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QCD + OPE:

Moments of the parton distributions:

න
0

1

𝑑𝑥𝑥𝑛−2𝐹2 𝑥, 𝑄2 =෍

𝑖

𝑎𝑛
𝑖
𝐶𝑛

𝑖
𝑄2

𝑃 𝒪𝜇1⋯𝜇𝑛 𝑃 = 𝑎𝑛𝑃𝜇1 ⋯𝑃𝜇2

𝑎𝑛 = න𝑑𝑥 𝑥𝑛−1𝑞 𝑥

At leading order (LO) in pQCD:, 𝐹2 𝑥, 𝑄2 = 𝑥෍

𝑞

𝑒𝑞
2𝑞 𝑥, 𝑄2

Cross sections are measured

Cross sections written in 

terms of structure functions: 𝐹1(𝑥, 𝑄
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Quark distributions and quase-distributions



Light-cone quark distributions

The most general form of the matrix element is:

We use the following four-vectors

In general, we have

𝜆𝜇1𝜆𝜇2 𝑃 𝑂𝜇1 𝜇2 𝑃 = 2𝑎𝑛
0
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Matrix elements projected on the light-cone are protected

from target mass corrections



Taking the inverse Mellin transform

𝑞 𝑥 = න
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𝑊 𝜉−, 0 = 𝑒−𝑖𝑔0׬
𝜉−

𝐴+ 𝜂− 𝑑𝜂−

• Light cone correlations

• Equivalent to the distributions in the Infinite Momentum Frame

• Light cone dominated

• Not calculable on Euclidian lattice

(Wilson line)

Using



Quasi Distributions

with 𝜇 = 𝑀2/4(𝑃3)
2

𝑃 𝑂3⋯3 𝑃 = 2 ෤𝑎2𝑘
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(𝑃3)

2𝑘෍

𝑗=0

𝑘

𝜇𝑗
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𝑗! 2𝑘 − 2𝑗 !
≡ 2 ෤𝑎2𝑘(𝑃3)

2𝑘

X. Ji, “Parton Physics on a Euclidean Lattice,” PRL 110 (2013) 262002.

Suppose we project outside of the light-cone:

We take n=2 
= -1

Mass terms contribute

In general,



Defining

Taking the inverse 

Mellin transform

• Nucleon moving with finite momentum in the 

z direction

• Pure spatial correlation

• Can be simulated on a lattice

• Can be related to the usual distributions via a 

matching procedure



Infinite momentum:

Finite momentum:

Infrared region untouched when going from 

a finite to an infinite momentum

Extracting quark distributions from quark quasi-distributions

𝑝3 →∞

𝑝3 fixed

෤𝑞(±𝑦𝑐) = 0

In principle, 𝑦𝑐 → ∞
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(before integrating over the quark transverse

momentum 𝑘𝑇)



The two equations can be solved for the quark 

distributions, resulting in a matching equation:

𝛿𝑍𝐹 = ෨𝑍𝐹 − 𝑍𝐹

𝛿Γ = ෨Γ − Γ
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The integral in 𝑥 in the quasi-quark self-energy, ሚ𝑍𝐹, is left unintegrated, hence the

dependence on the limits of integration, ±𝑥𝑐. At the end, 𝑥𝑐 → ∞ in 𝛿𝑍𝐹 .

Because quasi-quark vertex correction, ෨Γ, only vanishes at the infinity,

the range of integration in the vertex also extends to zero in the convolution as 𝑦𝑐 → ∞

Where

are calculated using perturbation theory in the continuum

Matching equation



Vertex: 𝚪 or ෨𝚪

Self-energy: 𝒁𝑭 or ෩𝒁𝑭

Perturbative QCD in the continuum

X. Xiong, X. Ji, J. H. Zhang and Y. Zhao, PRD 90 014051 (2014)First computed in a cut-off scheme:

Then computed using 𝑀𝑆:

X. Ji, J. H. Zhang and Y. Zhao, PRD 92, 034006 (2015); J. W. Chen, X. Ji, J. H. Zhao, 

NPB 915 (2017) 1; X. Ji, J. H. Zhao, Y. Zhao, PRL 120 (2018) 112001

W. Wang, S. Zhao and R. Zhu, Eur. Phys. J. C78 (2018) 147;

I. W. Stewart, Y. Zhao, PRD 97 054512 (2018

Divergence associated

with 𝑥 → ±∞ not treated 

Renormalization of qPDF in the continuum:

Renormalization of qPDF to all orders in QCD

perturbation theory in configuration space:

T Ishikawa, Yan-Qing Ma, Jian-Wei Qiu, S. Yoshida,
PRD 96, 094019 (2017)



For the parallel case, the computation was done in the previous references. 

For the perpendicular case, 𝛾0,  in the 𝑀𝑆 scheme (𝑥𝑐 → ∞) the kernels of the matching are:
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One can compute the unpolarized distribution with the Wilson line parallel (𝛾3) 

or perpendicular (𝛾0) to the direction of the current

The above expressions have a problem: they have infinities associated with the limit

𝑥𝑐 → ∞ when doing the convolution and calculating the 𝑥 dependence of the integrals;

This infinity has its origin in the self-energy of the quasi-PDF outside the physical region;

A possible solution is to renormalize these infinities, having in mind that the Ward identity 

is always respected: particle number is always preserved



𝛿Γ𝑅 𝑦,
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And the final matching can be written taking 𝑥𝑐 → ∞

Renormalizes the whole momentum fraction in the unphysical region;

Automatically preserves quark number in all stages of the computation;

Quark number is not scale dependent;

For the helicity case, similar as above, obtained by adding a factor 2 1+ 𝑦 in the physical region;

For an alternative prescription, see T. Izubuchi et al., 1801.03917

The terms in red  have their origin in 

the renormalization of the infinities 

associated with the momentum 

fraction of the qPDFs



Computation of matrix elements using the lattice QCD 

𝑃3 =
6𝜋

𝐿
,
8𝜋

𝐿
,
10𝜋

𝐿
= 0.84, 1.11, 1.38

ℎ 𝑃3 , 𝑧 = 𝑃 ത𝜓 𝑧 Γ𝑊 (𝑧, 0)𝜓(0) 𝑃

𝐶3𝑝𝑡 𝑡, 𝜏, 0 = 𝑁𝛼(𝑃, 𝑡)𝒪(𝜏)𝑁𝛼(𝑃,0)

𝒪 𝑧, 𝜏, 𝑄2 = 0 =෍

𝑦

ത𝜓 𝑦 + 𝑧 Γ𝑊 (𝑦 + 𝑧, 𝑦)𝜓(𝑦)

Setup:

𝐶3𝑝𝑡(𝑇𝑠, 𝜏, 0; 𝑃3)

𝐶2𝑝𝑡(𝑇𝑠, 0; 𝑃3)
∝ ℎ 𝑃3 , 𝑧 , 0 ≪ 𝜏 ≪ 𝑇𝑠

𝑁𝑓 = 2, 𝛽 =
6

𝑔0
2 = 2.10, 𝑎 = 0.0938 3 2 𝑓𝑚

483 × 96, 𝐿 = 4.5𝑓𝑚, 𝑚𝜋 = 0.1304 4 𝐺𝑒𝑉, 𝑚𝜋𝐿 = 2.98(1)

GeV

Where the matrix elements (ME) are:

With the 3 point function given by:

And



The signal for the computation of 𝐶2𝑝𝑡 and 𝐶3𝑝𝑡 decays exponentially with the nucleon 

momentum 𝑃3. 

