

Pseudo-PDFs &Quasi-PDFs

Parton

Transverse Momentum Cut-off Pseudo-distribution TMDs qPDF/TMD relation Hard tail Gauge link Renormalization

Evolution in attice data

Summary

Pseudo-PDFs and Quasi-PDFs Structure A.V. Radyushkin (ODU/Jlab)

Light Cone 2018 May 14, 2018

▲□▶▲□▶▲□▶▲□▶ □ のQ@

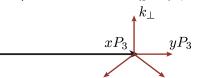
Pseudo-PDFs

&Quasi-PDFs

Parton Densities

May 11, 1918 – R.P. Feynman's birthday

- Feynman diagrams, propagator, path integrals, parton model ...
- Original Feynman approach to PDFs f(x): infinite momentum $P_3 \rightarrow \infty$ limit of $k_3 = xP_3$ momentum distributions (~ quasi-PDFs $Q(x, P_3)$)
- f(x) were treated as k_{\perp} -integrals of more detailed $f(x, k_{\perp})$ distributions
- From the start it was understood that $Q(x, P_3 \to \infty) \to f(x)$ limit exists only if $f(x, k_{\perp})$ rapidly decreases with k_{\perp}
- "Transverse momentum cut-off", $\langle k_{\perp}^2 \rangle \sim 1/R_{\rm hadr}^2$
- Question 1: why $Q(x, P_3)$ differs from f(x)?
- Question 2: how does $Q(x, P_3)$ convert into f(x) when $P_3 \to \infty$?
- Qualitative answer: yP_3 comes from two sources: from the motion of the hadron as a whole (xP_3) and from Fermi motion of quarks inside the hadron $(y - x)P_3 \sim 1/R_{hadr}$



(y − x)P₃ ~ 1/R_{hadr} part has the same origin as transverse momentum
 ⇒ One should be able to relate quasi-PDFs to TMDs

2/20

Parton

Transverse Momentum Cut-off

- Pseudo-distribution TMDs qPDF/TMD relation Hard tail
- Gauge link
- Renormalizati Reduced
- pseudo-ITD

Evolution in attice data Data Building MS ITE

Summary

Pseudo-distributions and PDFs

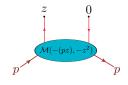
Parton Densities

Transverse Momentum Cut-o

Pseudo-distributions TMDs qPDF/TMD relation Hard tail Gauge link Renormalization

Evolution in lattice data Data Building MS IT

Summary



Basic matrix element (ignoring spin)

 $\langle p | \phi(0) \phi(z) | p \rangle = \mathcal{M}(-(pz), -z^2)$

- Lorentz invariance: $\mathcal M$ depends on z through $(pz) \equiv -\nu$ and z^2
- loffe time ν : $\mathcal{M}(\nu, -z^2) =$ loffe time pseudo-distribution (pseudo-ITD)
- Pseudo = off the light cone
- For any Feynman diagram, for arbitrary z^2 and arbitrary p^2

$$\mathcal{M}(\nu, -z^2) = \int_{-1}^1 dx \, e^{ix\nu} \, \mathcal{P}(x, -z^2)$$

- Limits $-1 \le x \le 1$, negative x correspond to anti-particles
- On the light cone: usual ITD and usual PDF $\mathcal{P}(x, 0) = f(x)$
- If $z^2 \to 0$ limit is singular, regularization (like $\overline{\rm MS}$) is needed, $f(x) \to f(x,\mu^2)$

$$\mathcal{M}(\nu,0)|_{\mu^2} \equiv \mathcal{I}(\nu,\mu^2) = \int_{-1}^1 dx \, e^{ix\nu} \, f(x,\mu^2)$$

• Pseudo-PDF $\mathcal{P}(x, -z^2)$: Fourier transform of pseudo-ITD with respect to ν for fixed z^2

Transverse momentum dependence and quasi-PDFs

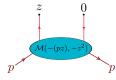
4/20

Pseudo-PDFs &Quasi-PDFs

Parton

- Transverse Momentum Cut-off Pseudo-distributior TMDs
- qPDF/TMD relation Hard tail Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITD



