advantages over fixed-target

No target material, p,(restframe) — O possible
Potentially full acceptance, good resolution
Can be used with polarized deuteron

Forward neutron detection possible

e Unique physics potential
JLab 2014/15 LDRD Project. Cosyn, Guzey, Higinbotham, Hyde,
Park, Nadel-Turonski, Sargsian, Strikman, Weiss* [Webpage|


https://www.jlab.org/theory/tag/

Tagging: Cross section and observables
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e Conditional DIS cross sectione+d — ¢ + X +p
Proton recoil momentum p; = a,pt, Ppr related to p,(restframe)
Conditional structure functions

Special case of semi-inclusive DIS — target fragmentation
QCD factorization Trentadue, Veneziano 93; Collins 97

No assumptions re nuclear structure, A = > N, etc.



Tagging: Theoretical description

e Light-front quantization Frankfurt, Strikman 80’s

High-energy scattering probes nucleus at fixed LF time
Deuteron LF wave function (pn|d) + = V(ap, Ppr)
Matching nuclear <+ nucleonic structure, sum rules

Effects of 4-momentum nonconservation in
intermediate states remain finite in high-energy limit

LF wave function describes low-energy nuclear structure
<> non-relativistic theory

e Composite description
Impulse approximation: DIS final state and

spectator nucleon evolve independently

Final-state interactions: Part of DIS final state
interacts with spectator, transfers momentum



Tagging: Free neutron structure

Neutron structure function F,,,
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e Extract free neutron structure

Proton momentum defines invariant
2 2
“neutron off-shellness”

Free neutron at pole t — M3 = 0:
On-shell extrapolation

Eliminates nuclear binding effects
and FSI

Sargsian, Strikman 05

e Precise measurements of Fy,,

F5,, extracted with few-percent
accuracy at z = 0.1

Uncertainty mainly systematic
JLab LDRD: Detailed estimates

Non-singlet Fy, — Fy,, B
sea quark flavor asymmetry d —



Tagging: Neutron spin structure

Spin asymmetry A”
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e Neutron spin structure with
pol deuteron and proton tagging

On-shell extrapolation of asymmetry

D-wave suppressed at p, = 0O:
Neutron 100% polarized

e Systematic uncertainties cancel

Weak off-shell dependence
of asymmetry

Momentum smearing/resolution
effects largely cancel in asymmetry

[e Statistics requirements

Physical asymmetries ~ 0.05-0.1,
effective polarization P.Pp ~ 0.5

Possible with lumi ~ 103*cm™2s!



Tagging: Neutron spin structure

Neutron spin asymmetry Ay, (X, QZ)
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Neutron spin structure with tagged DIS € + d — € + p(recoil) + X
EIC simulation, S = 2000 GeV?, L, =100 b~

Nuclear binding eliminated through on-shell extrapolation in recoil proton momentum
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Precise measurement of neutron spin structure
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Q2

ISeN

Wide kinematic range: Leading < higher twist, nonsinglet <+ singlet QCD evolution

Parton density fits: Flavor separation Au <+ Ad, gluon spin AG

Nonsinglet g1, — g1, and Bjorken sum rule



Tagging: Final-state interactions 11

e DIS final state can interact with spectator

Changes recoil momentum distributions in tagging

No effect on total cross section — closure

LYl R

e Nucleon DIS final state has two components

“Fast” FEj = O(v) hadrons formed outside nucleus
interact weakly with spectators

“Slow”  Ep = O(fthaqa) ~ 1 GeV formed inside nucleus
Interacts with hadronic cross section

dominant source of FSI

o FSI effects calculated =z ~ 0.1-0.5 Strikman, CW, PRC97 (2018) 035209

Experimental slow hadron multiplicity distributions Cornell, EMC, HERA
Hadron-nucleon low-energy scattering amplitudes

Light-front QM: Deuteron pn wave function, rescattering process Frankfurt, Strikman 81



Tagging: Final-state interactions ||
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FSI reduces IA cross section at [t — M%| #0 (< 0.2GeV?)

FSI vanishes at ¢t — MJQV — 0; on-shell extrapolation not affected

Other interesting aspects

12

Strikman, CW 18

FSI depends on recoil momentum angle in rest frame: forward-sideways-backward regions

Analogy with FSI in quasi-elastic deuteron breakup

FSI suppressed for x — 1: Minimum momentum of DIS hadrons grows



Tagging: Diffraction and shadowing 13
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e Diffraction in nucleon DIS at z <« 0.1

Nucleon remains intact, recoils with k ~ few 100 MeV (rest frame)

10-15% of events diffractive. Detailed studies at HERA: QCD factorization, diffractive PDFs

e Shadowing in deuteron DIS

Diffraction can happen on neutron or proton: QM interference

Reduction of cross section compared to IA — shadowing. Leading-twist effect.
Frankfurt, Strikman, Guzey 12. Great interest. Hints seen in J/1) production in UPCs at LHC ALICE.
e Diffraction and shadowing in tagged DIS

Differential studies as function of recoil momentum!

