Fermion-antifermion phenomenology in Minkowski space

Jorge H. A. Nogueira

Università di Roma 'La Sapienza' and INFN, Sezione di Roma (Italy) Instituto Tecnológico de Aeronáutica, (Brazil)

Supervisors: Profs. T. Frederico (ITA) and G. Salmè (INFN)
Collaborators: Dr. E. Ydrefors, Prof. W. de Paula and Dr. C. Mezrag

> Light Cone 2018 Jefferson Lab, Newport News/US
> May 15, 2018

Outline

(1) General tools

- Introduction
- Bethe-Salpeter equation
- Nakanishi integral representation
- Light-front projection
(2) Two-body bound state within the BSE
- Bosonic BSE in Minkowski space
- The interaction kernel
- Fermion-antifermion BSE in Minkowski space
- The mock pion
(3) Conclusions
(4) Outlook

General goals

- Bethe-Salpeter equation to study non-perturbative systems;
- Fully covariant relativistic description in Minkowski space;
- Understand step-by-step the degrees of freedom;
- How bad is to ignore the crosses in the BSE kernel?
- Introducing color factors and the large N_{c} limit;
- Make the numerics feasible;
- No Fock space truncation;
- Phenomenological studies within the approach;

Bethe-Salpeter equation

- The BSE for the bound state with total four momentum $p^{2}=M^{2}$, composed of two scalar particles of mass m reads

$$
\Phi(k, p)=S(p / 2+k) S(p / 2-k) \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} i K\left(k, k^{\prime}, p\right) \Phi\left(k^{\prime}, p\right)
$$

$$
S(k)=\frac{i}{k^{2}-m^{2}+i \epsilon} \quad: \text { Feynman propagator }
$$

- The kernel K is given as a sum of irreducible Feynman diagrams (ladder, cross-ladder, etc).
E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951)
N. Nakanishi, Graph Theory and Feynman Integrals (Gordon and Breach, New York, 1971)

Nakanishi integral representation

- General representation for N-leg transition amplitudes;
- 2-point correlation function: Kallen-Lehmann spectral representation;
- For the vertex function (Bound state) - 3-leg amplitude:

$$
\Phi(k, p)=\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g\left(\gamma^{\prime}, z^{\prime} ; \kappa^{2}\right)}{\left(\gamma^{\prime}+\kappa^{2}-k^{2}-(p \cdot k) z^{\prime}-i \epsilon\right)^{3}}, \quad \kappa^{2}=m^{2}-M^{2} / 4
$$

$$
\text { where } \gamma \equiv\left|\mathbf{k}_{\perp}\right|^{2} \in[0, \infty) \text { and } z \equiv 2 \xi-1 \in[-1,1] \text { with } \xi \in[0,1]
$$

- All dependence upon external momenta in the denominator;
- Allows to recognize the singular structure and deal with it analytically;
- Weight function $g\left(\gamma^{\prime}, z^{\prime}\right)$ is the unknown quantity to be determined numerically;
T. Frederico, G. Salme and M. Viviani, Phys. Rev. D 85, 036009 (2012)

Light-front projection

- Much easier to treat Minkowski space poles properly;
- Simpler dynamics of the propagators/amplitudes within LF (See talk by Prof. Ji);
- Easy connection with LFWF:
- Introduce the LF variables $k_{ \pm}=k_{0} \pm k_{z}$;
- Valence LFWV from the BS amplitude:

$$
\psi_{n=2 / p}\left(\xi, \mathbf{k}_{\perp}\right)=\frac{p^{+}}{\sqrt{2}} \xi(1-\xi) \int_{-\infty}^{\infty} \frac{d k^{-}}{2 \pi} \Phi(k, p),
$$

- Corresponding to eliminate the relative LF time $t+z=0$;
- Essential in this approach to solve BSE directly in Minkowski space;

Relations: LF, NIR and BS amplitude

- The Nakanishi integral representation (NIR) gives the Bethe-Salpeter amplitude χ (BSA) through the weight function g;
- The Light-Front projection of the BSA gives the valence light-front wave function (LFWF) Ψ_{2};
- The inverse Stieltjes transform gives g from the valence LFWF;

Carbonell, Frederico, Karmanov Phys.Lett. B769 (2017) 418-423

BSE in Minkowski space

- Applying the NIR on both sides of the BSE and integrating over k_{-}leads to the integral equation:

$$
\begin{aligned}
\int_{0}^{\infty} d \gamma^{\prime} & \frac{g\left(\gamma^{\prime}, z ; \kappa^{2}\right)}{\left[\gamma+\gamma^{\prime}+z^{2} m^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}= \\
& \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{1} d z^{\prime} V\left(\alpha ; \gamma, z, \gamma^{\prime}, z^{\prime}\right) g\left(\gamma^{\prime}, z^{\prime} ; \kappa^{2}\right)
\end{aligned}
$$

where V is expressed in terms of the BS interaction kernel.

