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IV. COMPARISON OF EFFECTIVE CHARGES

Another approach to determining an “effective charge”
in QCD was introduced in Ref. [52]. This is a process-
dependent procedure; namely, an effective running cou-
pling is defined to be completely fixed by the leading-order
term in the perturbative expansion of a given observable in
terms of the canonical running coupling. An obvious
difficulty, or perhaps drawback, of such a scheme is the
process-dependence itself. Naturally, effective charges
from different observables can in principle be algebraically
connected to each other via an expansion of one coupling in
terms of the other. However, any such expansion contains
infinitely many terms [46]; and this connection does not
imbue a given process-dependent charge with the ability to
predict any other observable, since the expansion is only
defined a posteriori, i.e. after both effective charges are
independently constructed.
One such process-dependent effective charge is αg1ðk

2Þ,
which is defined via the Bjorken sum rule [53,54]:

Z
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0
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2Þ
"
; ð8Þ

where gp;n1 are the spin-dependent proton and neutron
structure functions, whose extraction requires measure-
ments using polarized targets, and gA is the nucleon
isovector axial-charge [55]. The merits of this definition
are outlined in Ref. [46]. They include the existence of data
for a wide range of k2 [56–81]; tight sum-rules constraints
on the behavior of the integral at the IR and UVextremes of
k2; and the isospin nonsinglet feature of the difference,
which suppresses contributions from numerous processes
that are hard to compute and hence might muddy inter-
pretation of the integral in terms of an effective charge.
The world’s data on the process-dependent effective

charge αg1ðk
2Þ are depicted in Fig. 2 and therein compared

with our prediction for the process-independent RGI
running coupling α̂PIðk2Þ. Owing to asymptotic freedom,
all reasonable definitions of a QCD effective charge must
agree on k2 ≳ 1 GeV2 and our approach guarantees this
connection. To be specific, in terms of the widely-used MS
running-coupling [3]:

αg1ðk
2Þ ¼ αMSðk2Þð1þ 1.14αMSðk2Þ þ ' ' 'Þ; ð9aÞ

α̂PIðk2Þ ¼ αMSðk2Þð1þ 1.09αMSðk2Þ þ ' ' 'Þ; ð9bÞ

where Eq. (9a) may be built from, e.g. Refs. [82,83].
Significantly, there is also near precise agreement with

data on the IR domain, k2 ≲m2
0, and complete accord on

k2 ≥ m2
0. Figure 1 makes plain that any agreement on k2 ∈

½0.01; 1$ GeV2 is nontrivial because ghost-gluon inter-
actions produce as much as 40% of α̂PIðk2Þ on this domain:
if these effects were omitted from the gluon vacuum

polarization, then αg1 and α̂PI would differ by roughly a
factor of two on the critical domain of transition between
strong and perturbative QCD.
At this point we would like to mention that other studies

have considered quantities which are related, in one way
or another, to the effective charge, α̂PIðk2Þ, depicted in
Figs. 1 and 2. Pertinent examples are described in
Refs. [87,88], which arrive at couplings with far-IR values
of ð1.3 − 1.9Þπ and ð1.1 − 1.6Þπ, respectively. Notably, the
former employed quenched lattice results for the gluon
two-point function, ΔFðk2Þ in Eq. (4), and both used a
range of estimates for the gluon mass-scale based on then-
contemporary phenomenology. Those elements explain
the differences between the IR saturation values in
Refs. [87,88] and our final result: α̂PIð0Þ ¼ ð0.9 ( 0.1Þπ,
which is obtained using modern unquenched lattice results
for the gluon.
Of equal or greater importance is the pointwise behavior

of those charges, i.e. their running . Ref. [88] set L≡ 0 in
Eq. (1c) and so ignored material contributions from ghost-
gluon dynamics, whose importance we have repeatedly
emphasized. Furthermore, both Refs. [87,88] assumed
that the effect of the gluon vacuum polarization is com-
pletely expressed by writing Dðk2Þ ¼ 1=½k2 þm2ðk2Þ$,
with m2ðk2Þ monotonically decreasing from its maximum
value at k2 ¼ 0; whereas, in reality, Dðk2Þ ¼ 1=½Jðk2Þk2 þ
m2ðk2Þ$ on k2 ≲ 2 GeV2, with k2Jðk2Þ initially negative at
far-IR momenta before turning to approach its perturbative

FIG. 2. Solid (blue) curve: predicted process-independent RGI
running coupling α̂PIðk2Þ, Eq. (7). The shaded (blue) band
bracketing this curve combines a 95% confidence-level window
based on existing lattice-QCD results for the gluon two-point
function with an error of 10% in the continuum extraction of the
RGI product LF in Eqs. (1). World data on αg1 [56–81]. The
shaded (yellow) band on k > 1 GeV represents αg1 obtained from
the Bjorken sum by using QCD evolution [84–86] to extrapolate
high-k2 data into the depicted region, following Refs. [56,57];
and, for additional context, the dashed (red) curve is the light-
front holographic model of αg1 canvassed in Ref. [46].
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accordance with the spectroscopy derived from light-front
holographic QCD, where baryon and meson partners
have the masses M2

B ¼ 4λBðnþ LB þ 1Þ and M2
M ¼

4λMðnþ LMÞ respectively. This result follows from
Eqs. (12) and (6) with ν ¼ LB and J ¼ LM, respectively.
If one takes λB ¼ λM in LF holographic QCD, which is
automatic in the superconformal theory, the spectral results
are then identical for LM ¼ LB þ 1.
The predictions of supersymmetric quantum mechanics

are based on the fact that the supercharge operator Rλ
transforms baryon states with angular momentum LB into
their mesonic superpartners with angular momentum
LM ¼ LB þ 1. The operator R†

λ operates in the opposite
direction. The pion has a very special role: Its existence is
predicted by the superconformal algebra, and according to
the formalism, it is massless and has no supersymmetric
partner. We have thus established a complete correspon-
dence between the light-front holographic QCD results and
supersymmetric quantum mechanics.
The superconformal predictions presented in Fig. 1

should be understood as a zeroth-order approximation.
There are, however, several phenomenological corrections
to this initial approximation. First, the slope of the π=b1
trajectory is not exactly identical to the slope of the nucleon
trajectory: For the mesons

ffiffiffiffiffiffi
λM

p
¼ 0.59 GeV, whereas for

the nucleons
ffiffiffiffiffi
λB

p
¼ 0.49 GeV [21]. This makes the b1

heavier than its supersymmetric partner, the nucleon. In
terms of LF holographic QCD this indicates that for this
internal spin configuration, the confining force between the
spectator and the cluster in the baryon is weaker than
between the constituents of the meson; this makes the
meson a more compact object since hr2i ∼ 1=λ. Second, the
negative parity nucleon states are systematically higher
than the nucleons with positive parity, a fact which in LF
holographic QCD has been taken into account phenom-
enologically by the half-integer twist assignment ν ¼ Lþ 1

2

given in Table I. It is expected that this effect could be
explained by the different quark configurations and sym-
metries of the baryon wave function [30–32].
The nucleon-meson superpartner pairs are plotted in

Fig. 2 with their measured masses. The observed difference
in the squared masses of the supersymmetric partners
indicates that the most important breaking of supersym-
metry is due to the difference between λB and λM. Only
confirmed PDG states have been included [34].