Basic matrix element (ignoring spin)

$$\langle p|\phi(0)\phi(z)|p\rangle = \mathcal{M}(-(pz), -z^2)$$

- Lorentz invariance: \mathcal{M} depends on z through $(pz) \equiv -\nu$ and z^2
- Take $z = (z_+ = 0, z_-, z_1, z_2)$. Then $\nu = -p^+z^-$ and $-z^2 = z_1^2 + z_2^2$ • Introduce TMD $\mathcal{F}(x, k_1^2 + k_2^2)$) :

$$\mathcal{M}(\nu, z_1^2 + z_2^2) = \int_{-1}^1 dx \ e^{ix\nu} \int_{-\infty}^\infty dk_1 dk_2 e^{i(k_1 z_1 + k_2 z_2)} \mathcal{F}(x, k_1^2 + k_2^2)$$

• Take $z = (0, 0, 0, z_3)$, then $-(pz) \equiv \nu = Pz_3$ and $-z^2 = z_3^2$ • Introduce quasi-PDF (Ji,2013)

$$\mathcal{M}(Pz_3, z_3^2) = \int_{-\infty}^{\infty} dy \, e^{iyPz_3} \, Q(y, P)$$

• Inverse transformation (using $z_3 = \nu/P$ on the second step)

$$Q(y,P) = \frac{P}{2\pi} \int_{-\infty}^{\infty} dz_3 \, e^{-iyPz_3} \, \mathcal{M}(Pz_3, z_3^2) = \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \, e^{-iy\nu} \, \mathcal{M}(\nu, \nu^2/P^2)$$

qPDF/TMD relation

Pseudo-PDFs &Quasi-PDFs

Parton Densitie

Transverse Momentum Cut-off Pseudo-distributions TMDs **qPDF/TMD relation** Hard tail Gauge link

Renormalizati Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITD

$$Q(y,P) = \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \ e^{-iy\nu} \ \mathcal{M}(\nu,\nu^2/P^2)$$
$$\mathcal{M}(\nu,z_1^2 + z_2^2) = \int_{-1}^{1} dx \ e^{ix\nu} \int_{-\infty}^{\infty} dk_1 dk_2 e^{i(k_1 z_1 + k_2 z_2)} \mathcal{F}(x,k_1^2 + k_2^2)$$

• Take $z_1 = 0, z_2 = \nu/P$ and use for qPDF

$$Q(y,P) = P \int_{-1}^{1} dx \int_{-\infty}^{\infty} dk_1 \mathcal{F}(x,k_1^2 + (y-x)^2 P^2)$$

- qPDF variable y has the $-\infty < y < \infty$ support, since $-\infty < k_2 < \infty$
- Relation between pseudo-PDF and TMD

$$\mathcal{P}(x, z_{\perp}^2) = \int d^2 \mathbf{k}_{\perp} e^{i(\mathbf{k}_{\perp} \mathbf{z}_{\perp})} \mathcal{F}(x, k_{\perp}^2)$$

Quasi-PDF to pseudo-PDF relation

$$Q(y,P) = \frac{|P|}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 \, e^{-i(y-x)Pz_3} \, \mathcal{P}(x,z_3^2)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Pseudo-PDFs, quasi-PDFs and TMDs

6/20

Pseudo-PDFs &Quasi-PDFs

Parton

- Transverse Momentum Cut-off Pseudo-distributions TMDs qPDF/TMD relation
- Hard tail
- Renormalizatio
- pseudo-ITD

Evolution in lattice data ^{Data} Building MS ITD

$$\mathcal{P}(x,z_{\perp}^2) = \int d^2 \mathbf{k}_{\perp} e^{i \left(\mathbf{k}_{\perp} \mathbf{z}_{\perp}\right)} \mathcal{F}(x,k_{\perp}^2)$$