This decay can be attenuated, although not eliminated, by using momentum smearing in 

the quark fields:

𝑆𝑀 𝑘 𝜓 𝑥 =
1

1 + 8𝜅
𝜓 𝑥 + 𝜅 ෍𝑒𝑖𝑘 Ƹ𝑗𝑈𝑗 𝑥 𝜓(𝑥 + Ƹ𝑗)

The signal also decays exponentially with the source-sink separation 𝑇𝑠, which, however,

has to be large enough to prevent excited states contamination. 

We have then a problem: 

1) if 𝑇𝑠 is kept small, one can go to high 𝑃3, but the final result is meaningless because

of contamination from  excited states;

2) if 𝑇𝑠 is large enough to make sure that there is no excited states contamination, then

𝑃3 cannot be too large, assuming reasonable computer time;

3) a compromise has to be built: control over excited states is the priority!



Importance of a correct source-sink separation

Real and imaginary parts of ℎ(𝑃3, 𝑧)

𝑻𝒔 = 𝟖𝒂 ≈ 𝟎. 𝟕𝟓 fm

Large excited states contamination

at larger values of 𝑃3

𝑻𝒔 = 𝟏𝟐𝒂 ≈ 𝟏. 𝟏𝟑 fm

Excited states seem under control



We need to go to large 𝑇𝑠 to avoid excited state contamination. 𝑇𝑠 = 12𝑎 seems to 

be the lowest safe choice;

We show below the computational cost, for the values of 𝑃3 used in our simulations, for 

the various Dirac structures

It is clear from the plot that  𝛾0 cheaper than 𝛾3 for the computation of the unpolarized PDFs

The 𝛾0 insertion also avoids mixing, and it has thus smaller statistical uncertainties 

associated with it than 𝛾3

𝑇𝑠 = 12𝑎 ≈ 1.13 fm



Computation made for unpolarized (𝛾0) and helicity (𝛾5𝛾3 ) distributions 

6 directions of Wilson line: ±𝑥,±𝑦,±𝑧

16 source positions

Separation 𝑇𝑠 ≈ 1.1 fm as the lowest safe choice

With these configurations, we compute the corresponding matrix

elements



Unpolarized

Helicity

The bare matrix elements ℎ 𝑃3 , 𝑧 = 𝑃 ത𝜓 𝑧 ΓW z, 0 𝜓(0) 𝑃 , however, contain divergences:

Renormalization is necessary! 

C. Alexandrou et al., 1803.02685



Renormalization

Before 2017, only the bare ME were available: a direct comparison with data was compromised

In 2017, renormalization of the ME became available, both:

1) Perturbatively, where it was shown that: M. Constantinou, H. Panapaulos, PRD (2017)054506

Mixing between the vector 𝛾3 , and scalar operators happen. For the case of the vector 𝛾0 ,
which is perpendicular to the Wilson line, such mixing does not happen;

A linear divergence, ∝
𝑧

𝑎
, appears in the tadpole diagrams. It resums, in all orders 

of PT, to an exponential form 𝐸𝑥𝑝 −
𝑐 𝑧

𝑎
Dotsenko et al. NPB 169 (1980) 527

2) Nonperturbatively:

Using the RI’-MOM to remove the linear divergence, resumed into the exponential, plus

the log divergence with respect to the regulator 𝑎
C. Alexandrou et al., NPB 923 (2017) 394 (Frontier Article)

J-W. Chen et al., PRD 97 014505 (2018)

Using the auxiliary field approach J. Green, K. Jansen, FS 1707.07152

We present results for the RI’-MOM scheme



We need however, the distributions in the 𝑀𝑆 scheme. 

