# A lattice QCD computation of quark distributions at the physical point

Fernanda Steffens University of Bonn

In collaboration with: Constantia Alexandrou (Univ. of Cyprus; Cyprus Institute), Krzysztof Cichy (Adam Mickiewicz, Poland) Martha Constantinou (Temple University) Karl Jansen (DESY – Zeuthen) Haralambos Panagopoulos (Uni. Of Cyprus) Aurora Scapellato (HPC-LEAP; Uni. Of Cyprus; Uni. of Wuppertal)





# Outline

- Quark distributions and quark quasi-distributions
- Extracting quark distributions from the quasi-distributions
- Computation of the matrix elements using lattice QCD
- Renormalization
- The x dependence of the quark distributions
- Summary

# Quark distributions and quase-distributions

Cross sections are measured



Cross sections written in terms of structure functions:

 $F_1(x,Q^2), F_2(x,Q^2), g_1(x,Q^2), g_2(x,Q^2), \cdots$ 

QCD + OPE:

$$dxx^{n-2}F_2(x,Q^2) = \sum_i a_n^{(i)}C_n^{(i)}(Q^2)$$

$$\langle P | \mathcal{O}_{\mu_1 \cdots \mu_n} | P \rangle = a_n P_{\mu_1} \cdots P_{\mu_2}$$

Moments of the parton distributions:

At leading order (LO) in pQCD:,

$$a_n = \int dx \; x^{n-1} q(x)$$

$$F_2(x, Q^2) = x \sum_q e_q^2 q(x, Q^2)$$



Parton distributions

#### Light-cone quark distributions

The most general form of the matrix element is:

 $\langle P|O^{\mu_1\mu_2\cdots\mu_n}|P\rangle=2a_n^{(0)}\Pi^{\mu_1\mu_2\cdots\mu_n}$ 

$$\Pi^{\mu_1\mu_2\cdots\mu_n} = \sum_{j=0}^k (-1)^j \frac{(2k-j)!}{2^j (2k)!} \{g\cdots gP\cdots P\}_{k,j} (P^2)^j$$

We use the following four-vectors

$$P = (P_0, 0, 0, P_3)$$
  $\lambda = (1, 0, 0, -1)/\sqrt{2}$   $\lambda \cdot P = (P_0 + P_3)/\sqrt{2} = P_+$ 

$$\lambda_{\mu_1} \lambda_{\mu_2} \left\langle P \left| O^{\mu_1 \, \mu_2} \right| P \right\rangle = 2a_n^{(0)} \left( P^+ P^+ - \lambda^2 \, \frac{M^2}{4} \right) = 2a_n^{(0)} P^+ P^+$$

In general, we have

Matrix elements projected on the light-cone are protected from target mass corrections

#### Taking the inverse Mellin transform

$$a_n^{(0)} = \int dx \, x^{n-1} q(x) \qquad q(x) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dn \, x^{-n} a_n^{(0)}$$

Using

$$a_n^{(0)} = \langle P | O^{+\dots+} | P \rangle / 2 (P^+)^n$$

$$q(x) = \int_{-\infty}^{+\infty} \frac{d\xi^{-}}{4\pi} e^{-ixP^{+}\xi^{-}} \langle P | \bar{\psi}(\xi^{-})\gamma^{+}W(\xi^{-},0)\psi(0) | P \rangle$$

$$W(\xi^{-}, 0) = e^{-ig \int_{0}^{\xi^{-}} A^{+}(\eta^{-}) d\eta^{-}}$$
 (Wilson line)

- Light cone correlations
- Equivalent to the distributions in the Infinite Momentum Frame
- Light cone dominated  $\xi^2 = t^2 z^2 \sim 0$
- Not calculable on Euclidian lattice  $t^2 + z^2 \sim 0$

#### **Quasi Distributions**

X. Ji, "Parton Physics on a Euclidean Lattice," PRL 110 (2013) 262002.

Suppose we project outside of the light-cone:

$$\lambda = (0,0,0,-1)$$
  $P = (P_0,0,0,P_3)$   $\lambda \cdot P = P_3$ 

We take n=2

$$\langle P|O^{33}|P\rangle = 2\tilde{a}_{n}^{(0)}(P^{3}P^{3} - \lambda^{2}P^{2}/4) = 2\tilde{a}_{n}^{(0)}((P^{3})^{2} + P^{2}/4)$$
  