- When $\mathcal{F}(x,k_{\perp}^2)$ rapidly vanishes with k_{\perp} , pseudo-PDF and pseudo-ITD are regular for $z^2 = 0$, and $\mathcal{P}(x,0) = f(x)$
- Recall quasi-PDF to pseudo-PDF relation

$$Q(y,P) = \frac{|P|}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 \, e^{-i(y-x)Pz_3} \, \mathcal{P}(x,z_3^2)$$

• Expand
$$\mathcal{P}(x, z_3^2)$$
 in z_3^2

$$\mathcal{P}(x, z_3^2) = \sum_{l=0}^{\infty} (z_3^2 \Lambda^2)^l \,\mathcal{P}_l(x)$$

•
$$Q(y, P)$$
 approaches $f(y)$ like

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \left(\frac{\Lambda^2}{P^2}\right)^l \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{P}_l(y)$$

・ロト・西ト・山田・山田・山下

Problems with $1/P^{2l}$ expansion

Pseudo-PDFs &Quasi-PDFs

Parton

Transverse Momentum Cut-off Pseudo-distribution

qPDF/TMD relation

- Hard tail
- Gauge link
- Renormalizatio
- Reduced pseudo-ITD

Evolution in lattice data Data Building $\overline{\mathrm{MS}}$ ITD

Summary

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \left(\frac{\Lambda^2}{P^2}\right)^l \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{P}_l(y)$$

- Support mismatch: $-\infty < y < \infty$ for quasi-PDF Q(y, P), while $\mathcal{P}_l(y)$'s vanish outside $-1 \le y \le 1$
- Do not take this expansion too literally
- Innocently-looking derivatives of $\mathcal{P}_l(y)$ generate infinite tower of singular functions like $\delta(y)$, $\delta(y \pm 1)$ and their derivatives
- Recall: even if a function f(y) has a nontrivial support Ω (say, −1 ≤ y ≤ 1), one may formally represent it by a series

$$f(y) = \sum_{N=0}^{\infty} \frac{(-1)^N}{N!} M_N \,\delta^{(N)}(y)$$

over the functions $\delta^{(N)}(y)$ with an apparent support at one point y = 0 only • M_N are moments of f(y)

$$M_N = \int_{\Omega} dy \, y^N \, f(y)$$

While the difference between Q(y, P) and f(y) is formally given by a series in powers of 1/P², its coefficients are not the ordinary functions of y

Moments of Quasi-PDFs

Pseudo-PDFs &Quasi-PDFs

Parton Densitie

- Transverse Momentum Cut-off Pseudo-distributions TMDs **qPDF/TMD relation**
- Hard tail Gauge link Renormalizati
- Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building <u>MS</u> ITD

In terms of TMDs:

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \int d^2k_{\perp} \frac{k_{\perp}^{2l}}{4^l P^{2l} (l!)^2} \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{F}(y,k_{\perp}^2)$$

• To eliminate mismatch, take y^n moments $\langle y^n \rangle_Q$ of the quasi-PDFs

$$\langle y^n \rangle_Q \equiv \int_{-\infty}^{\infty} dy \, y^n Q(y, P) = \sum_{l=0}^{[n/2]} \frac{n!}{(n-2l)!(l!)^2} \frac{\langle x^{n-2l} k_{\perp}^{2l} \rangle_{\mathcal{F}}}{4^l P^{2l}}$$

• $\langle x^{n-2l}k_{\perp}^{2l}\rangle_{\mathcal{F}}$ are the combined moments of TMDs

$$\langle x^{n-2l} k_{\perp}^{2l} \rangle_{\mathcal{F}} \equiv \int_{-1}^{1} dx \, x^{n-2l} \int d^2 k_{\perp} \, k_{\perp}^{2l} \, \mathcal{F}(x, k_{\perp}^2)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- $\bullet~$ Expansion makes sense only when $\mathcal{F}(x,k_{\perp}^2)$ vanishes faster than any power of $1/k_{\perp}^2$
- Is it possible to study the approach of Q(y, P) to f(y) for fixed y?