B. The mesonic superpartners of the delta trajectory

The essential physics derived from the superconformal
connection of nucleons and mesons follows from the action
of the fermion-number-changing supercharge operator Rλ.
As we have discussed in the previous section, this operator
transforms a baryon wave function with angular momen-
tum LB into a superpartner meson wave function with
angular momentum LM ¼ LB þ 1 (see Appendix B), a

state with the identical eigenvalue—the hadronic mass
squared. We now check if this relation holds empirically
for other baryon trajectories.
We first observe that baryons with positive parity and

internal spin S¼ 3
2, such as the Δ3

2
þð1232Þ, and baryons

with negative parity and internal spin S¼ 1
2, such as the

Δ1
2
−ð1620Þ, lie on the same trajectory; this corresponds to

the phenomenological assignment ν ¼ LB þ 1
2, given in

Table I. From (12) we obtain the spectrum [35]

M2ðþÞ
n;LB;S¼3

2

¼ M2ð−Þ
n;LB;S¼1

2

¼ 4

"
nþ LB þ 3

2

#
λB: ð50Þ

If we now apply the superconformal relation LM ¼ LB þ 1
and λM ¼ λB we predict a meson trajectory with
eigenvalues

M2
n;LM

¼ 4

"
nþ LM þ 1

2

#
λM; ð51Þ

which is, precisely, the expression for the spectrum of the ρ
meson (6) for J ¼ LM þ 1. Again, one sees that the lowest-
lying mesonic state, in this case the ρ meson, has no
superpartner, since LM would be negative.
Since the phenomenological value of λ for the Δ

trajectory is close to that of the ρ trajectory,
ffiffiffiffiffi
λΔ

p
¼ 0.51

and
ffiffiffiffiffi
λρ

p
¼ 0.54 (see Ref. [21]), one can expect good

agreement for the masses of the supersymmetric partners.
This is indeed the case, as can be seen from Fig. 3, where

b1
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0

Nπ

2 4

0

2

4

6

LM = LB + 11-2015
8872A1

M
2  

(G
eV

2 )

1–2

+

N
1–2 N

3–2

- -
N

3–2 N
5–2

+ +

N
9–2

+

FIG. 2 (color online). Supersymmetric meson-nucleon partners:
Mesons with S¼ 0 (red triangles) and baryons with S¼ 1

2 (blue
squares). The experimental values of M2 are plotted vs
LM ¼ LB þ 1. The solid line corresponds to

ffiffiffi
λ

p
¼ 0.53 GeV.

The π has no baryonic partner.
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we have included the confirmed Δ and J ¼ Lþ S, S¼ 1,
vector-meson states from Ref. [34].
Using the assignment ν ¼ LB þ 1

2 from Table I and the
comparison of Eq. (9) with Eq. (40) [or Eq. (10) with
Eq. (39)], we obtain the relation f ¼ νþ 1

2 ¼ LB þ 1 ¼
LM for the superconformal relation LM ¼ LB þ 1. Thus
from (39) we obtain the LF Hamiltonian for the super-
partner vector-meson trajectory,

G11 ¼ −
d2

dζ2
þ λ2Mζ

2 þ 2λMðLM − 1Þ þ
4ðLM þ 1

2Þ
2 − 1

4ζ2
;

ð52Þ

with λ ¼ λM ¼ λB. This expression is to be compared with
the light-front holographic Hamiltonian which follows
from (5) for J ¼ LM þ 1 and ν ¼ LM,

HLF ¼ −
d2

dζ2
þ λ2Mζ

2 þ 2λMLM þ 4L2
M − 1

4ζ2
: ð53Þ

Thus, by extending the meson-baryon connection for
baryons with ν ¼ LB þ 1

2 we obtain an identical expression
for the vector-meson spectrum, but with a different LF
Hamiltonian. This somewhat less satisfactory feature of the
Δ-ρ relations is reflected in the transformation under the
supercharge R†

λ (Appendix B). The ρ-meson wave function
ϕ1, that is, the eigenfunction of G11 with f ¼ 0, is not
annihilated by the action of R†

λ [see Eq. (B31)]. Indeed the

terms which determine the angular momentum, the singular
terms in the two Hamiltonians G11 and G22, Eqs. (39) and
(40) respectively, are identical for f ¼ 0. Thus in this case,
the unphysical value of the angular momentum, LB ¼ −1,
is the only reason to exclude the baryonic superpartner of
the ρ. This is in contrast to the case of the pion, where the
fermion-number-changing operator R†

λ actually annihilates
the pion wave function, Eq. (B29), since it is a zero-mass
eigenmode.

V. SUMMARY AND CONCLUSIONS

Conformal and superconformal quantum mechanics
[8,14], together with light-front holographic QCD [21],
has revealed the importance of conformal symmetry and its
breaking within the algebraic structure for understanding
the confinement mechanism of QCD.
If one introduces the mass scale for hadrons using the

method developed by de Alfaro et al. [8], one obtains a
confining theory for mesons while retaining a conformally
invariant action. If one applies the dAFF procedure to light-
front Hamiltonian theory, the form of the LF potential is
uniquely fixed to that of a harmonic oscillator in the
invariant LF radial variable ζ [9]. It predicts color confine-
ment and linear Regge meson trajectories with the same
slope in the radial and orbital excitations n and L. If one
compares the construction of the confining LF potential
with the Hamiltonian obtained in light-front holographic
QCD, then the dilaton factor in the modified AdS action is
uniquely fixed [5,6]. The appearance of the extra spin-
dependent constant term in the LF potential is a conse-
quence of the specific embedding of the LF wave equations
in AdS for arbitrary integer-spin [7]. This extra term is
essential for agreement with experiment, including the
prediction of a massless pion in the chiral limit.
In the case of half-integer spin, the dilaton in the AdS

action does not lead to confinement for baryons since
such a term can be absorbed into the wave function.
Confinement thus requires the addition of a Yukawa-like
term in the half-integer spin Lagrangian. However, this
apparent deficiency is cured [13] by the application of
superconformal quantum mechanics.
Superconformal quantum mechanics can be constructed

by restricting the superpotential in Witten’s construction
[23] to a conformally invariant expression [14,24].
Remarkably, it is possible to introduce a mass scale into
the quantum-mechanical evolution equations, without vio-
lating supersymmetry, by introducing a new supercharge
which is a linear combination of generators of the super
conformal algebra [14]. Furthermore, by connecting the
resulting wave equations to the light-front holographic
formalism, one fixes not only the confining term for
baryons and mesons for all spins, but also the constant
terms in the LF potential. The resulting spectra reproduces
the principal observed features of mesonic and baryonic
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FIG. 3 (color online). Supersymmetric vector meson and Δ
partners: Mesons with I ¼ 1 (red triangles) and I ¼ 0 (red
circles) and Δ states with S¼ 3

2 and S¼ 1
2 (blue squares) for

plus and minus parity respectively. The experimental values of
M2 are plotted vs LM ¼ LB þ 1. The solid line corresponds toffiffiffi
λ

p
¼ 0.53 GeV. The ρ and ω have no baryonic partner, since it

would imply a negative value of LB.
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follows from the stability of the ground state, the proton,
and the mapping of AdS to light-front physics. The
assignment for other spin and parity baryons states, given
in Table II, is motivated by the observed spectrum. It is
hoped that further analysis of the different quark configu-
rations and symmetries of the baryon wave function
[36,45,46] will indeed explain the assignment of the
dimensionless parameter f.
If we follow the non-SUð6Þ quantum number assignment

for the Δ5
2
−ð1930Þ given in Ref. [36], namely S ¼ 3=2,

L ¼ 1, n ¼ 1, we find with the present model the
value MΔð1930Þ ¼ 4

ffiffiffiffiffi
λB

p
¼ 2MP, also consistent with the

experimental result 1.96 GeV [40]. An important feature of

light-front holography and supersymmetric LF quantum
mechanics is the fact that it predicts a similar multiplicity of
states for mesons and baryons, consistent with experimen-
tal observations [36]. This property is consistent with the
LF cluster decomposition of the holographic variable ζ,
which describes a system of partons as an active quark plus
a cluster of n − 1 spectators [37]. From this perspective, a
baryon with 3 quarks looks in light-front holography as a
quark-diquark system.
Another interesting consequence of the supersymmetric

relation between the plus and minus chirality states, is the
equal probability expressed by (88). This remarkable
equality means that in the light-front holographic approach
described here the proton’s spin Jz ¼ Lz þ Sz is carried by
the quark orbital angular momentum: hJzi ¼ hLz

qi ¼ %1=2
since hSzqi ¼ 0.

VI. CONCLUSIONS AND OUTLOOK

In this article we have shown how superconformal
quantum mechanics [21,22] can be extended to the light
front and how it can be precisely mapped to holographic
QCD. We have also examined the higher half-integer spin
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FIG. 1 (color online). Orbital and radial baryon excitation spectrum. (a) Positive-parity spin-12 nucleons and (b) spectrum gap between
the negative-parity spin-32 and the positive-parity spin-

1
2 nucleons families. (c) Minus-parity spin-12 N and (d) plus- and minus-parity spin-

1
2 and spin-32 Δ families. We have used in this figure the value

ffiffiffiffiffi
λB

p
¼ 0.49 GeV for nucleons and 0.51 GeV for the deltas.