- Ladder approx. - agreement among different groups [1];
- Cross-ladder impact; suppression with color dof [2];
- Scattering length; Spectroscopy and LF momentum distributions of the excited states [3];
- Agreement with BSE in Euclidean space [4];
[1] Carbonell, Karmanov EPJA 27 (2006) 1; EPJA 46 (2010) 387; Frederico, Salmè, Viviani PRD 89 (2014) 016010
[2] Carbonell, Karmanov EPJA 27 (2006) 11; Gigante, JHAN, Ydrefors, Gutierrez, Karmanov, Frederico PRD 95 (2017) 056012;
JHAN, Chueng-Ryong Ji, Ydrefors, Frederico Phys.Lett. B777 (2018) 207-211
[3] Frederico, Salmè, Viviani EPJC 75 (2015) 398; Gutierrez et al PLB 759 (2016) 131
[4] Gigante, JHAN, Ydrefors, Gutierrez, Int.J.Mod.Phys.Conf.Ser. 45 (2017) 1760055; Gutierrez et al PLB 759 (2016) 131

One example to support the hypothesis

Figure: Coupling constant for various values of the binding energy B obtained by using the Bethe-Salpeter ladder (L) and ladder plus cross-ladder (CL) kernels, for an exchanged mass of $\mu=0.5 \mathrm{~m}$. In the upper panels are shown the results computed with no color factors. Similarly, in the lower panels are compared the results for $N=2,3$ and 4 colors.

- Suppression is already pretty good for $N_{c}=3$ - might support the truncation at the ladder...at least within this system.

JHAN, C.-R. Ji, E. Ydrefors and T. Frederico, Phys.Lett. B777 (2018) 207-211

Fermion-antifermion BSE in Minkowski space

- Introducing spin

$$
\begin{aligned}
& \Phi(k, p)=S(p / 2+k) \int d^{4} k^{\prime} F^{2}\left(k-k^{\prime}\right) i K\left(k, k^{\prime}\right) \Gamma_{1} \Phi\left(k^{\prime}, p\right) \hat{\Gamma}_{2} S(k-p / 2) \\
& \text { where } \Gamma_{1}=\Gamma_{2}=1(\text { scalar }), \gamma_{5}(\text { pseudo }), \gamma^{\mu} \text { (vector) }
\end{aligned}
$$

$$
i K_{V}^{\mu v}\left(k, k^{\prime}\right)=-i g^{2} \frac{g^{\mu v}}{\left(k-k^{\prime}\right)^{2}-\mu^{2}+i \epsilon}, \quad F\left(k-k^{\prime}\right)=\frac{\left(\mu^{2}-\Lambda^{2}\right)}{\left[\left(k-k^{\prime}\right)^{2}-\Lambda^{2}+i \epsilon\right]}
$$

- Taking benefit from orthogonality properties for the decomposition

$$
\Phi(k, p)=\sum_{i=1}^{4} S_{i}(k, p) \phi_{i}(k, p)
$$

where the spin dependent structures are $S_{1}=\gamma_{5}, S_{2}=\frac{p}{M} \gamma_{5}$,

$$
S_{3}=\frac{k \cdot p}{M^{3}} \not p \gamma_{5}-\frac{1}{M} k \gamma_{5} \text { and } S_{4}=\frac{i}{M^{2}} \sigma^{\mu v} p_{\mu} k_{v} \gamma_{5}
$$

- The scalar amplitudes ϕ_{i} are represented by the NIR;
- In the equal mass case, symmetry under the exchange of the particles simplifies the problem;
- $g_{j}\left(\gamma^{\prime}, z^{\prime} ; \kappa^{2}\right)$ expanded as Laguerre $(\gamma) \times \operatorname{Gegenbauer}(z)$;

Extra singular contribution of the fermionic system

- The coupled integral equation system is given by

$$
\psi_{i}(\gamma, z)=g^{2} \sum_{j} \int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} g_{j}\left(\gamma^{\prime}, z^{\prime} ; \kappa^{2}\right) \mathcal{L}_{i j}\left(\gamma, z, \gamma^{\prime}, z^{\prime} ; p\right)
$$

- S_{i} operators + fermionic propagators: $\left(k^{-}\right)^{n}$ extra singularities;
- Singularities have generic form:

$$
\mathcal{C}_{n}=\int_{-\infty}^{\infty} \frac{d k^{-}}{2 \pi}\left(k^{-}\right)^{n} \mathcal{S}\left(k^{-}, v, z, z^{\prime}, \gamma, \gamma^{\prime}\right) \quad n=0,1,2,3
$$

