Trident pair production in lightfront quantization

Greger Torgrimsson

Friedrich-Schiller-Universität Jena and Helmholtz-Institut Jena

Light Cone 2018, May 17

V. Dinu and GT, Phys. Rev. D 97, no. 3, 036021 (2018)

Physics at high intensity

- High-intensity laser facilities *I* : 10²² / 10²⁶W/cm²?
 ELI, XCELS,...
- cf. Schwinger limit $I \sim (m^2/e)^2 \sim 10^{29} \text{W/cm}^2$
- New physics even for $I \ll 10^{29}$ W/cm²

Review: A. Di Piazza et al. Rev. Mod. Phys (2012)

- Basic processes
 - nonlinear Compton scattering
 - nonlinear Breit-Wheeler pair production
 - trident pair production
 - cascades

Model high-intensity lasers with pulsed plane waves

•
$$a_0 = \frac{eE}{m\omega} > 1 \rightarrow \text{treat field exactly}$$

•
$$eF_{\mu\nu}(x^+) = k_{\mu}a'_{\nu} - k_{\nu}a'_{\mu}$$

• Lightfront coordinates: $x^{\pm} = t \pm z$

•
$$k^2 = 0, \ k \cdot x = \omega x^+, \ k \cdot a(x^+) = 0$$

- Pulsed plane waves: $a'(\pm \infty) = 0$
- Sol. to Lorentz force eq.

$$m\ddot{x}^{\mu}={m e}{m F}^{\mu
u}\dot{x}_{
u}$$
: $\pi_{\mu}(x^{+}):=m\dot{x}_{\mu}={m p}_{\mu}-{m a}_{\mu}+rac{2{m a}p-{m a}^{2}}{2kp}k_{\mu}$

(日)

Volkov solution and Furry picture

Treat background field exactly in QED

$$(\mathscr{D}^2+m^2)\varphi=0 \qquad \mathscr{D}_{\mu}=\partial_{\mu}+ia_{\mu}(x^+)$$

• Simple solution for arbitrary $a_{\perp}(x^+)$: $\varphi(x) = e^{-ipx - i\int^{x^+} \frac{2ap-a^2}{2kp}}$

Volkov (1935)

(日) (日) (日) (日) (日) (日) (日)

- Furry picture: $H = H_{\text{"free"}}[a] + H_{\text{int}}[a]$
- Volkov solutions describe Lorentz force: $i \mathscr{D}_{\mu} \varphi(x) = \pi_{\mu}(x^{+}) \varphi(x)$

Baier, Katkov, & Strakhovenko (1972); Ritus (1972); Hu, Müller & Keitel PRL (2010); Ilderton PRL (2011); King & Ruhl (2013)

Trident - two-step and one-step

Higher orders from sequence of first orders

Baier, Katkov, & Strakhovenko (1972); Ritus (1972); King & Ruhl (2013)

+ "one-step" terms = $\mathbb{P}_{two} + \mathbb{P}_{one}$

Particle-in-cell simulations at high intensity

Review: Gonoskov et al. PRE (2015)

•
$$a_0 = \frac{eE}{m\omega} \gg 1$$
 \rightarrow $|\mathbb{P}_{one}| \ll \mathbb{P}_{two}$

We are interested in P_{one}

Direct and Exchange

Exchange of identical particles in final state

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

"direct part" + "exchange part" = $\mathbb{P}_{dir} + \mathbb{P}_{ex}$

Direct and Exchange

- \mathbb{P}_{ex} more difficult than \mathbb{P}_{dir}
- \mathbb{P}_{ex} neglected in previous analytical studies
- Expect $|\mathbb{P}_{ex}| \ll \mathbb{P}_{dir}$ for $\chi \gg 1$ where $\chi := a_0 b_0 = \frac{eE}{m\omega} \frac{kp}{m^2}$

(日) (日) (日) (日) (日) (日) (日)

- But for how large χ ?
- And what about $\chi \lesssim 1$?
- \mathbb{P}_{ex} does not contribute to \mathbb{P}_{two}
- How does \mathbb{P}_{ex} contribute to \mathbb{P}_{one} ?