TABLE II. Orbital quantum number assignment for the super-
potential parameter f for baryon trajectories according to parity P
and internal spin S.

S ¼ 1
2 S ¼ 3

2

P ¼ þ f ¼ Lþ 1
2

f ¼ Lþ 1

P ¼ − f ¼ Lþ 1 f ¼ Lþ 3
2
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Table 5.1
Confirmed mesons listed by PDG [16]. The labels L, S and n refer to assigned internal orbital angular
momentum, internal spin and radial quantumnumber respectively. For a qq̄ state P = (�1)L+1,C = (�1)L+S .
For the pseudoscalar sector only the I = 1 states are listed.

L S n JPC Meson state

0 0 0 0�+ ⇡(140)
0 0 1 0�+ ⇡(1300)
0 0 2 0�+ ⇡(1800)
0 1 0 1�� ⇢(770)
0 1 0 1�� !(782)
0 1 1 1�� !(1420)
0 1 1 1�� ⇢(1450)
0 1 2 1�� !(1650)
0 1 2 1�� ⇢(1700)

1 0 0 1+� b1(1235)
1 1 0 0++ a0(980)
1 1 1 0++ a0(1450)
1 1 0 1++ a1(1260)
1 1 0 2++ f2(1270)
1 1 0 2++ a2(1320)
1 1 2 2++ f2(1950)
1 1 3 2++ f2(2300)

2 0 0 2�+ ⇡2(1670)
2 0 1 2�+ ⇡2(1880)
2 1 0 3�� !3(1670)
2 1 0 3�� ⇢3(1690)

3 1 0 4++ a4(2040)
3 1 0 4++ f4(2050)

Fig. 5.2. Orbital and radial excitation spectrum for the light pseudoscalar mesons: (a) I = 0 unflavored mesons and (b) strange mesons, for
p

� = 0.59
GeV.

In contrast to the hard-wall model, the soft-wall model with positive dilaton accounts for the mass pattern observed in
radial excitations, as well as for the triplet splitting for the L = 1, J = 0, 1, 2 observed for the vector meson a-states. As
we will discuss in the next section, a spin–orbit effect is only predicted for mesons not baryons, as observed in experiment
[203,209]; it thus becomes a crucial test for anymodel which aims to describe the systematics of the light hadron spectrum.
Using the spectral formula (5.8) we find [176]

Ma2(1320) > Ma1(1260) > Ma0(980). (5.11)

The predicted values are 0.76, 1.08 and 1.32 GeV for the masses of the a0(980), a1(1260) and a2(1320) vector mesons,
compared with the experimental values 0.98, 1.23 and 1.32 GeV respectively. The prediction for the mass of the L = 1,
n = 1 state a0(1450) is 1.53 GeV, compared with the observed value 1.47 GeV. Finally, we would like to mention the recent
precision measurement at COMPASS [210] which found a new resonance named the a1(1420) with a mass 1.42 GeV, the
origin of which remains unclear. In the present framework the a1(1420) is interpreted as a J = 1, S = 1, L = 1, n = 1

S.J. Brodsky et al. / Physics Reports 584 (2015) 1–105 35

Fig. 5.3. Orbital and radial excitation spectrum for the light vector mesons: (a) I = 0 and I = 1 unflavoredmesons and (b) strangemesons, for
p

� = 0.54
GeV.

vector-meson state with a predicted mass of 1.53 GeV. For other calculations of the hadronic spectrum in the framework of
AdS/QCD, see Refs. [211–239].23

The LF holographic model with � > 0 accounts for the mass pattern observed in the radial and orbital excitations of
the light mesons, as well as for the triplet splitting for the L = 1, J = 0, 1, 2, vector meson a-states [176]. The slope of
the Regge trajectories gives a value

p
� ' 0.5 GeV, but the value of � required for describing the pseudoscalar sector is

slightly higher that the value of � extracted from the vector sector. In general the description of the vector sector is better
than the pseudoscalar sector. However, the prediction for the observed spin–orbit splitting for the L = 1 a-vector mesons
is overestimated by the model.

The solution for � < 0 leads to a pion mass heavier than the ⇢ meson and a meson spectrum given by M2 =

4� (n + 1 + (L � J)/2), in clear disagreement with the observed spectrum. Thus the solution � < 0 is incompatible with
the light-front constituent interpretation of hadronic states. We also note that the solution with � > 0 satisfies the stability
requirements from the Wilson loop area condition for confinement [177] discussed in Section 4.2.1.

5.1.2. Meson spectroscopy in a gauge invariant AdS model
Like the AdS wave equation for arbitrary spin (4.23), the AdS wave equation which follows from a gauge invariant

construction described in Section 4.2.2 (see Ref. [61]) can be brought into a Schrödinger-like form by rescaling the AdS
field in (4.36) according to �̃J(z) = zJ�1/2e��z2/2�̃J(z). The result is

✓
�

d2

dz2
�

1 � 4J2

4
+ �2z2 � 2J�

◆
�̃J(z) = M2 �̃J(z), (5.12)

and yields the spectrum

M2
= (4n + 2J + 2)|�| � 2J�. (5.13)

Besides the difference in sign in the dilaton profile, there are conceptual differences in the treatment of higher spin given
by KKSS [61] in Section 4.2.2, as compared with the treatment given in Section 4.2. The mapping of the AdS equation of
motion (4.36) onto the Schrödinger equation (5.12) reveals that J = L and therefore an essential kinematical degree of
freedom is missing in the light-front interpretation of the KKSS AdS wave equation. In particular the ⇢ meson would be an
L = 1 state. Furthermore the method of treating higher spin, based on gauge invariance, can only be applied to the vector
meson trajectory, not pseudoscalar mesons. Generally speaking, one can say that insisting on gauge invariance in AdSd+1
favors a negative dilaton profile (� < 0), whereas the mapping onto the LF equation demands an AdS mass µ 6= 0 and a
positive profile (� > 0).

5.1.3. Light quark masses and meson spectrum
In general, the effective interaction depends on quark masses and the longitudinal momentum fraction x in addition

to the transverse invariant variable ⇣ . However, if the confinement potential is unchanged for small quark masses it then
only depends on the transverse invariant variable ⇣ , and the transverse dynamics are unchanged (see Section 2.4.1). This
is consistent with the fact that the potential is determined from the conformal symmetry of the effective one-dimensional
quantum field theory, which is not badly broken for small quark masses.

23 For recent reviews see, for example, Refs. [114,240]. One can also use the AdS/QCD framework to study hadrons at finite temperature (see, for example
Refs. [241–243] and references therein) or in a hadronic medium [244].

S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015); 
H.G. Dosch, G.F. de Téramond, S.J. Brodsky, Phys. Rev. D 91, 045040 (2015); D91, 085016 (2015).
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The coupling of an extermal EM field 
propagating in AdS space to a hadron mode

Form Factors in Holographic QCD

bound state behaves like a quark-diquark system, i.e., like a
twist-2 system. However, at large momentum transfer, or at
small distances, where the cluster is resolved into its
individual constituents, the nucleon is governed by twist
3, in contrast to the nonperturbative region where it is
approximated by twist 2. A similar feature appears in the
study of sequential decay chains in baryons [49], which are
sensitive to the short distance behavior of the wave
function. At very short distances, the bound state is twist
3 since the two constituents particles in the diquark are
resolved. This different scaling behavior of the structure
functions at low and high virtualities can be properly
addressed from the LF cluster decomposition for bound
states [50–52] and is discussed below.
In contrast to the prototypical example of the gauge/

gravity duality, the AdS=CFT correspondence [53], where
the baryon is identified as an SUðNCÞ singlet bound state of
NC quarks in the large-NC limit, in the LFHQCD formal-
ism, baryons are computed for NC ¼ 3, not NC → ∞. In
particular, the correct physical twist assignment is critical
when computing hadron FFs since the leading twist
corresponds to the number of constituents N, i.e., τ ¼ 3
for a nucleon. In fact, the nucleon AdS solutions have both
L ¼ 0 and L ¼ 1 components with equal weight. Therefore
we use both the leading twist τ ¼ 3 and τ ¼ 3þ L ¼ 4 to
compute the valence contribution to the nucleon FFs. The
spacelike Pauli FF of the nucleons arises from the overlap
of L ¼ 0 and L ¼ 1AdS wave functions [1]. It is important
to recall that the spin-flavor symmetry is not contained in
the holographic principle, which essentially describes the
Q 2 scale dependence for a given twist, and has to be
imposed from the symmetries of the quark model under
consideration. In the present work we use the SU(6) spin-
flavor symmetry and examine possible breaking effects of
this symmetry.
In holographic QCD gluonic degrees of freedom only