Mass terms contribute

In general,

$$\langle P|O^{3\cdots 3}|P\rangle = 2\tilde{a}_{2k}^{(0)}(P_3)^{2k} \sum_{j=0}^k \mu^j \frac{(2k-j)!}{j!(2k-2j)!} \equiv 2\tilde{a}_{2k}(P_3)^{2k}$$
  
with  $\mu = M^2/4(P_3)^2$ 

Defining

$$\widetilde{a}_n^{(0)} = \int dx \, x^{n-1} \widetilde{q}^{(0)}(x) \qquad \widetilde{a}_n = \int dx \, x^{n-1} \widetilde{q}(x)$$

Taking the inverse Mellin transform

$$\tilde{q}^{(0)}(x) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dn \, x^{-n} \tilde{a}_n^{(0)} \qquad \tilde{q}(x) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dn \, x^{-n} \tilde{a}_n$$

$$\widetilde{q}(x) = \widetilde{q}^{(0)}(\xi)/(1+\mu\xi^2) + antiquarks$$

 $\xi = \frac{2x}{1 + \sqrt{1 + 4\mu x^2}}$ 

$$\widetilde{q}(x,P_3) = \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{izk_3} \langle P \big| \overline{\psi}(z) \gamma^3 W(z,0) \psi(0) \big| P \rangle$$

$$W(z,0) = e^{-ig\int_0^z A^3(z')dz'}$$

$$k_3 = xP_3$$

- Nucleon moving with finite momentum in the z direction
- Pure spatial correlation
- Can be simulated on a lattice
- Can be related to the usual distributions via a matching procedure

# Extracting quark distributions from quark quasi-distributions

Infrared region untouched when going from a finite to an infinite momentum

Infinite momentum:

$$p_3 \to \infty$$

(before integrating over the quark transverse momentum  $k_T$ )

$$q(x,\mu) = q_{bare}(x) \left\{ 1 + \frac{\alpha_s}{2\pi} Z_F(\mu) \right\} + \frac{\alpha_s}{2\pi} \int_x^1 \Gamma\left(\frac{x}{y},\mu\right) q_{bare}(y) \frac{dy}{y} + \mathcal{O}(\alpha_s^2)$$

Finite momentum:

 $p_{3} \,\,$  fixed

$$\tilde{q}(x,P_3) = q_{bare}(x) \left\{ 1 + \frac{\alpha_s}{2\pi} \tilde{Z}_F(P_3) \right\} + \frac{\alpha_s}{2\pi} \int_{x/y_c}^1 \tilde{\Gamma}\left(\frac{x}{y}, P_3\right) q_{bare}(y) \frac{dy}{y} + \mathcal{O}(\alpha_s^2)$$

 $\tilde{q}(\pm y_c) = 0$ 

In principle,  $y_c \to \infty$ 

# The two equations can be solved for the quark distributions, resulting in a matching equation:

$$q(x,\mu) = \tilde{q}(x,p_3) - \frac{\alpha_s}{2\pi} \tilde{q}(x,p_3) \delta Z_F\left(\frac{\mu}{p_3}, x_c\right) - \frac{\alpha_s}{2\pi} \int_{-x_c}^{-|x|/y_c} \delta \Gamma\left(y,\frac{\mu}{p_3}\right) \tilde{q}\left(\frac{x}{y}, p_3\right) \frac{dy}{|y|} - \frac{\alpha_s}{2\pi} \int_{+|x|/y_c}^{+x_c} \delta \Gamma\left(y,\frac{\mu}{p_3}\right) \tilde{q}\left(\frac{x}{y}, p_3\right) \frac{dy}{|y|}$$

**Matching equation** 

### Where $\delta \Gamma = \tilde{\Gamma} - \Gamma$

 $\delta Z_F = \tilde{Z}_F - Z_F$  are calculated using perturbation theory in the continuum

The integral in *x* in the quasi-quark self-energy,  $\tilde{Z}_F$ , is left unintegrated, hence the dependence on the limits of integration,  $\pm x_c$ . At the end,  $x_c \rightarrow \infty$  in  $\delta Z_F$ .