Relations between quasi-PDFs and TMDs 9/20

Pseudo-PDFs &Quasi-PDFs

- Parton Densities Transverse Momentum Cut-off Pseudo-distributions TMDs qPDF/TMD relation
- Hard tail Gauge link Renormaliza Reduced

Evolution in lattice data ^{Data} Building <u>MS</u> ITD *z*₃-dependence has the same origin as *k*_⊥ dependence of TMDs
 Quasi-PDFs can be obtained from TMDs (A.R., 2016)

$$Q(y,P)/P = \int_{-1}^{1} dx \int_{-\infty}^{\infty} dk_1 \mathcal{F}(x,k_1^2 + (y-x)^2 P^2)$$

Or from pseudo-PDFs

$$Q(y,P) = \frac{P}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 \ e^{i(x-y)(Pz_3)} \mathcal{P}(x,z_3^2)$$

Try factorized model

$$\mathcal{P}(x, z_3^2) = f(x)I(z_3^2)$$

• Popular idea: Gaussian dependence $I(z_3^2) = e^{-z_3^2 \Lambda^2/4}$

$$Q_G^{\text{fact}}(y, P) = \frac{P}{\Lambda\sqrt{\pi}} \int_{-1}^1 dx \, f(x) \, e^{-(y-x)P^2/\Lambda^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

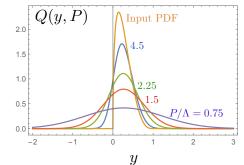
Numerical results for Gaussian model

10/20

Pseudo-PDFs &Quasi-PDFs

- Parton Densities Transverse
- Momentum Cut-off Pseudo-distributions TMDs **qPDF/TMD relation** Hard tail Gauge link
- Renormalizatio Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building MS ITD • Take PDF $f(x) = u_v(x) - d_v(x) = \frac{315}{32}\sqrt{x}(1-x)^3\theta(0 \le x \le 1)$ obtained by pseudo-PDF method (Orginos et al. 2017)



- Curves for $P/\Lambda = 0.75, 1.5, 2.25$ are close to qPDFs obtained by Lin et al (2016), upper momentum P = 1.3 GeV, effective $\Lambda \approx 600$ MeV
- Need $P \sim 4.5 \Lambda \approx 2.7 \text{ GeV}$ to get reasonably close to input PDF
- Note a lot of dirt for negative y, even for $P/\Lambda = 4.5$

Renormalizable theories and hard term

Pseudo-PDFs &Quasi-PDFs

Parton

Transverse Momentum Cut-off Pseudo-distribution TMDs qPDF/TMD relation

- Hard tail Gauge link
- Renormalizatio Reduced pseudo-ITD

Evolution in lattice data Data Building $\overline{\mathrm{MS}}$ ITD

Summary

- In QCD $\mathcal{F}(x,k_{\perp}^2)$ has $1/k_{\perp}^2$ hard part and moments $\langle x^{n-2l}k_{\perp}^{2l}\rangle_{\mathcal{F}}$ diverge
- In the l = 0 case, the divergence is logarithmic
- Reflects the perturbative evolution of quasi-PDFs Q(y, P) for large P
- Logarithmic singularity in z_3^2 in coordinate representation. At one loop,

$$\mathcal{M}^{\text{hard}}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \,\ln(z_3^2) \int_0^1 du \, B(u) \, \mathcal{M}^{\text{soft}}(u\nu, 0)$$

Altarelli-Parisi (AP) evolution kernel

$$B(u) = \left[\frac{1+u^2}{1-u}\right]_{-1}$$

• The function $\mathcal{M}(\nu,\nu^2/P^2)$ that generates the quasi-PDF gets

$$\mathcal{M}^{\rm hard}(\nu,\nu^2/P^2) = -\frac{\alpha_s}{2\pi} C_F \, \ln(\nu^2/P^2) \int_0^1 du \, B(u) \, \int_{-1}^1 dx \, e^{-iux\nu} \, f^{\rm soft}(x)$$

- Hard part of the quasi-PDF Q(y, P) has a $\ln P^2$ term $Q^{\text{hard}}(y, P) = \ln(P^2) \Delta(y) + \dots$
- It is nonzero in the $-1 \le y \le 1$ region only

$$\Delta(y) = \frac{\alpha_s}{2\pi} C_F \int_0^1 \frac{du}{u} B(u) f^{\rm soft}(y/u)$$