arise at high virtuality, whereas gluons with small virtuality
are sublimated in the effective confining potential [54].
Thus, Fock states of hadrons can have any number of extra
qq̄ pairs created by the confining potential. One can extend
the formalism in order to examine the contribution of
higher-Fock states using the holographic framework
described here. Indeed, it was shown in Refs. [34,55] that
higher Fock components are essential to describe the rather
complex timelike structure of the pion FF. Contribution
from the higher-twist components (qq̄ and qq̄qq̄) has also
been considered to describe the pion transition FF in γγ% →
π0 [45]. Contributions from three, four, and five parton
components in the nucleon Fock expansion have been
considered in the holographic QCD framework in Ref. [56],
but the experimental data of a different combination of
Sachs FFs, such as μpG

p
E=G

p
M, could not be successfully

described. More recent works [57,58] by the same group
can describe the experimental data of nucleon FFs well, but
the number of parameters required is large, typically about

eight to 12 free parameters. Other attempts to describe the
flavor nucleon FFs in AdS/QCD also require a large
number of parameters [59]. On the other hand, simple
holographic models, which essentially include only the
valence contribution, fail to systematically account for all
the properties of the nucleon FFs and their flavor decom-
position [34,60,61]. As we show below, higher-twist
components in the Fock expansion are in general needed
for an accurate description of the nucleon FFs, and, in fact,
this can be achieved with a minimal number of parameters
in the LF holographic framework.
The contents of this article are as follows: After briefly

reviewing in Sec. II how nonperturbative analytical expres-
sions for FFs in physical four-dimensional space follow
from semiclassical gravity in AdS5 space, and their light-
front holographic cluster decomposition, we show in
Sec. III how the Dirac and Pauli nucleon FFs in physical
space-time follow from the covariant spin structure of FFs
in AdS5. In Sec. IV we study the effect of higher Fock
states and build a simple light-front holographic model for
the nucleon FFs. We compare our predictions with avail-
able data and compute asymptotic predictions for the
nucleon FFs and their ratios. We compare our results for
the nucleon radii and perform a flavor decomposition of the
nucleon FFs. Predictions are made for comparison with
upcoming JLab experiments. Our concluding remarks are
given in Sec. V.

II. HADRON FORM FACTORS
IN HOLOGRAPHIC QCD

For simplicity let us consider first the FF of a spinless
hadron. In the higher-dimensional gravity theory an
electromagnetic FF corresponds to the coupling of an
external EM field AMðx; zÞ propagating in AdS space with
a hadron mode ΦPðx; zÞ, given by the left-hand side of the
equation

Z
d4xdz

ffiffiffi
g

p
Φ%

P0ðx; zÞ∂
↔

MΦPðx; zÞAMðx; zÞ

∼ð2πÞ4δ4ðP0 −P−qÞϵμðPþ P0ÞμFðq2Þ; ð1Þ

defined up to a constant term. In (1) the coordinates are
xM ¼ ðxμ; zÞ, with z being the holographic variable and xμ

Minkowski flat space-time coordinates. The metric deter-
minant is

ffiffiffi
g

p ¼ ðR=zÞ5. To simplify, we set the AdS radius
R ¼ 1 since it does not appear in physical quantities. In the
above expression the hadron has initial and final four-
momenta P and P0 and q is the four-momentum transferred
to the hadron by the photon with polarization ϵμ. For
convenience we have redefined the wave function Φðx; zÞ
to absorb any dependence in Eq. (1) on a dilaton profile.
The expression on the right-hand side represents the EM
hadron FF in physical space-time. It corresponds to the
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bound state behaves like a quark-diquark system, i.e., like a
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individual constituents, the nucleon is governed by twist
3, in contrast to the nonperturbative region where it is
approximated by twist 2. A similar feature appears in the
study of sequential decay chains in baryons [49], which are
sensitive to the short distance behavior of the wave
function. At very short distances, the bound state is twist
3 since the two constituents particles in the diquark are
resolved. This different scaling behavior of the structure
functions at low and high virtualities can be properly
addressed from the LF cluster decomposition for bound
states [50–52] and is discussed below.
In contrast to the prototypical example of the gauge/

gravity duality, the AdS=CFT correspondence [53], where
the baryon is identified as an SUðNCÞ singlet bound state of
NC quarks in the large-NC limit, in the LFHQCD formal-
ism, baryons are computed for NC ¼ 3, not NC → ∞. In
particular, the correct physical twist assignment is critical
when computing hadron FFs since the leading twist
corresponds to the number of constituents N, i.e., τ ¼ 3
for a nucleon. In fact, the nucleon AdS solutions have both
L ¼ 0 and L ¼ 1 components with equal weight. Therefore
we use both the leading twist τ ¼ 3 and τ ¼ 3þ L ¼ 4 to
compute the valence contribution to the nucleon FFs. The
spacelike Pauli FF of the nucleons arises from the overlap
of L ¼ 0 and L ¼ 1AdS wave functions [1]. It is important
to recall that the spin-flavor symmetry is not contained in
the holographic principle, which essentially describes the
Q 2 scale dependence for a given twist, and has to be
imposed from the symmetries of the quark model under
consideration. In the present work we use the SU(6) spin-
flavor symmetry and examine possible breaking effects of
this symmetry.
In holographic QCD gluonic degrees of freedom only

arise at high virtuality, whereas gluons with small virtuality
are sublimated in the effective confining potential [54].
Thus, Fock states of hadrons can have any number of extra
qq̄ pairs created by the confining potential. One can extend
the formalism in order to examine the contribution of
higher-Fock states using the holographic framework
described here. Indeed, it was shown in Refs. [34,55] that
higher Fock components are essential to describe the rather
complex timelike structure of the pion FF. Contribution
from the higher-twist components (qq̄ and qq̄qq̄) has also
been considered to describe the pion transition FF in γγ% →
π0 [45]. Contributions from three, four, and five parton
components in the nucleon Fock expansion have been
considered in the holographic QCD framework in Ref. [56],
but the experimental data of a different combination of
Sachs FFs, such as μpG
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E=G

p
M, could not be successfully

described. More recent works [57,58] by the same group
can describe the experimental data of nucleon FFs well, but
the number of parameters required is large, typically about

eight to 12 free parameters. Other attempts to describe the
flavor nucleon FFs in AdS/QCD also require a large
number of parameters [59]. On the other hand, simple
holographic models, which essentially include only the
valence contribution, fail to systematically account for all
the properties of the nucleon FFs and their flavor decom-
position [34,60,61]. As we show below, higher-twist
components in the Fock expansion are in general needed
for an accurate description of the nucleon FFs, and, in fact,
this can be achieved with a minimal number of parameters
in the LF holographic framework.
The contents of this article are as follows: After briefly

reviewing in Sec. II how nonperturbative analytical expres-
sions for FFs in physical four-dimensional space follow
from semiclassical gravity in AdS5 space, and their light-
front holographic cluster decomposition, we show in
Sec. III how the Dirac and Pauli nucleon FFs in physical
space-time follow from the covariant spin structure of FFs
in AdS5. In Sec. IV we study the effect of higher Fock
states and build a simple light-front holographic model for
the nucleon FFs. We compare our predictions with avail-
able data and compute asymptotic predictions for the
nucleon FFs and their ratios. We compare our results for
the nucleon radii and perform a flavor decomposition of the
nucleon FFs. Predictions are made for comparison with
upcoming JLab experiments. Our concluding remarks are
given in Sec. V.