Lightfront quantisation

•
$$a_{\mu}(x^{\scriptscriptstyle +}), \pi_{\mu}(x^{\scriptscriptstyle +}), \varphi = e^{-ipx}f(x^{\scriptscriptstyle +})$$

- Use $x^+ = t + z$ instead of t
- Lightfront quantisation + Furry picture for plane waves

Neville & Rohrlich 1971

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lightfront Hamiltonian

- LF Hamiltonian $H = P_+ = (P_0 + P_3)/2$ for evolution in $x^+ = x^0 + x^3$: $|\psi; x^+\rangle = T_+ e^{-i \int H_{int}} |in\rangle$
- "Instantaneous" terms in H. $p^2 = m^2$ in Ψ and $l^2 = 0$ in A_{μ}

On-shell

• LF Hamiltonian formalism

• On-shell:
$$l^2 = 0 \implies l_+ = \frac{l_\perp^2}{4l_-}$$

- Instantaneous terms
- x^+ ordered: $x^+_{\rm BW} > x^+_{\rm C}$
- o cf. two-step & one-step

- standard covariant formalism
- Start: off-shell *I*₊-integral

• LF gauge:
$$\frac{g_{\mu\nu} - \frac{k_{\mu}I_{\nu} + I_{\mu}k_{\nu}}{kl}}{l^2 + i\varepsilon}$$

• l_+ integral \rightarrow terms with $\theta(x_{\rm BW}^+ - x_{\rm C}^+)$ and $\delta(x_{\rm BW}^+ - x_{\rm C}^+)$

Pair production probability

Sum over momenta and spin

•
$$F_{\mu\nu}(x^+) \to \delta^3_{-,\perp}(p_1+p_2+p_3-p)$$

Integrate over Gaussian p¹₁, p¹₂ integrals

• $P_{-} = P_0 + P_3 > 0 \quad \rightarrow \quad (p - p_1 - p_2)_{-} > 0$

• Probability density: $\mathbb{P} = \int_0^1 \mathrm{d}s_1 \mathrm{d}s_2 \theta (1 - s_1 - s_2) \mathbb{P}(s), \quad s_i = \frac{p_i}{p_-}$

(日) (日) (日) (日) (日) (日) (日)

Exact probability for arbitrary field shape

• LF formalism \rightarrow 3 direct + 3 exchange terms

• Integrals over $\phi_i = kx_i = \omega x_i^+$. Long. momenta $s_i = \frac{kp_i}{kp}$, $q_i = 1 - s_i$

• Symmetries: \mathbb{P}_{ex}^{22} : $\phi_1 \rightarrow \phi_2 \rightarrow \phi_3 \rightarrow \phi_4$, $s_1 \rightarrow -s_0 \rightarrow s_2 \rightarrow s_3 \rightarrow s_1$

Compact expressions for arbitrary plane waves a⊥(x⁺)
 V. Dinu & GT PRD (2018)

Two-step and one-step

Two-step and one-step separation:

$$\left| \longrightarrow \mathcal{V} \left| \right|^{2} = \left| \longrightarrow \mathcal{V} \left| \right|^{2} \times \left| \right|^{2} + \text{``one-step'' terms} = \mathbb{P}_{two} + \mathbb{P}_{one} \right|^{2}$$

• LF separation:

V. Dinu & GT PRD (2018)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• From now on: \mathbb{P}_{two} , \mathbb{P}_{one}^{dir} and \mathbb{P}_{one}^{ex}

$a_0 \gg 1$ and the locally constant field approximation

• Constant fields:
$$\mathbb{P}_{two} \sim (\Delta x^+)^2$$
 and $\mathbb{P}_{one}^{dir} \sim \Delta x^+$

Baier, Katkov, and Strakhovenko (1972); Ritus (1972); King and Ruhl (2013)

•
$$a_0 = \frac{eE}{m\omega} \gg 1$$
: $\mathbb{P} = a_0^2 P_2 + a_0 P_1 + P_0 + \dots$
V. Dinu & GT PRD (2018)

•
$$\mathbb{P}_{\text{two}} = a_0^2 P_2 + \mathcal{O}(a_0^0)$$
 $\mathbb{P}_{\text{one}} = a_0 P_1 + \dots$

Avoid large volume factors and include higher orders

- Both constant and non-constant fields
- Both \mathbb{P}_{dir} and \mathbb{P}_{ex}

Constant field, $a_0 \gg 1$ and $\chi \ll 1$

- Longitudinal momenta $s_i = kp_i/kp$ for $\chi = 1/2$ and $\chi = 16$
- Use saddle-point approx. for $\chi \ll 1$
- Constant field: $\mathbb{P}_{\text{two}} \approx \alpha^2 \frac{(a_0 \Delta \phi)^2}{64} e^{-\frac{16}{3\chi}}$ $\mathbb{P}_{\text{one}}^{\text{dir}} \approx -\alpha^2 \frac{a_0 \Delta \phi \sqrt{\chi}}{16\sqrt{6\pi}} e^{-\frac{16}{3\chi}}$ $\mathbb{P}_{\text{one}}^{\text{ex}} \approx \frac{13}{18} \mathbb{P}_{\text{one}}^{\text{dir}}$

