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Physics at high intensity

@ High-intensity laser facilities /: 1022~ 102°W/cm?2?

ELI, XCELS....

@ cf. Schwinger limit / ~ (m?/€)? ~ 102°W/cm?

@ New physics even for / < 102°W/cm?

Review: A. Di Piazza et al. Rev. Mod. Phys (2012)

@ Basic processes
e nonlinear Compton scattering
e nonlinear Breit-Wheeler pair production
e trident pair production

@ cascades



Model high-intensity lasers with pulsed plane waves

@ a9= £ > 1 treat field exactly - |

eF‘uv(X+) - k‘ua,v - kva;Jr

Lightfront coordinates: x* =t+~z / P

@ k2=0, k-x=wx", k-a(x*) =0

Pulsed plane waves: & (+) =0

Sol. to Lorentz force eq.

2ap—a? Kk

cu ruve N
mxt = eF1Y X1, (X*) == mXy = py — au + =55 Ku



Volkov solution and Furry picture

@ Treat background field exactly in QED

(22+mP)o=0 P =0y +iau(x")

X 2a‘p7a2

. . oxT
@ Simple solution for arbitrary a, (x*): o(x)=e P17 T

Volkov (1935)

e Furry picture: H = Heee[a] + Hint[a]
@ Volkov solutions describe Lorentz force: i, ¢(x) = my(x")p(x)
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Basic processes

@ First order processes Y

e Compton scattering
o Breit-Wheeler pair production

@ Observed at SLAC (1999)

Bamber et al. PRD (1999) Y
@ Higher order processes e

o Trident

Baier, Katkov, & Strakhovenko (1972); Ritus (1972); Hu, Muller & Keitel PRL (2010); liderton PRL (2011); King & Ruhl (2013)



Trident - two-step and one-step

@ Higher orders from sequence of first orders

Baier, Katkov, & Strakhovenko (1972); Ritus (1972); King & Ruhl (2013)

Rk

@ Particle-in-cell simulations at high intensity
Review: Gonoskov et al. PRE (2015)
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el |

+ “one-step” terms = Piyo + Pone

@ dp= % >1 — |]P)0ne| < Piwo

@ We are interested in Py,



Direct and Exchange

@ Exchange of identical particles in final state

Ps3 2
p po — (P14 p2) =
P
P32
p po| + (P1<p2) + C‘crossterm” =
P

“direct part” + “exchange part” = Pgi; + Pex



Direct and Exchange

@ P, more difficult than Py,

Pex neglected in previous analytical studies

Expect |Pex| < Pgir for x > 1 where y := apbg = eE kp

mo m?

But for how large x?

And what about y < 17?

@ P, does not contribute 10 Piyo

How does P, contribute to Pype?



Lightfront quantisation

® ay(x7), mu(x"), ¢ = e P¥f(x*)

@ Use x* =t+zinstead of ¢

@ Lightfront quantisation +
Furry picture for plane waves

Neville & Rohrlich 1971




Lightfront Hamiltonian

@ LF Hamiltonian H= P, = (Po+ Ps)/2 for evolution in

xt=x04x3 |y;xt) =T, e” ’met\ln>

@ “Instantaneous” termsin H. p2 = m? in W and 2 =0 in A,

2
Hip = /dx ejA+ 2/ —|—92\IJA }ﬁ A\IJ JF=Uprv

L i

trident amplitude = +




On-shell

@ LF Hamiltonian formalism

2 2
@ On-shell: =0 = I, = 4+
@ Instantaneous terms

+ -yt +
@ x* ordered: xgy, > x¢

@ cf. two-step & one-step

@ standard covariant formalism

@ Start: off-shell /,-integral

 kulytluky

@ LF gauge: & — -

@ /, integral — terms with
0(Xgw — X&) and &(xgy, — x¢)



Pair production probability

@ Sum over momenta and spin

p3763
p,c
P= — ,01 <> P2, O
)y D265 (p1,01 <> p2,02)
P1,01

® Fuv(x?) — 8 (p1+p2+ps—p)