- End-point singularities can be analytically treated by

$$
\mathcal{I}(\beta, y)=\int_{-\infty}^{\infty} \frac{d x}{[\beta x-y \mp i \epsilon]^{2}}= \pm \frac{2 \pi i \delta(\beta)}{[-y \mp i \epsilon]}
$$

de Paula, Frederico, Salmè, Viviani PRD 94 (2016) 071901; EPJC 77 (2017) 764

Coupling Constants

- Vector coupling as a function of the binding energy for $\mu / m=0$;

- Dots: Kernel regularized by a cutoff;
- No analytical treatment of the singularities;
- Agreement also with results in Euclidean space (for the scalar exchange) - see [2];
[1] Carbonell, Karmanov EPJA 46 (2010) 387
[2] de Paula, Frederico, Salmè, Viviani PRD 94 (2016) 071901, EPJC 77 (2017) 764

High-momentum tails

- LF amplitudes ψ_{i} times γ / m^{2} at fixed $z=0(\xi=1 / 2)$;
- Thin lines $B / m=0.1$ and thick 1.0 ;
- Solid: $i=1$, Dashed: $i=2$, dash-dot: $i=4, \psi_{3}=0$ for $z=0$;
- As expected for the pion valence amplitude;

Valence probabilities

- By properly normalizing the BSE we can study the valence probabilities of the bound states;
- Taking, for instance, $\mu / m=0.15$ and a cutoff $\Lambda / m=2$ for the vertex form factor (fermonic case):

B / m	$\mathcal{P}_{\text {val }}^{F}$	$\mathcal{P}_{\text {val }}^{B}$
0.01	0.96	0.94
0.1	0.78	0.80
1.0	0.68	0.67

- Results are similar for massless vector exchange;
- Very low $\mathcal{P}_{\text {val }}^{F}$: higher Fock components are extremely important;
- Lack of color confining kernel might be playing a role;

Mock pion

- Guideline for the mock pion input parameters:
- Gluon effective mass $\approx 500 \mathrm{MeV}$ (Landau Gauge LQCD) [1];
- $m_{q} \approx 250 \mathrm{MeV}[2] ; M_{\pi}=140 \mathrm{MeV}$ fixed;
- $\Lambda / m=1,2,3$
- $\alpha_{s}=g^{2} /(4 \pi)\left(1-\mu^{2} / \Lambda^{2}\right)^{2}$; Reasonable rescaled coupling constant in the infrared region [3];
- Transverse and longitudinal momentum valence distributions for different sets of parameters:

[1] Oliveira, Bicudo, JPG 38 (2011) 045003; Duarte, Oliveira, Silva, Phys. Rev. D 94 (2016) 01450240
[2] Parappilly, et al, PR D73 (2006) 054504
[3] A. Deur, S.J. Brodsky, G.F. de Teramond, Prog. Part. Nucl. Phys. 90, 1 (2016)
[4] de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764; de Paula et al, in preparation

3D LF amplitudes

- Dynamical observables: the LFWF components;
- $\left(B / m=1.35, \mu / m=2.0, \Lambda / m=1.0, m_{q}=215 \mathrm{MeV}\right): f_{\pi}=96 \mathrm{MeV}$, $P_{\text {val }}=0.68$
- Other observables are straightforward to compute once you have BS amplitude solution;

Conclusions

- NIR + LF projection \rightarrow Showing to be essential tools to deal with the BSE in Minkowski space;
- Many systems already treated and several subtle points under control;
- Approach is even more robust - now able to deal properly with all singularities within fermionic systems;
- Valence is far from enough once spin dof is included;
- Approach gives you all the information beyond the valence;
- Ladder approx. supported by the color suppression of the non-planar diagrams;
- Simple and direct connection with physical observables;
- More sensitive numerics - e.g. derivatives of the basis;
- Exploration of new numerical methods is important;
- Still the most stable method within Minkowski space (see talk by E. Ydrefors);
- Essential features need to be included;
- Confining kernel;
- Self-energies and vertex corrections;

Outlook

- Address color confinement to the kernel;
- 1st step: ansatz that connects to the superconformal LFH confining potential - simply (and unique) harmonic oscillator;
- $q \bar{q}$ bound state in $1+1$ dimensions and how it matches with DLCQ;
- Can bring some understanding of some features within the approach;
- More formal possibility: summation of H graphs in the kernel;
- Self-energies, vertex corrections;
- Other approaches (LFH, LQCD, DSE) can inspire a first step;
- Start by simpler phenomenological ways of implementing it, such as by models inspired by Lattice QCD (see talk by Prof. Frederico);
- DSE fully in Minkowski space by means of spectral representation;
- Unequal mass case with possible applications for other mesons;
- Form factors, PDFs, TMDs, Fragmentation functions...
- Fermion-boson BSE was solved (in preparation);
- Possible phenomenological applications for baryons;
A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Rev. Lett. 104, 112002 (2010)

Thank you!