Hard part of quasi-PDF

Pseudo-PDFs &Quasi-PDFs

- Parton
- Transverse Momentum Cut-off Pseudo-distributions TMDs qPDF/TMD relation Hard tail
- Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building MS ITD Summary

- $\ln z_3^2$ singularity of the ITD leads to a logarithmic perturbative evolution of the quasi-PDF Q(y, P) for large P
- For TMDs, the $\ln z^2$ behavior translates into large- k_{\perp} hard tail

$$\mathcal{F}^{\text{hard}}(x,k_{\perp}^2) = \frac{\Delta(x)}{\pi k_{\perp}^2}$$

• Regularizing $1/k_{\perp}^2 \rightarrow 1/(k_{\perp}^2 + m^2)$ gives

$$\int_{-\infty}^{\infty} \frac{dk_1}{k_1^2 + (x-y)^2 P^2 + m^2} = \frac{\pi}{\sqrt{(x-y)^2 P^2 + m^2}}$$

Determines the hard part of a quasi-distribution

$$Q^{\text{hard}}(y,P) = \int_{-1}^{1} dx \, \frac{\Delta(x)}{\sqrt{(x-y)^2 + m^2/P^2}}$$

- $Q^{hard}(y, P)$ does not vanish outside $-1 \le y \le 1$ region for finite α_s
- Shape of Q(y, P) for y > 1 is calculable (if PDF is known)
- One should see that lattice gives it, and subtract
- Only then one gets PDF with $|x| \le 1$ support

Gauge link complications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Pseudo-PDFs &Quasi-PDFs

Parton

- Transverse Momentum Cut-off Pseudo-distributions TMDs qPDF/TMD relation
- Hard tail

Gauge link

- Renormalization Reduced pseudo-ITD
- Evolution in lattice data ^{Data} Building MS ITD
- Summary

- Terms outside $|y| \le 1$ are generated by $\ln z_3^2$ term
- In QCD, there is one more source of the z^2 -dependence of pseudo-ITD: gauge link $\hat{E}(0,z;A)$
- It has specific ultraviolet divergences
- $\bullet~$ Use Polyakov regularization $1/z^2 \rightarrow 1/(z^2-a^2)$ for gluon propagator in coordinate space
- Effect of the UV cut-off a is similar to that of the lattice spacing
- At one loop, link-related UV singular terms have the structure

$$\Gamma_{\rm UV}(z_3, a) \sim -\frac{\alpha_s}{2\pi} C_F \left[2 \frac{|z_3|}{a} \tan^{-1} \left(\frac{|z_3|}{a} \right) - 2 \ln \left(1 + \frac{z_3^2}{a^2} \right) \right]$$

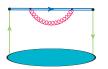
- For fixed a, these terms vanish when $z_3 \rightarrow 0$
- No violation of quark number conservation

Renormalize or exterminate?

Parton Densitie

- Transverse Momentum Cut-off Pseudo-distributions TMDs qPDF/TMD relation Hard tail Gauge link
- Renormalization Reduced pseudo-ITD
- Evolution in lattice data Data Building MS ITD
- Summary





- Structure of factorization for DIS in Feynman gauge
- Gluon insertions generate gauge link $\hat{E}(0, z; A)$
- Quark self-energy diagram is not factorized as $S^c(z) \times \langle AA \rangle$
- Operator ψ

 (0) Ê(0, z; A)ψ(z) should be accompanied by "no AA contractions"
- Link self-energy diagrams and UV-singular parts of vertex diagrams should be excluded together with associated z_3^2 -dependence
- It is not sufficient just to subtract UV divergences

・ コット (雪) (小田) (コット 日)

Easy way out: consider reduced pseudo-ITD

$$\mathfrak{M}(\nu,z_3^2) \equiv \frac{\mathcal{M}(\nu,z_3^2)}{\mathcal{M}(0,z_3^2)}$$