• \mathbb{P}_{two} and \mathbb{P}_{one}^{dir} agree with literature. \mathbb{P}_{one}^{ex} is new. V. Dinu & GT PRD (2018)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• \mathbb{P}_{one}^{ex} as important as \mathbb{P}_{one}^{dir}

Pulsed Fields with $a_0 \gg 1$ and $\chi \ll 1$

• Pulsed plane wave $a(\phi) = a_0 f(\phi), \phi = \omega x^+, f^{(3)}(0) = -\zeta$

• \mathbb{P}_{one}^{ex} on the same order as \mathbb{P}_{one}^{dir} in general for $a_0 \gg 1$ and $\chi \ll 1$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$a_0 \sim 1$ and $\chi \ll 1$

- Generalize from LCF regime $(a_0 \gg 1)$ to $a_0 \sim 1$
- Sauter pulse $a'(\phi) = a_0 \operatorname{sech}^2 \phi$: V. Dinu & GT PRD (2018)

$$\mathbb{P}_{\text{one}}^{\text{dir}} = -\frac{2}{\pi} \arctan \sqrt{1 - \frac{a_0}{(1 + a_0^2) \operatorname{arccot} a_0}} \mathbb{P}_{\text{two}} \qquad \mathbb{P}_{\text{one}}^{\text{ex}} = \frac{13}{18} \mathbb{P}_{\text{one}}^{\text{dir}}$$

•
$$a_0 \sim 1$$
: $\mathbb{P}_{one}^{dir} \sim \mathbb{P}_{one}^{ex} \sim \mathbb{P}_{two}^{dir}$ $a_0 \gg 1$: $\mathbb{P}_{one}^{dir} \sim \mathbb{P}_{one}^{ex} \ll \mathbb{P}_{two}^{dir}$

Monochromatic field

•
$$a'(\phi) = a_0 \cos \phi$$
, $a_0 \sim 1$, $\chi \ll 1$: $\mathbb{P}_{\text{two}} \sim N \mathbb{P}_{\text{one}}^{\text{dir}} \sim N \mathbb{P}_{\text{one}}^{\text{dir}}$

•
$$\mathbb{P} = \operatorname{prefactor} \exp\left\{-\frac{4a_0}{\chi}\left([2+a_0^2]\operatorname{arcsinh}\frac{1}{a_0} - \sqrt{1+a_0^2}\right)\right\}$$

V. Dinu & GT PRD (2018)

Compare with SLAC experiment:

$$\mathbb{P} \sim e^{-rac{\sqrt{2c}}{\chi}}$$
 $c_{
m SLAC} = 2.4 \pm 0.1 ({
m stat.})^{+0.2}_{-0.6} ({
m syst.})$ $c_{
m we} pprox 2.46$

Agreement

- However: too large error bars
- and too close to perturbative $\mathbb{P} \sim a_0^{8/kp}$

$a_0 \gg 1$ and general χ

• Consider again $a_0 \gg 1$, but larger χ

V. Dinu & GT PRD (2018)

- $\mathbb{P}_{one}^{ex} < 0$ for all χ
- $\mathbb{P}_{one}^{dir} < 0$ for $\chi \lesssim 20$
- $|\mathbb{P}_{one}^{ex}| > |\mathbb{P}_{one}^{dir}|$ for $17 \lesssim \chi \lesssim 26$
- $\mathbb{P}_{one}^{dir} \gg |\mathbb{P}_{one}^{ex}|$ for $\chi \gg 30$
- Expect α expansion not valid for χ ≫ 1

Narozhnyi (1980); Fedotov (2017)

Conclusions

- Strong fields \rightarrow plane waves \rightarrow lightfront formalism
- LF \rightarrow compact \mathbb{P} for arbitrary field shapes

V. Dinu & GT PRD (2018)

(ロ) (同) (三) (三) (三) (○) (○)

- All terms, both \mathbb{P}_{dir} and \mathbb{P}_{ex}
- Previously neglected $\mathbb{P}_{ex} \sim \mathbb{P}_{dir}^{one}$
 - Analytically for $\chi \ll 1$ and $a_0 \gg 1$ or $a_0 \sim 1$
 - Numerically for $a_0 \gg 1$ and quite large χ
- Can apply these methods to double nonlinear Compton scattering