Because quasi-quark vertex correction,  $\tilde{\Gamma}$ , only vanishes at the infinity, the range of integration in the vertex also extends to zero in the convolution as  $y_c \to \infty$ 

#### Perturbative QCD in the continuum



Renormalization of qPDF to all orders in QCD T Ishikawa, Yan-Qing Ma, Jian-Wei Qiu, S. Yoshida, perturbation theory in configuration space: PRD 96, 094019 (2017)

One can compute the unpolarized distribution with the Wilson line parallel ( $\gamma_3$ ) or perpendicular ( $\gamma_0$ ) to the direction of the current

For the parallel case, the computation was done in the previous references. For the perpendicular case,  $\gamma_0$ , in the  $\overline{MS}$  scheme ( $x_c \rightarrow \infty$ ) the kernels of the matching are:

$$\delta\Gamma\left(y,\frac{\mu}{p_{3}}\right) = -\frac{1+y^{2}}{1-y}ln\frac{y-1}{y} + 1 \qquad y > 1 \qquad \delta Z_{F}\left(\frac{\mu}{p_{3}},x_{c}\right) = -\int_{-x_{c}}^{+x_{c}}d\eta\left(\frac{1+\eta^{2}}{1-\eta}ln\frac{\eta-1}{\eta} - 1\right) \qquad \eta > 1$$

$$-\frac{1+y^{2}}{1-y}\ln\frac{\mu^{2}}{4p_{3}^{2}y(1-y)} - \frac{y+y^{2}}{1-y} \qquad 0 < y < 1 \qquad \qquad \int_{-x_{c}}^{+x_{c}} d\eta \left(\frac{1+\eta^{2}}{1-\eta}\ln\frac{\mu^{2}}{4p_{3}^{2}\eta(1-\eta)} + \frac{\eta+\eta^{2}}{1-\eta}\right) \qquad 0 < \eta < 1 \qquad \qquad \\ -\frac{1+y^{2}}{1-y}\ln\frac{y}{y-1} - 1 \qquad \qquad y < 0 \qquad \qquad \int_{-x_{c}}^{+x_{c}} d\eta \left(\frac{1+\eta^{2}}{1-\eta}\ln\frac{\eta}{\eta-1} + 1\right) \qquad \qquad \eta < 0$$

The above expressions have a problem: they have infinities associated with the limit  $x_c \rightarrow \infty$  when doing the convolution and calculating the *x* dependence of the integrals;

This infinity has its origin in the self-energy of the quasi-PDF outside the physical region;

A possible solution is to renormalize these infinities, having in mind that the Ward identity is always respected: particle number is always preserved

And the final matching can be written taking  $x_c \rightarrow \infty$ 

$$\delta \Gamma^{R}\left(y, \frac{\mu}{p_{3}}\right) = -\frac{1+y^{2}}{1-y} ln \frac{y-1}{y} + 1 + \frac{3}{2y} \qquad y > 1$$

$$-\frac{1+y^2}{1-y}\ln\frac{\mu^2}{4p_3^2y(1-y)} - \frac{y+y^2}{1-y} \qquad 0 < y < 1$$

$$-\frac{1+y^2}{1-y}\ln\frac{y}{y-1} - 1 + \frac{3}{2(1-y)} \qquad y < 0$$

The terms in red have their origin in the renormalization of the infinities associated with the momentum fraction of the qPDFs

$$\delta Z_F^R\left(\frac{\mu}{p_3}\right) = \int_{-\infty}^{+\infty} d\eta \left(\frac{1+\eta^2}{1-\eta} \ln \frac{\eta-1}{\eta} - 1 - \frac{3}{2\eta}\right) \qquad \eta > 1$$

$$\int_{-\infty}^{+\infty} d\eta \left( \frac{1+\eta^2}{1-\eta} \ln \frac{\mu^2}{4p_3^2 \eta (1-\eta)} + \frac{\eta+\eta^2}{1-\eta} \right) \qquad 0 < \eta < 1$$

$$\int_{-\infty}^{+\infty} d\eta \left( \frac{1+\eta^2}{1-\eta} \ln \frac{\eta}{\eta-1} + 1 - \frac{3}{2(1-\eta)} \right) \qquad \eta < 0$$

Renormalizes the whole momentum fraction in the unphysical region;

Automatically preserves quark number in all stages of the computation;

Quark number is not scale dependent;

For the helicity case, similar as above, obtained by adding a factor 2(1 + y) in the physical region;

For an alternative prescription, see T. Izubuchi et al., 1801.03917

# Computation of matrix elements using the lattice QCD

$$\frac{C^{3pt}(T_s, \tau, 0; P_3)}{C^{2pt}(T_s, 0; P_3)} \propto h(P_3, z), \qquad 0 \ll \tau \ll T_s$$

With the 3 point function given by:

$$\mathcal{C}^{3pt}(t,\tau,0) = \left< N_{\alpha}(\vec{P},t)\mathcal{O}(\tau)\overline{N_{\alpha}}(\vec{P},0) \right>$$