Integrate over Gaussian py, ps integrals

P =P+P3s>0 — (p—p1—p2)->0

Probability density: P = [J dsids26(1 — s — s2)P(s), s = 2=



Exact probability for arbitrary field shape

@ LF formalism — 3 direct + 3 exchange terms

¢ <— 51 04 ¢1WQ1W¢3 01 </ 1 " 3

T N 1NN/ N
Y \/ \V/ W,

S —=> ¢3 9o AL QE A s

22 22 12 12 11 11
]Pex Pdll‘ ]Pdll' P Pdll‘ ]P

@ Integrals over ¢; = kx; = wx;". Long. momenta s; = ’,%, g=1-

@ Symmetries: P22 ¢y — ¢o — ¢3 — 4,51 — —Sg — Sz — S3 — S

@ Compact expressions for arbitrary plane waves a, (x*)
V. Dinu & GT PRD (2018)



Two-step and one-step

@ Two-step and one-step separation:

2
2 2
= ‘ g-:-i x W< ‘ + “one-step” terms = Pryo + Pone
@ LF separation: V. Dinu & GT PRD (2018)
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@ From now on: Py, P4r and P,



ap > 1 and the locally constant field approximation

@ Constant fields: Py, ~ (Ax*)? and P4 ~ Ax*

Baier, Katkov, and Strakhovenko (1972); Ritus (1972); King and Ruhl (2013)

o a=L>1 P=aPtaPi+P+..

V. Dinu & GT PRD (2018)
@ Py, =asPx+0(ad) Pone = aP1+ ...

@ Avoid large volume factors and include higher orders
@ Both constant and non-constant fields

@ Both Pg;, and P,



Constant field, ag > 1 and y < 1

-2.13x10°"° -9.8x10"° - 1.0x107°

S3

@ Longitudinal momenta s; = kp;/kp for y =1/2 and y =16

@ Use saddle-point approx. for y <« 1

. 2 _ 16 . A _ 16 .
@ Constant field: Py, ~ a2 @80 e75  plir ~ —azwe 5 X~ 13pdn
@ P.,and Pgin‘e agree with literature. PSX. is new. V. Dinu & GT PRD (2018)

. di
@ P, as important as Pg;,



Pulsed Fields with g5 > 1 and y < 1

@ Pulsed plane wave a(¢) = af(¢), ¢ = ox*, fE)(0)= ¢

/
a(¢)
A‘ )
3azy —18 ; a _16 13 i
@ Py = ? —’f‘zg"fe % Pir = —a2—64%e % Poe = 15Pone

V. Dinu & GT PRD (2018)

@ P on the same order as P4, in general for ay>> 1 and y < 1



a~1and y <1

@ Generalize from LCF regime (ay > 1) to ag ~ 1

@ Sauter pulse &(¢) = apsech?¢: V. Dinu & GT PRD (2018)

dir _ 2 - EN ex __ 13mdir
]Pone - narCtan \/1 (1+ag)arccota0 tho ]P)one - 18Pone

® ag~1: Por ~ P& ~Plr, o> 1: PO ~ PO, < Piir

one two

Pexch
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Monochromatic field

@ d(¢)=apcosp, a~1,x <1: Puyo ~ NPUL ~ NP

one

@ P = prefactorexp { 22 ([2 + gglarcsinh - M) }

V. Dinu & GT PRD (2018)
@ Compare with SLAC experiment:
— Yz +0.2
P~e CsLac = 2.4 +0.1(stat.) Tys (syst.) Cwe ~ 2.46
@ Agreement

@ However: too large error bars

@ and too close to perturbative P ~ ag/ ke



ap > 1 and general y

@ Consider again ap > 1, but larger V. Dinu & GT PRD (2018)

@ Por. <Oforall

g
® Poge<0for%§20 -
;

@ |PS.| > [Pone| for .

175526 A .
@ Pdir s |PeX | for

x> 30 o Z
@ Expect a expansion £]

not valid for y > 1

Narozhnyi (1980); Fedotov (2017)



Conclusions

@ Strong fields — plane waves — lightfront formalism

@ LF — compact P for arbitrary field shapes V. Dinu & GT PRD (2018)
@ All terms, both Pg;; and Pex

@ Previously neglected Pey ~ Pgi°

o Analytically for y < 1and ag>1oray ~ 1

e Numerically for ag > 1 and quite large x

@ Can apply these methods to double nonlinear Compton
scattering