• $\mathfrak{M}(\nu, z_3^2)$ has finite $a \to 0$ limit

Reduced loffe-time pseudo-distribution

15/20

Pseudo-PDFs &Quasi-PDFs

Parton

Transverse Momentum Cut-off Pseudo-distributior TMDs

- qPDF/TMD relation
- Hard tail
- Gauge link
- Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building MS ITD

- Reduced pseudo-ITD $\mathfrak{M}(\nu, z_3^2)$ is a physical observable (like, say, DIS structure functions)
- No need to specify renormalization scheme, scale, etc.
- $\mathfrak{M}(\nu, z_3^2)$ is singular in $z_3 \to 0$ limit, $\ln z_3^2$ terms reflect perturbative evolution
- At one loop (with mass-type IR regularization)

$$\begin{split} \mathfrak{M}(\nu, z_3^2) &= \mathfrak{M}^{\text{soft}}(\nu, 0) - \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \left\{ \frac{1+w^2}{1-w} \left[\ln\left(z_3^2 m^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] \right. \\ &\left. + 4 \, \frac{\ln(1-w)}{1-w} \right\} \left[\mathfrak{M}^{\text{soft}}(w\nu, 0) - \mathfrak{M}^{\text{soft}}(\nu, 0) \right] \end{split}$$

- For light-cone PDF, one should take $z^2 = 0$ and use some scheme for resulting UV divergence, say, $\overline{\rm MS}$
- Ioffe-time distribution $\mathcal{I}(\nu,\mu^2)$ is UV scheme and scale dependent

$$\mathcal{I}(\nu,\mu^2) = \int_{-1}^{1} dx \, e^{ix\nu} \, f(x,\mu^2)$$

• Writing $\overline{\mathrm{MS}}$ ITD in terms of reduced pseudo-ITD

$$\begin{split} \mathcal{I}(\nu,\mu^2) &= \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ &\times \left\{ \frac{1+w^2}{1-w} \, \left[\ln\left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right] \right\}_{\mathbb{Z}} + \infty \, \mathbb{Q} \end{split}$$

Evolution in lattice data

Pseudo-PDFs &Quasi-PDFs

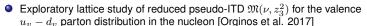
Parton

Transverse Momentum Cut-c Pseudo-distributi TMDs qPDF/TMD relati Hard tail Gauge link Renormalization

Evolution in lattice data Data

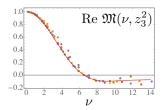
Building $\overline{\mathrm{MS}}$ ITD

Summary



- When plotted as function of ν, data both for real and imaginary parts lie close to respective universal curves
- Data show no polynomial z_3 -dependence for large z_3 though z_3^2/a^2 changes from 1 to ~ 200
- Apparently no higher-twist terms in the reduced pseudo-ITD
- Real part corresponds to the cosine Fourier transform of $q_v(x) = u_v(x) d_v(x)$

$$\Re(\nu) \equiv \operatorname{Re} \mathfrak{M}(\nu) = \int_0^1 dx \, \cos(\nu x) \, q_v(x)$$



• Overall curve corresponds to the function

$$f(x) = \frac{315}{32}\sqrt{x}(1-x)^3$$

- Obtained by forming cosine Fourier transforms of $x^a(1-x)^b$ -type functions and fitting a, b
- Shape is dominated by points with smaller values of Re M(ν, z₃²) → E → E → E → E

Evolution in lattice data, cont.

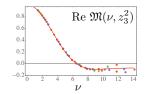
Pseudo-PDFs &Quasi-PDFs

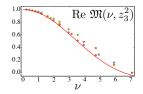
Parton Densitie

Transverse Momentum Cut-off Pseudo-distribution TMDs qPDF/TMD relation Hard tail Gauge link Renormalization Reduced___