Two options to obtain the quark distributions from the ME renormalized in the

RI’-MOM scheme:

a) Compute the qPDFs in the RI’-MOM. Then compute a matching kernel relating

qPDFs in the RI’-MOM scheme directly to PDFs in the 𝑀𝑆 scheme;
Stewart & Zhao, PRD 97 054512 (2018)

b) Or go through a two step process:

1) Convert the ME from RI’-MOM to 𝑀𝑆 using perturbation theory
M. Constantinou, H. Panapaulos, PRD (2017)054506

2) Compute the qPDF in the 𝑀𝑆 scheme, and then match the  𝑀𝑆 qPDF to the

𝑀𝑆 PDF 
C. Alexandrou et al., NPB 923 (2017) 394 (Frontier Article)

C. Alexandrou et al., 1803.02685



Renormalization factor for helicity

RI’-MOM scheme at the scale  ҧ𝜇0= 3 GeV

Perturbative conversion to  𝑀𝑆 scheme at the scale 2 GeV

𝑍𝑞
−1 𝑍𝒪

1

12
𝑇𝑟[𝜈 𝑝,𝑧 𝜈𝐵𝑜𝑟𝑛 𝑝,𝑧 )−1 |𝑝2=ഥ𝜇02 = 1

𝑍𝑞 =
1

12
𝑇𝑟[ 𝑆 𝑝

−1
𝑆𝐵𝑜𝑟𝑛 𝑝 ]|𝑝2=ഥ𝜇02

The vertex function 𝜈 contains the same divergences

as the nucleon matrix elements

The factor 𝑍𝒪 subtracts both the linear and log

divergences.

The linear divergence associated with the Wilson line makes 𝑍𝒪 to grow very fast for

large 𝑧;

That makes the renormalized ME to have amplified errors at large 𝑧;

We thus apply stout smearing to the Wilson lines only in order to smooth the divergence;

In the end, if the procedure is consistent, the resulting renormalized ME should be the
same, independent of the smearing applied 



Renormalized ME for the helicity case

Bare ME

Renormalized ME

𝑃3 ≈ 0.83 𝐺𝑒𝑉

ME sit on top of each other after renormalization

Renormalization is doing its job!



The 𝑥 dependence of the quark distributions

Once we have the ME, we compute the qPDF:

෤𝑞 𝑥, 𝜇2 , 𝑃3 = ׬
𝑑𝑧

4𝜋
𝑒−𝑖𝑥𝑃3𝑧 𝑃 ത𝜓 𝑧 ΓW z,0 𝜓(0) 𝑃

And then apply the matching plus target mass corrections to obtain the light-cone PDF:

𝑞 𝑥, 𝜇 = ∞−׬
+∞ 𝑑𝜉

𝜉
𝐶 𝜉,

𝜇

𝑥𝑃3
෤𝑞

𝑥

𝜉
, 𝜇,𝑃3

Unpolarized nonsinglet quark distribution

C. Alexandrou et al., 1803.02685



Helicity nonsinglet quark distribution

Remarkable qualitative agreement

For the values of 𝑃3 used here, the ME do not decay fast enough, that is, before 𝑒−𝑖𝑥𝑃3𝑧

becomes negative

When doing the Fourier transform, unphysical oscillations appear, remarkably for 𝑥 > 0.5,

and an unphysical minimum at 𝑥 ≈ −0.2

C. Alexandrou et al., 1803.02685



Effect of the physical pion mass

Unphysical pion mass

𝒎𝝅 ≈ 𝟑𝟕𝟐 MeV

Unphysical x Physical 𝒎𝝅



We have shown an ab initio computation of the 𝑥 dependence of nonsinglet

PDFs at the physical point;

Strong pion mass dependence: the physical mass is essential to produce a 

shape for the PDF that is similar to the phenomenological fits;

Enormous progress over the last couple of years:

a complete non-perturbative prescription for the ME has emerged

a perturbative conversion from RI’-MOM and 𝑀𝑆 has been developed

it is now possible to use an operator for the unpolarized PDF that avoids

mixing

the matching equations relating the qPDFs to the light-cone PDFs have 

been improved

Physical point computation also presented in J.W. Chen 1803.04393

qPDFs are intrinsically related to pseudo-PDFs (see the talk by A. Radyushkin)

Summary