#### And

$$\mathcal{O}(z,\tau,Q^2=0) = \sum_{\vec{y}} \bar{\psi}(y+z) \Gamma W (y+z,y) \psi(y)$$

Where the matrix elements (ME) are:  $h(P_3, z) = \langle P | \bar{\psi}(z) \Gamma W(z, 0) \psi(0) | P \rangle$ 

Setup:

$$N_f = 2,$$
  $\beta = \frac{6}{g_0^2} = 2.10,$   $a = 0.0938(3)(2) fm$   
 $48^3 \times 96,$   $L = 4.5 fm,$   $m_\pi = 0.1304(4) GeV,$   $m_\pi L = 2.98(1)$ 

$$P_3 = \frac{6\pi}{L}, \frac{8\pi}{L}, \frac{10\pi}{L} = 0.84, 1.11, 1.38 \text{ GeV}$$

The signal for the computation of  $C^{2pt}$  and  $C^{3pt}$  decays exponentially with the nucleon momentum  $P_3$ .

This decay can be attenuated, although not eliminated, by using momentum smearing in the quark fields:

$$S_M(k)\psi(x) = \frac{1}{1+8\kappa} \left[ \psi(x) + \kappa \sum \frac{e^{ik\hat{j}} U_j(x)\psi(x+\hat{j})}{1+8\kappa} \right]$$

The signal also decays exponentially with the source-sink separation  $T_s$ , which, however, has to be large enough to prevent excited states contamination.

We have then a problem:

- 1) if  $T_s$  is kept small, one can go to high  $P_3$ , but the final result is meaningless because of contamination from excited states;
- 2) if  $T_s$  is large enough to make sure that there is no excited states contamination, then  $P_3$  cannot be too large, assuming reasonable computer time;
- 3) a compromise has to be built: control over excited states is the priority!

#### Importance of a correct source-sink separation

#### Real and imaginary parts of $h(P_3, z)$



 $T_s = 8a \approx 0.75$  fm

Large excited states contamination at larger values of  $P_3$ 

 $T_s = 12a \approx 1.13$  fm



Excited states seem under control

We need to go to large  $T_s$  to avoid excited state contamination.  $T_s = 12a$  seems to be the lowest safe choice;

We show below the computational cost, for the values of  $P_3$  used in our simulations, for the various Dirac structures



It is clear from the plot that  $\gamma_0$  cheaper than  $\gamma_3$  for the computation of the unpolarized PDFs

The  $\gamma_0$  insertion also avoids mixing, and it has thus smaller statistical uncertainties associated with it than  $\gamma_3$ 

Computation made for unpolarized ( $\gamma_0$ ) and helicity ( $\gamma_5\gamma_3$ ) distributions

6 directions of Wilson line:  $\pm x, \pm y, \pm z$ 

16 source positions

Separation  $T_s \approx 1.1$  fm as the lowest safe choice

| $P_3 = \frac{6\pi}{L}$ |                |                | $P_3 = \frac{8\pi}{L}$ |               |                | $P_3 = \frac{10\pi}{L}$ |                |                |
|------------------------|----------------|----------------|------------------------|---------------|----------------|-------------------------|----------------|----------------|
| Ins.                   | $N_{\rm conf}$ | $N_{\rm meas}$ | Ins.                   | $N_{ m conf}$ | $N_{\rm meas}$ | Ins.                    | $N_{\rm conf}$ | $N_{\rm meas}$ |
| $\gamma_0$             | 50             | 4800           | $\gamma_0$             | 425           | 38250          | $\gamma_0$              | 655            | 58950          |
| $\gamma_5\gamma_3$     | 65             | 6240           | $\gamma_5\gamma_3$     | 425           | 38250          | $\gamma_5\gamma_3$      | 655            | 58950          |

With these configurations, we compute the corresponding matrix elements



C. Alexandrou et al., 1803.02685

The bare matrix elements  $h(P_3, z) = \langle P | \bar{\psi}(z) \Gamma W(z, 0) \psi(0) | P \rangle$ , however, contain divergences:

Renormalization is necessary!