II. HADRON FORM FACTORS
IN HOLOGRAPHIC QCD

For simplicity let us consider first the FF of a spinless
hadron. In the higher-dimensional gravity theory an
electromagnetic FF corresponds to the coupling of an
external EM field AMðx; zÞ propagating in AdS space with
a hadron mode ΦPðx; zÞ, given by the left-hand side of the
equation
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∼ð2πÞ4δ4ðP0 −P−qÞϵμðPþ P0ÞμFðq2Þ; ð1Þ

defined up to a constant term. In (1) the coordinates are
xM ¼ ðxμ; zÞ, with z being the holographic variable and xμ

Minkowski flat space-time coordinates. The metric deter-
minant is

ffiffiffi
g

p ¼ ðR=zÞ5. To simplify, we set the AdS radius
R ¼ 1 since it does not appear in physical quantities. In the
above expression the hadron has initial and final four-
momenta P and P0 and q is the four-momentum transferred
to the hadron by the photon with polarization ϵμ. For
convenience we have redefined the wave function Φðx; zÞ
to absorb any dependence in Eq. (1) on a dilaton profile.
The expression on the right-hand side represents the EM
hadron FF in physical space-time. It corresponds to the
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bound state behaves like a quark-diquark system, i.e., like a
twist-2 system. However, at large momentum transfer, or at
small distances, where the cluster is resolved into its
individual constituents, the nucleon is governed by twist
3, in contrast to the nonperturbative region where it is
approximated by twist 2. A similar feature appears in the
study of sequential decay chains in baryons [49], which are
sensitive to the short distance behavior of the wave
function. At very short distances, the bound state is twist
3 since the two constituents particles in the diquark are
resolved. This different scaling behavior of the structure
functions at low and high virtualities can be properly
addressed from the LF cluster decomposition for bound
states [50–52] and is discussed below.
In contrast to the prototypical example of the gauge/

gravity duality, the AdS=CFT correspondence [53], where
the baryon is identified as an SUðNCÞ singlet bound state of
NC quarks in the large-NC limit, in the LFHQCD formal-
ism, baryons are computed for NC ¼ 3, not NC → ∞. In
particular, the correct physical twist assignment is critical
when computing hadron FFs since the leading twist
corresponds to the number of constituents N, i.e., τ ¼ 3
for a nucleon. In fact, the nucleon AdS solutions have both
L ¼ 0 and L ¼ 1 components with equal weight. Therefore
we use both the leading twist τ ¼ 3 and τ ¼ 3þ L ¼ 4 to
compute the valence contribution to the nucleon FFs. The
spacelike Pauli FF of the nucleons arises from the overlap
of L ¼ 0 and L ¼ 1AdS wave functions [1]. It is important
to recall that the spin-flavor symmetry is not contained in
the holographic principle, which essentially describes the
Q 2 scale dependence for a given twist, and has to be
imposed from the symmetries of the quark model under
consideration. In the present work we use the SU(6) spin-
flavor symmetry and examine possible breaking effects of
this symmetry.
In holographic QCD gluonic degrees of freedom only

arise at high virtuality, whereas gluons with small virtuality
are sublimated in the effective confining potential [54].
Thus, Fock states of hadrons can have any number of extra
qq̄ pairs created by the confining potential. One can extend
the formalism in order to examine the contribution of
higher-Fock states using the holographic framework
described here. Indeed, it was shown in Refs. [34,55] that
higher Fock components are essential to describe the rather
complex timelike structure of the pion FF. Contribution
from the higher-twist components (qq̄ and qq̄qq̄) has also
been considered to describe the pion transition FF in γγ% →
π0 [45]. Contributions from three, four, and five parton
components in the nucleon Fock expansion have been
considered in the holographic QCD framework in Ref. [56],
but the experimental data of a different combination of
Sachs FFs, such as μpG

p
E=G

p
M, could not be successfully

described. More recent works [57,58] by the same group
can describe the experimental data of nucleon FFs well, but
the number of parameters required is large, typically about

eight to 12 free parameters. Other attempts to describe the
flavor nucleon FFs in AdS/QCD also require a large
number of parameters [59]. On the other hand, simple
holographic models, which essentially include only the
valence contribution, fail to systematically account for all
the properties of the nucleon FFs and their flavor decom-
position [34,60,61]. As we show below, higher-twist
components in the Fock expansion are in general needed
for an accurate description of the nucleon FFs, and, in fact,
this can be achieved with a minimal number of parameters
in the LF holographic framework.
The contents of this article are as follows: After briefly

reviewing in Sec. II how nonperturbative analytical expres-
sions for FFs in physical four-dimensional space follow
from semiclassical gravity in AdS5 space, and their light-
front holographic cluster decomposition, we show in
Sec. III how the Dirac and Pauli nucleon FFs in physical
space-time follow from the covariant spin structure of FFs
in AdS5. In Sec. IV we study the effect of higher Fock
states and build a simple light-front holographic model for
the nucleon FFs. We compare our predictions with avail-
able data and compute asymptotic predictions for the
nucleon FFs and their ratios. We compare our results for
the nucleon radii and perform a flavor decomposition of the
nucleon FFs. Predictions are made for comparison with
upcoming JLab experiments. Our concluding remarks are
given in Sec. V.

II. HADRON FORM FACTORS
IN HOLOGRAPHIC QCD

For simplicity let us consider first the FF of a spinless
hadron. In the higher-dimensional gravity theory an
electromagnetic FF corresponds to the coupling of an
external EM field AMðx; zÞ propagating in AdS space with
a hadron mode ΦPðx; zÞ, given by the left-hand side of the
equation
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d4xdz

ffiffiffi
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Φ%

P0ðx; zÞ∂
↔

MΦPðx; zÞAMðx; zÞ

∼ð2πÞ4δ4ðP0 −P−qÞϵμðPþ P0ÞμFðq2Þ; ð1Þ

defined up to a constant term. In (1) the coordinates are
xM ¼ ðxμ; zÞ, with z being the holographic variable and xμ

Minkowski flat space-time coordinates. The metric deter-
minant is

ffiffiffi
g

p ¼ ðR=zÞ5. To simplify, we set the AdS radius
R ¼ 1 since it does not appear in physical quantities. In the
above expression the hadron has initial and final four-
momenta P and P0 and q is the four-momentum transferred
to the hadron by the photon with polarization ϵμ. For
convenience we have redefined the wave function Φðx; zÞ
to absorb any dependence in Eq. (1) on a dilaton profile.
The expression on the right-hand side represents the EM
hadron FF in physical space-time. It corresponds to the
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local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
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ing to
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where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
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the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
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and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ
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n, it can
also be expressed as a sum of poles [62],
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with the poles located at −Q 2 ¼ M2
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≡Mρ ¼
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where κ ¼
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is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
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expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X
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where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that
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τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the
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form factor is written as a single-pole expansion
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with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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Extracting the momentum conservation factor

For hadron modes scale as

local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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Form Factors in Holographic QCD
Hadron wave function of twist-τ (soft-wall)

local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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EM current

local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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Phys. Rev. D 76, 095007 (2007).

local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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have poles at

compare with LFHQCD spectral formula M2
n = 42

⇣
n+

J + L

2

⌘

corresponding to the Regge trajectory J = L = 1
ρ meson trajectory is J = L + 1 = 1 shift poles to local coupling of the quark current Jμ ¼

P
qeqq̄γ

μq to the
constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ 2Þ ¼ 1&
1þ Q 2

M2
ρn¼0

'&
1þ Q 2

M2
ρn¼1

'
% % %

&
1þ Q 2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jH i is a super-

position of an infinite number of Fock components jNi,
jH i ¼

P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FH ðQ 2Þ ¼
X

λ

Cλ
M2

λ

M2
λ − Q 2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q 2 ¼ −q2)

FðQ 2Þ ¼
Z

dz
z3

VðQ 2; zÞΦ2
τðzÞ; ð3Þ

where FðQ 2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q , where
the EM current VðQ 2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ 2Þ →
!
1

Q 2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ 2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ 2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ 2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þ Q 2

; ð7Þ

with the poles located at −Q 2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q 2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
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where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
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'
% % %

&
1þ Q 2
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' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
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nance at low energy [65].
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P
NψN=H jNi, where ψN=H represents the N-

component LFWF with normalization
P

NjψN=H j2 ¼ 1.
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FH ðQ 2Þ ¼
X

τ

PτFτðQ 2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
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sum in Eq. (10). Normalization at Q 2 ¼ 0, FH ð0Þ ¼ 1,
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P
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λ
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λ
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; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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The coupling of an extermal EM field 
propagating in AdS space to a nucleon mode

Form Factors in Holographic QCD

Dirac form factor in physical spacetime

Nucleon wave function

Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ 2Þ ¼ Fi¼2ðQ 2ÞFi¼2

!
1

3
Q 2

"
$ $ $Fi¼2

!
1

2i − 1
Q 2

"
:

ð12Þ

In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
Fi¼2ðQ 2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-
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product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
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Q 2
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In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
Fi¼2ðQ 2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]
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where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
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F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),
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In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
Fi¼2ðQ 2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]
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∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
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factor F2 is given instead by the i ¼ N þ 1 product of
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∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ
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2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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(L = 0) (L = 1)

Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ 2Þ ¼ Fi¼2ðQ 2ÞFi¼2
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In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
Fi¼2ðQ 2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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Dirac form factor

Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ 2Þ ¼ Fi¼2ðQ 2ÞFi¼2
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In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
Fi¼2ðQ 2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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are determined by the spin-flavor structure 

Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),
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In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
Fi¼2ðQ 2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ 2Þ ¼ Fi¼2ðQ 2ÞFi¼2
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In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
Fi¼2ðQ 2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
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p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ 2Þ ¼ Fi¼2ðQ 2ÞFi¼2

!
1

3
Q 2

"
$ $ $Fi¼2

!
1

2i − 1
Q 2

"
:

ð12Þ

In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ 2Þ ¼
Fi¼2ðQ 2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q 4F1ðQ 2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q 6F2ðQ 2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD
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Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ
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M
A . The expression on the right-hand side repre-
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P
qeqq̄γ

μq [34].
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ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ
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FN
1 ðQ 2Þ ¼

X

&
gN&

Z
dz
z4

VðQ 2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
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gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
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μνqν
2MN
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tum conservation in (17) we find [68]

FN
2 ðQ 2Þ ¼ χN

Z
dz
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ΨþðzÞVðQ 2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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normalized to anomalous magnetic moments

Scaling: additional power of z in the wave function product of          and functions due to the different scaling behavior of Ψþ and
Ψ−, Eq. (14), with orbital angular momentum L ¼ 0 and
L ¼ 1 respectively. As a result, while the leading scaling
behavior of the Dirac form factor is 1=Q 4, the leading
scaling behavior of the Pauli form factor is 1=Q 6 because of
the additional z2-factor in (18). Remarkably, the correct
large-Q 2 power scaling from hard scattering is incorporated
in the covariant spin structure of the AdS expressions for
the nucleon FFs.

IV. A SIMPLE LIGHT-FRONT HOLOGRAPHIC
MODEL FOR NUCLEON FORM FACTORS

Following Ref. [55] we consider a simplified model
where we only include the first two components in a Fock
expansion of the nucleon LF function with no constituent
dynamical gluons [54],

jNiL¼0 ¼ ψL¼0
qqq=Njqqqiτ¼3 þ ψL¼0

qqqqq̄=Njqqqqq̄iτ¼5

þ # # # ; ð19Þ

jNiL¼1 ¼ ψL¼1
qqq=Njqqqiτ¼4 þ ψL¼1

qqqqq̄=Njqqqqq̄iτ¼6

þ # # # ; ð20Þ

with N ¼ p, n. The additional qq̄ contribution to the
nucleon wave function from higher Fock components is
relevant at larger distances and is usually interpreted as a
pion cloud.
We have performed a systematic evaluation of the

relevance of higher Fock components in the nucleon FFs
by extending the previous results in Ref. [34] for the Dirac
and Pauli FFs. For example, for the proton Dirac FF we
have determined the relevance of higher Fock components
by writing Fp

1 ðQ 2Þ ¼ ð1 − αpÞFi¼3ðQ 2Þ þ αpFi¼5ðQ 2Þ,
where i − 1 is the number of poles in the expansion (9)
and αp is the twist-5 probability αp ¼ Pα

qqqqq̄=p. Therefore,
1 − αp ¼ Pα

qqq=p is the valence twist-3 probability for the
spin-nonflip EM transition amplitude. It is found that
Pqqqqq̄=p is very small, of the order of 1%. Likewise, the
contribution of higher Fock components to the Dirac
neutron FF is of the order of 2% and does not change
significantly our previous results [34]. We thus drop the
contribution of the higher Fock components to the spin-
nonflip nucleon FFs in the rest of our analysis; namely, we
take Pα

qqq=p ¼ Pα
qqq=n ¼ 1, which gives us a considerable

simplification. Within this approximation, thus considering
only the effect of higher qq̄ Fock components to the spin-
flip nucleon FFs, we write

Fp
1 ðQ 2Þ ¼ Fi¼3ðQ 2Þ; ð21Þ

Fp
2 ðQ 2Þ ¼ χp½ð1 − γpÞFi¼4ðQ 2Þ þ γpFi¼6ðQ 2Þ' ð22Þ

for the proton, where χp ¼ μp − 1 ¼ 1.793 is the proton
anomalous moment, and

Fn
1ðQ 2Þ ¼ −

1

3
½Fi¼3ðQ 2Þ − Fi¼4ðQ 2Þ'; ð23Þ

Fn
2ðQ 2Þ ¼ χn½ð1 − γnÞFi¼4ðQ 2Þ þ γnFi¼6ðQ 2Þ' ð24Þ

for the neutron, with χn ¼ μn ¼ −1.913, and where γp;n are
the higher Fock probabilities for the L ¼ 0 → L ¼ 1 spin-
flip nucleon EM form factors. Equations (21) and (23) are
the exact SU(6) results for the spin-nonflip nucleon FFs
(13) in the valence configuration, whereas (22) and (24)
correspond to the spin-flip nucleon FFs (17), incorporating
the higher Fock components, properly normalized to the
nucleon anomalous magnetic moments.
The inclusion of higher Fock states is not of much help in

describing well the available data for the neutron Dirac
form factor. Indeed the zero value of the neutron FF at zero
momentum transfer comes from the cancellation of two
normalizable wave functions, which vanishes at Q 2 ¼ 0.
One could thus expect that in contrast to the other three
FFs, namely Fp

1, F
p
2 and Fn

2 , second order effects are more
important. Therefore our results for the neutron FFs are, in
principle, less reliable than our predictions for the proton
FFs, especially for the low Q 2 region which is more
sensitive to the leading cancellations. With this possible
shortcoming of the model in mind, we are thus led to
introduce one additional parameter r, which is required
phenomenologically. With this free parameter r we modify
the neutron effective charges in Eq. (16) as

gnþ ¼ −
1

3
r; gn− ¼ 1

3
r; ð25Þ

and thus the expression for the neutron Dirac FF

Fn
1ðQ 2Þ ¼ −

1

3
r½Fτ¼3ðQ 2Þ − Fτ¼4ðQ 2Þ': ð26Þ

The value r ¼ 2.08 is required to give a proper matching to
the available experimental data as shown in Fig. 1. Also,
keeping in mind that the gauge-gravity duality does not
determine the spin-flavor structure of the nucleons, which
is conventionally included in the nucleon wave function
using SU(6) spin-flavor symmetry, the departure of this free
parameter r from unity may be interpreted as a SU(6)
symmetry-breaking effect in the neutron Dirac FF. Indeed,
the breaking of SU(6) flavor-spin symmetry has also been
observed in a meson cloud model where mixed symmetry
in the nucleon wave function was included to reproduce the
experimental data [69]. The effect of SU(6) symmetry
breaking on the neutron FFs was also investigated within a
LF constituent quark model in Ref. [70].
All the results presented here correspond to the value of

the universal confinement scale determined from the mass
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nucleon wave function from higher Fock components is
relevant at larger distances and is usually interpreted as a
pion cloud.
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and Pauli FFs. For example, for the proton Dirac FF we
have determined the relevance of higher Fock components
by writing Fp
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where i − 1 is the number of poles in the expansion (9)
and αp is the twist-5 probability αp ¼ Pα

qqqqq̄=p. Therefore,
1 − αp ¼ Pα

qqq=p is the valence twist-3 probability for the
spin-nonflip EM transition amplitude. It is found that
Pqqqqq̄=p is very small, of the order of 1%. Likewise, the
contribution of higher Fock components to the Dirac
neutron FF is of the order of 2% and does not change
significantly our previous results [34]. We thus drop the
contribution of the higher Fock components to the spin-
nonflip nucleon FFs in the rest of our analysis; namely, we
take Pα

qqq=p ¼ Pα
qqq=n ¼ 1, which gives us a considerable

simplification. Within this approximation, thus considering
only the effect of higher qq̄ Fock components to the spin-
flip nucleon FFs, we write
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for the neutron, with χn ¼ μn ¼ −1.913, and where γp;n are
the higher Fock probabilities for the L ¼ 0 → L ¼ 1 spin-
flip nucleon EM form factors. Equations (21) and (23) are
the exact SU(6) results for the spin-nonflip nucleon FFs
(13) in the valence configuration, whereas (22) and (24)
correspond to the spin-flip nucleon FFs (17), incorporating
the higher Fock components, properly normalized to the
nucleon anomalous magnetic moments.
The inclusion of higher Fock states is not of much help in

describing well the available data for the neutron Dirac
form factor. Indeed the zero value of the neutron FF at zero
momentum transfer comes from the cancellation of two
normalizable wave functions, which vanishes at Q 2 ¼ 0.
One could thus expect that in contrast to the other three
FFs, namely Fp