Evolution in lattice data Data Building <u>MS</u> ITC

Summary





- Points corresponding to $7a \le z_3 \le 13a$ values
- Some scatter for points with $\nu \gtrsim 10$
- Otherwise, practically all the points lie on the universal curve based on *f*(*x*).
- No z₃-evolution visible in large-z₃ data
- Points in $a \le z_3 \le 6a$ region
- All points lie higher than the curve based on the z₃ ≥ 7a data
- Perturbative evolution increases real part of the pseudo-ITD when z_3 decreases
- Conjecture that the observed higher values of Re[®] for smaller-z₃ points may be a consequence of evolution

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Building $\overline{\mathrm{MS}}$ ITD

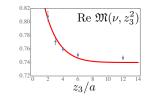
Pseudo-PDFs &Quasi-PDFs

Parton Densitie

Transverse Momentum Cut-off Pseudo-distribution TMDs qPDF/TMD relation Hard tail Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITD

Summary



- z_3 -dependence of the lattice points for "magic" loffe-time value $\nu = 3\pi/4$
- Eye-ball fit line has "Perturbative" $\ln(1/z_3^2)$ behavior for small z_3 , rapidly tends to a constant for $z_3 > 6a$
- $\Re(\nu, z_3^2)$ decreases when z_3 increases
- Starts to visibly deviate from a pure logarithmic $\ln z_3^2$ pattern for $z_3\gtrsim 5a$
- This sets the boundary $z_3 \leq 4a$ on the "logarithmic region"
- $\overline{\mathrm{MS}}$ ITD in terms of reduced pseudo-ITD

$$\begin{split} \mathcal{I}(\nu,\mu^2) &= \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ &\times \left\{ \frac{1+w^2}{1-w} \, \left[\ln\left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right] \right\}_+ \end{split}$$

- $\mathcal{I}(\nu,\mu^2)$ should not depend on z_3
- This happens only if, for some α_s, the ln z₃²-dependence of the 1-loop term cancels actual z₃²-dependence of the data, visible as scatter in the data

Building $\overline{\mathrm{MS}}$ ITD

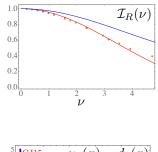
19/20

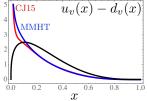
Pseudo-PDFs &Quasi-PDFs

Parton Densities

Transverse Momentum Cut-off Pseudo-distribution TMDs qPDF/TMD relation Hard tail Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building <u>MS</u> ITD





- We choose $\mu = 1/a$ which, at lattice spacing of 0.093 fm is \approx 2.15 GeV
- Using $\alpha_s/\pi = 0.1$ and $z_3 \le 4a$ data, we generate the points for $\mathcal{I}_R(\nu, (1/a)^2)$
- Upper curve corresponds to the ITD of the CJ15 global fit PDF for μ =2.15 GeV
- Evolved points are close to some universal curve with a rather small scatter
- The curve itself corresponds to the cosine transform of a normalized $\sim x^a(1-x)^b$ distribution with a = 0.35 and b = 3
- $\sim x^{0.35}(1-x)^3$ PDF compared to CJ15 and MMHT global fits for $\mu = 2.15$ GeV
- Unable to reproduce $\sim x^{-0.5}$ Regge behavior
- Possible reasons: large pion mass, quenched approximation

Summary

20/20

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Pseudo-PDFs &Quasi-PDFs

Parton

- Transverse Momentum Cut-off Pseudo-distribution TMDs qPDF/TMD relation
- Hard tail
- Gauge link
- Renormalizatio Reduced
- Evolution i
- lattice data Data Building MS ITE
- Summary

- $\bullet\,$ Analyzed nonperturbative structure of quasi-PDFs Q(y,P) using their relation to pseudo-ITDs and TMDs
- Shown that $(\Lambda^2/P^2)^n$ expansion for Q(y, P) involves generalized functions
- Using factorized models for TMDs, studied rate of approach of quasi-PDFs Q(y,P) to PDFs f(y) when $P \to \infty$
- Analyzed perturbative structure of quasi-PDFs using their relation to pseudo-ITDs and TMDs
- Argued that link-related terms should be "exterminated"
- Proposed to use reduced pseudo-ITD
- Studied evolution of exploratory lattice data for reduced pseudo-ITD