# Renormalization

Before 2017, only the bare ME were available: a direct comparison with data was compromised

In 2017, renormalization of the ME became available, both:

1) Perturbatively, where it was shown that: M. Constantinou, H. Panapaulos, PRD (2017)054506

Mixing between the vector  $\gamma_3$ , and scalar operators happen. For the case of the vector  $\gamma_0$ , which is perpendicular to the Wilson line, such mixing does not happen;

A linear divergence,  $\propto \frac{|z|}{a}$ , appears in the tadpole diagrams. It resums, in all orders of PT, to an exponential form  $Exp\left(-\frac{c|z|}{a}\right)$  Dotsenko et al. NPB 169 (1980) 527

2) Nonperturbatively:

Using the RI'-MOM to remove the linear divergence, resumed into the exponential, plus the log divergence with respect to the regulator a

C. Alexandrou et al., NPB 923 (2017) 394 (Frontier Article) J-W. Chen et al., PRD 97 014505 (2018)

Using the auxiliary field approach J. Green, K. Jansen, FS 1707.07152

We present results for the RI'-MOM scheme

We need however, the distributions in the  $\overline{MS}$  scheme.

Two options to obtain the quark distributions from the ME renormalized in the RI'-MOM scheme:

- a) Compute the qPDFs in the RI'-MOM. Then compute a matching kernel relating qPDFs in the RI'-MOM scheme directly to PDFs in the  $\overline{MS}$  scheme; Stewart & Zhao, PRD 97 054512 (2018)
- b) Or go through a two step process:

1) Convert the ME from RI'-MOM to  $\overline{MS}$  using perturbation theory M. Constantinou, H. Panapaulos, PRD (2017)054506

2) Compute the qPDF in the  $\overline{MS}$  scheme, and then match the  $\overline{MS}$  qPDF to the  $\overline{MS}$  PDF

C. Alexandrou et al., NPB 923 (2017) 394 (Frontier Article)

C. Alexandrou et al., 1803.02685

#### Renormalization factor for helicity

RI'-MOM scheme at the scale  $\bar{\mu}_0 = 3 \text{ GeV}$ 

Perturbative conversion to  $\overline{MS}$  scheme at the scale 2 GeV



$$\bar{\mu}_0 = 3 \text{GeV}$$

$$Z_q^{-1} Z_{\mathcal{O}} \frac{1}{12} Tr[v(p,z)(v^{Born}(p,z))^{-1}]|_{p^2 = \overline{\mu}_0^2} = 1$$
$$Z_q = \frac{1}{12} Tr[(S(p))^{-1} S^{Born}(p)]|_{p^2 = \overline{\mu}_0^2}$$

The vertex function  $\nu$  contains the same divergences as the nucleon matrix elements

The factor  $Z_{O}$  subtracts both the linear and log divergences.

The linear divergence associated with the Wilson line makes  $Z_O$  to grow very fast for large z;

That makes the renormalized ME to have amplified errors at large z;

We thus apply stout smearing to the Wilson lines only in order to smooth the divergence;

In the end, if the procedure is consistent, the resulting renormalized ME should be the same, independent of the smearing applied

#### Renormalized ME for the helicity case



ME sit on top of each other after renormalization Renormalization is doing its job!

## The *x* dependence of the quark distributions

Once we have the ME, we compute the qPDF:

 $\tilde{q}(x,\mu^2,P_3) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \langle P | \bar{\psi}(z) \Gamma W(z,0) \psi(0) | P \rangle$ 

And then apply the matching plus target mass corrections to obtain the light-cone PDF:

$$q(x,\mu) = \int_{-\infty}^{+\infty} \frac{d\xi}{\xi} C\left(\xi, \frac{\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}, \mu, P_3\right)$$



#### C. Alexandrou et al., 1803.02685

#### Helicity nonsinglet quark distribution



C. Alexandrou et al., 1803.02685

Remarkable qualitative agreement

For the values of  $P_3$  used here, the ME do not decay fast enough, that is, before  $e^{-ixP_3z}$  becomes negative

When doing the Fourier transform, unphysical oscillations appear, remarkably for x > 0.5, and an unphysical minimum at  $x \approx -0.2$ 

#### Effect of the physical pion mass



# Summary

We have shown an *ab initio* computation of the x dependence of nonsinglet PDFs at the physical point;

Strong pion mass dependence: the physical mass is essential to produce a shape for the PDF that is similar to the phenomenological fits;

Enormous progress over the last couple of years:

a complete non-perturbative prescription for the ME has emerged

a perturbative conversion from RI'-MOM and  $\overline{MS}$  has been developed

it is now possible to use an operator for the unpolarized PDF that avoids mixing

the matching equations relating the qPDFs to the light-cone PDFs have been improved

Physical point computation also presented in J.W. Chen 1803.04393

qPDFs are intrinsically related to pseudo-PDFs (see the talk by A. Radyushkin)