1, F
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2 and Fn

2 , second order effects are more
important. Therefore our results for the neutron FFs are, in
principle, less reliable than our predictions for the proton
FFs, especially for the low Q 2 region which is more
sensitive to the leading cancellations. With this possible
shortcoming of the model in mind, we are thus led to
introduce one additional parameter r, which is required
phenomenologically. With this free parameter r we modify
the neutron effective charges in Eq. (16) as

gnþ ¼ −
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and thus the expression for the neutron Dirac FF

Fn
1ðQ 2Þ ¼ −
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r½Fτ¼3ðQ 2Þ − Fτ¼4ðQ 2Þ': ð26Þ

The value r ¼ 2.08 is required to give a proper matching to
the available experimental data as shown in Fig. 1. Also,
keeping in mind that the gauge-gravity duality does not
determine the spin-flavor structure of the nucleons, which
is conventionally included in the nucleon wave function
using SU(6) spin-flavor symmetry, the departure of this free
parameter r from unity may be interpreted as a SU(6)
symmetry-breaking effect in the neutron Dirac FF. Indeed,
the breaking of SU(6) flavor-spin symmetry has also been
observed in a meson cloud model where mixed symmetry
in the nucleon wave function was included to reproduce the
experimental data [69]. The effect of SU(6) symmetry
breaking on the neutron FFs was also investigated within a
LF constituent quark model in Ref. [70].
All the results presented here correspond to the value of

the universal confinement scale determined from the mass
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the leading scaling of the Pauli form factor has additional power of 1/Q2
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III. STRANGE QUARK FORM FACTORS
FROM LATTICE QCD

We have calculated the strange quark contribution to
nucleon’s magnetic moment and charge radius in Ref. [24]
using the overlap fermion on the (2þ 1) flavor RBC/
UKQCD domain wall fermion (DWF) gauge configura-
tions. Details of these ensembles are listed in Table I. We
use 24 valence quark masses in total for the 24I, 32I, 32ID,
and 48I ensembles representing pion masses in the range
mπ ∈ ð135; 400Þ MeV to explore the quark-mass depend-
ence of the s-quark FFs. One can perform the model-
independent z-expansion fit [64,65]

Gs;z- expðQ2Þ ¼
Xkmax

k¼ 0

akzk; z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
− ffiffiffiffiffiffi

tcut
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
þ ffiffiffiffiffiffi

tcut
p ; ð11Þ

using the lattice data to extrapolate the s-quark magnetic
moment and charge radius as shown in [24] and then use
the fit parameters ak to interpolate Gs

E;M values at various
Q2 for a given valence quark mass on the lattice. The
available Q2 on the 24I and 32I ensembles are
Q2 ∈ ð0.22; 1.31Þ GeV2, on the 32ID ensemble are Q2 ∈
ð0.07; 0.43Þ GeV2 and on the 48I ensemble are
Q2 ∈ ð0.05; 0.31Þ GeV2. It is a common problem for lattice
QCD calculations that the signal-to-noise-ratio decreases as
one reaches the physical pion mass. From our study, we
also find that the lattice results of Gs

E;MðQ2Þ near the
physical pion mass mπ ¼ 140 MeV for the 48I ensemble
[66] is noisier compared to theGs

E;MðQ2Þ obtained from the
lattice ensembles with heavier pion mass. Although the
largest available momentum transfer we have on the 24I
and 32I ensemble isQ2 ∼ 1.3 GeV2, the largest momentum
transfer available on the 48I ensemble is Q2 ∼ 0.31 GeV2.
We note that the extrapolation of the nucleon strange EMFF
starts to break down after Q2 ∼ 0.4 GeV2 for the 48I
ensemble and we therefore constrain the extrapolations
of the 48I ensemble EMFF up to Q2 ¼ 0.5 GeV2. It is
important to note that the lattice QCD estimate of
Gs

E;MðQ2Þ we present here is the most precise and accurate

FIG. 2. LFHQCD prediction and comparison with selected
world data of the ratio Rp ¼ μpG

p
E=G

p
M from unpolarized cross

section measurements [53–56] and polarization measurements
[57–63]. The blue uncertainty band in the LFHQCD prediction of
Rp is obtained from the variation of κ determined by the nucleon
and the ρ-trajectories. The uncertainty in the cyan band of the
asymptotic value Rasymp

p ð∞Þ ¼ −0.309 is obtained form the
difference between κ ¼ 0.548 GeV and κ ¼ 0.537 GeV.

(a) (b)

FIG. 1. Comparison of the LFHQCD results with selected world data [51,52] for the Dirac and Pauli form factors for the proton and
neutron. The orange line corresponds to the SU(6) symmetry limit for the neutron Dirac form factor. The dotted lines are the asymptotic
predictions of the form factors from LFHQCD. The blue and green uncertainty bands are obtained from the variation of κ determined by
the nucleon and the ρ-trajectories.

TABLE I. The parameters for the DWF configurations: spatial/
temporal size, lattice spacing [66,67], the sea strange quark mass
under M̄S scheme at 2 GeV, the pion mass corresponding to the
degenerate light sea quark mass and the numbers of configura-
tions used in this work.

Ensemble L3 × T a (fm) mðsÞ
s (MeV) mπ (MeV) Nconfig

24I [67] 243 × 64 0.1105(3) 120 330 203
32I [67] 323 × 64 0.0828(3) 110 300 309
32ID [66] 323 × 64 0.1431(7) 89.4 171 200
48I [66] 483 × 96 0.1141(2) 94.9 139 81
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FIG. 1. Comparison of the LFHQCD results with selected world data [51,52] for the Dirac and Pauli form factors for the proton and
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]
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with M2
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to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory
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slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form
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wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD
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which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
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term in the expansion, which behaves as ð1 − xÞτ−2,
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w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
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GPDs that incorporates the Regge behavior. As a result, the
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
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Upon substitution of (12) in (9), we find that the leading
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vanishes if w0ð1Þ ¼ 0. Hence, setting
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physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]
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with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory
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2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:
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¼ κ ¼

mρ=
ffiffiffi
2
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¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form
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2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain
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where the PDF qτðxÞ and the profile function fðxÞ
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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For large Q2 = – t, it has the scaling behavior

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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where
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and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
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½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]
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with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
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wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting
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It has the same structure of Veneziano amplitude  
with the s-channel dependence replaced by a fixed pole
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physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
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Generalized parton distributions in LFHQCD.—In
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
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with M2
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1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
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To study the behavior of wðxÞ at large x, we perform a
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Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
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If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the
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which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a
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Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ

PHYSICAL REVIEW LETTERS 120, 182001 (2018)

182001-2

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
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Writing the form factor in terms of valence GPD at zero skewness
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Express the form factor with the Euler integral representation

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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hard scattering scaling behavior [53,54]
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]
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with M2
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2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory
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2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:
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¼ κ ¼

mρ=
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Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form
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if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
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Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ
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1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ
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log
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"
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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The collinear distribution q(x) and the profile function f (x) are related 
by a universal τ-independent reparametrization function w(x).