Large FSI effects. Outgoing pn scattering state must be orthogonal to d bound state
Guzey, Strikman, CW 18



Tagging: Diffraction and shadowing ||
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e Final-state interactions in diffractive tagged DIS e+d —e¢' + X +n+p

Large FSI effects due to orthogonality

Shadowing effects also calculated; can be studied in selected kinematics
Guzey, Strikman, CW, in preparation

Other application: High-pp deuteron breakup and gluonic structure
of small-size pn configuration Miller, Sievert, Venugopalan 17



Tagging: Polarized deuteron 15

e pol q e Deuteron spin density matrix p (S5, T)

neutron X
3 vector parameters, 5 tensor parameters

d pol Fixed by polarization measurements

J proton cf. Stokes’ parameters for photon
Op, Pot. Pp

e Polarized tagged cross section Cosyn, Sargsian, CW 17
do flux] (Fy + Fs + Fr) F; = functions(z, Q bp)
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Tagging: Polarized deuteron I 16
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e U + S cross sections identical to spin-1/2 target Bacchetta et al. 07

e T cross section has 23 new tensor structure functions specific to spin-1
4 structure functions survive in inclusive DlS, cf. bl — b4 Hoodbhoy, Jaffe, Manohar 88

¢-harmonics specific to tensor polarization — new handle

e T-odd structures vanish in impulse approximation,
provide sensitive tests of FSI



Tagging: Applications and extensions 17

e Tagged EMC effect

What momenta/distances in N N interactions
cause modification of partonic structure?

d
Connection with N N short-range correlations? \> N
average-size small-size
e Tagging A isobars
Tagged DISe +d — e’ + 7 + N, ©
reconstruct A from N
e
d 1
A structure function defined at pole, "4
reached by on-shell extrapolation N \)

e Tagging with complex nuclei A > 2

Could test isospin dependence and/or universality of bound nucleon structure

(A — 1) ground state recoil, e.g. 3He (e, e’ d) X
Ciofi, Kaptari, Scopetta 99; Kaptari et al. 2014

Theoretically challenging, cf. experience with quasielastic breakup
Needs input from 3-body Faddeev calculations for structure and breakup. Bochum-Krakow group.



Summary 18

e Light-ion physics program with EIC has great potential,

could be developed & articulated at same level as ep and eA(heavy)
Workshop “Polarized light ion physics with EIC", 5-9 Feb 2018, Ghent U, Belgium [webpage]

e Deuteron and spectator tagging overcome main limiting factor of nuclear DIS:
Control of nuclear configurations during high-energy process

e Intersection of low-energy nuclear structure and high-energy scattering:
Light-front methods as essential tool

Outlook

e Expand theoretical methods for nuclear structure in high-energy scattering:
Small-x phenomena, polarization, A > 2

e Interpret results of JLab 12 GeV experiments with nuclei:
Short-range correlations, EMC effect, tagged DIS

e Develop EIC science case through simulations with next-gen physics models
In collaboration with JLab EIC effort and EIC Center at Stony Brook/BNL (A. Deshpande et al.).
Simulation tools from 2014 /15 JLab LDRD project available at [webpage]


https://www.jlab.org/indico/event/246/
https://www.jlab.org/theory/tag/

Simulations: Forward detection 19
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forward proton electrons
. ion quads 26 mrad

bend (example)
'\ \ 6 mrad ion

GEMC/GEANT4 MC Geometry central detector outbend dipole neutron, gamma ZDC

e Forward detector integrated in interaction region and beam optics

Protons/neutrons/fragments travel through ion beam quadrupole magnets
Dispersion generated by dipole magnets
Detection using forward detectors — Roman pots, ZDCs

JLEIC design: Full acceptance, proton momentum resolution longit dp/p ~ 1073,
angular 00 ~ 0.2 mrad P Nadel-Turonski, Ch. Hyde et al.

e Intrinsic momentum spread in ion beam

ion dpg, 06

Transverse momentum spread o ~ few 10 MeV
electron
/ omin Smearing effect p,r(vertex) # p,r(measured),
IENVAR corrected by convolution

Dominant systematic uncertainty in tagged neutron structure
measurements. Correlated,  and Q?-indpendent. JLab LDRD