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
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Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
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with M2
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2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory
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þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1
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Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1
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½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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B(u, v) =

Z 1

0
dy yu�1(1� y)v�1 y = w(x)

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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Physical requirements:
Small-x behavior: 

for x 2 [0, 1]

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
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Þð1þ Q2

M2
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Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1
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½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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Regge theory motivated ansatz

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1
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where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]
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with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1
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½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ
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1
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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Large-x behavior: we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ&with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ&∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ&follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn¼ 1.673 and
χd ¼ 2χnþ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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Drell-Yan inclusive counting rule

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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where
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and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π
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½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]
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with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
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wðxÞ
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ&with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ&∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ&follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn¼ 1.673 and
χd ¼ 2χnþ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
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τ − 1;
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−
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4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0
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with M2
n¼ 4λðnþ 1

2Þ; n¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1
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½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1
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½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log
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are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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H
u,d̄
v (x, t) = (1� �)H⌧=2(x, t) + �H⌧=4(x, t)

Nucleon:
Spin-nonflip: H

u
v (x, t) =

⇣
2� r

3

⌘
H⌧=3(x, t) +

r

3
H⌧=4(x, t)

H
d
v (x, t) =

⇣
1� 2r

3

⌘
H⌧=3(x, t) +

2r

3
H⌧=4(x, t)

Spin-flip: E
u
v (x, t) = �u[(1� �u)H⌧=4(x, t) + �uH⌧=6(x, t)]

E
d
v (x, t) = �u[(1� �d)H⌧=4(x, t) + �dH⌧=6(x, t)]

γu ≡
2χpγp þ χnγn
2χp þ χn

; γd ≡
2χnγn þ χpγp
2χn þ χp

; ð19Þ

where the higher Fock probabilities γp;n represent the large
distance pion contribution and have the values γp ¼ 0.27
and γn ¼ 0.38 [56]. Our results for Eq

vðx; tÞ are displayed
in Fig. 3.
Pion GPD.—The expression for the pion GPD

Hu;d̄
v ðx; tÞ ¼ qu;d̄v ðxÞ exp ½tfðxÞ& follows from the pion FF

in [81], where the contribution from higher Fock compo-
nents was determined from the analysis of the timelike
region [81]. Up to twist 4,

qu;d̄v ðxÞ ¼ ð1 − γÞqτ¼2ðxÞ þ γqτ¼4ðxÞ; ð20Þ

where the PDFs are normalized to the valence quark
content of the pion

R
1
0 dxq

u;d̄
v ðxÞ ¼ 1, and γ ¼ 0.125

represents the meson cloud contribution determined in [28].
The pion PDFs are evolved to μ2 ¼ 27 GeV2 at next-to-

leadingorder (NLO) to comparewith theNLOglobal analysis
in [82,83] of the data [84]. The initial scale is set at μ0 ¼
1.1'0.2 GeV from the matching procedure in Ref. [75] at
NLO. The result is shown in Fig. 4, and the t dependence of
Hq

vðx; tÞ is illustrated in Fig. 5. We have also included the
NNLO results in Fig. 4, to comparewith future data analysis.
Our results are in good agreement with the data analysis

in Ref. [82] and consistent with the nucleon global fit
results through the GPD universality described here. There
is, however, a tension with the data analysis in [83] for
x ≥ 0.6 and with the Dyson-Schwinger results in [85],
which incorporate the ð1 − xÞ2 pQCD falloff at large x from
hard gluon transfer to the spectator quarks. In contrast, our
nonperturbative results falloff as 1 − x from the leading

twist-2 term in (20). A softer falloff ∼ð1 − xÞ1.5 in Fig. 4
follows from DGLAP evolution. Our analysis incorporates
the nonperturbative behavior of effective LFWFs in the
limit of zero quark masses. However, if we include a
nonzero quark mass in the LFWFs [28,86,87], the PDFs
will be further suppressed at x → 1.
Effective LFWFs.—Form factors in light-front quantiza-

tion can be written in terms of an effective single-particle
density [88]

FðQ2Þ ¼
Z

1

0
dxρðx;QÞ; ð21Þ

where ρðx;QÞ ¼ 2π
R∞
0 dbbJ0½bQð1 − xÞ&jψ effðx; bÞj2

with transverse separation b ¼ jb⊥j. From (8), we find
the effective LFWF

ψτ
effðx;b⊥Þ ¼

1

2
ffiffiffi
π

p

ffiffiffiffiffiffiffiffiffiffiffi
qτðxÞ
fðxÞ

s

ð1 − xÞ exp
"
−
ð1 − xÞ2

8fðxÞ
b2⊥

#
;

ð22Þ

FIG. 3. Nucleon GPDs for different values of −t ¼ Q2 at
the scale μ0 ¼ 1.06'0.15 GeV. (Top) Spin nonflip Hq

vðx; tÞ.
(Bottom) Spin-flip Eq

vðx; tÞ.

FIG. 4. Comparison for xqðxÞ in the pion from LFHQCD (red
band) with the NLO fits [82,83] (gray band and green curve) and
the LO extraction [84]. NNLO results are also included (light blue
band). LFHQCD results are evolved from the initial scale μ0 ¼
1.1'0.2 GeV at NLO and the initial scale μ0 ¼ 1.06'0.15 GeV
at NNLO.

FIG. 5. Pion GPD for different values of −t ¼ Q2 at the scale
μ0 ¼ 1.1'0.2 GeV.
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Bjorken sum rule:

Imposing continuity for α 
and its first derivative

Effective coupling in LFHQCD 
(valid at low-Q2)

A. Deur, S.J. Brodsky, G.F. de Téramond,  
Phys. Lett. B 750, 528 (2015); J. Phys. G 44, 105005 (2017).
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we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ&with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ&∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ&follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn¼ 1.673 and
χd ¼ 2χnþ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ&with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ&∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ&follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn¼ 1.673 and
χd ¼ 2χnþ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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Parameter “a” is fixed 
by the first moment 
a = 0.531 ± 0.037

Evolved from the matching 
scale 1.06 ± 0.15 GeV

Red bands: the uncertainties of the matching scale and the parameter “a”.
G.F. de Téramond, TL, R.S. Sufian, H.G. Dosch, S.J. Brodsky, A. Deur, 
Phys. Rev. Lett. 120, 182001 (2018).
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Red bands: the uncertainties of the matching scale and the parameter “a”.
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we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ&with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −
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3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ&∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ&follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn¼ 1.673 and
χd ¼ 2χnþ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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The structure of GPDs is determined from LF holographic QCD up to a 
universal reparametrization function w(x).

Imposing constraints on w(x) to incorporate Regge behavior of small-x and 
inclusive counting rules at x→1. A simple w(x) ansatz results in precise 
descriptions of parton distributions for both nucleon and pion.

The LF holographic QCD provides a unified framework to describe hadron 
spectrum and structure.

Thanks!
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R.S. Sufian, G.F. de Téramond, S.J. Brodsky, 
A. Deur, H.G. Dosch,  
Phys. Rev. D 95 014011 (2017).

of the rho vector meson: κ ¼
ffiffiffi
λ

p
¼ m ρ=

ffiffiffi
2

p
¼ 0.548 GeV.

We estimate the uncertainties in our predictions from the
uncertainty of the confinement scale κ. The universality of κ
is affected—typically at the 10% level [40]—by the
inherent approximations of the LFHQCD model [34].
We discuss the estimate of the model uncertainties in the
Appendix.
From Figs. 1 and 2, it is evident that the contribution of

an additional qq̄ pair, which embodies the pion cloud in the
nucleon, only plays an important role in reproducing the
experimental data for the spin-flip Pauli FFs. Such an effect
of the pion cloud has been addressed in various calcu-
lations, for example in Ref. [73], to show that the same
light-front model fails to reproduce the neutron electric

Sachs FFGn
E, unless the effect of the pion cloud is included.

An estimate reported in Ref. [74] indicates that the pion
loop effect results in a 6% and 12% increase in proton
charge and magnetic radii, respectively. For the neutron, the
effects are a 65% and a 19% increase in charge and
magnetic radii, respectively. The values of γp and γn show
that the effect of the pion cloud on the Pauli FF is larger for
the neutron. The dotted lines in Figs. 1 and 2 are the
asymptotic results for the nucleon Dirac and Pauli FFs
determined by LFHQCD consistent with the QCD power-
counting rules. The asymptotic value of the FFs can be
easily obtained from (8) and (9). We obtain directly

lim
Q 2→∞

ðQ 2Þτ−1FτðQ 2Þ ¼ M2
n¼0 $ $ $M2

n¼τ−2

¼ κ2τ−2
Yτ−2

n¼0

ð2þ 4nÞ: ð27Þ

In the large-Q 2 domain the power counting rules are
reproduced by the model which also determines its asymp-
totic normalization. For the spin-nonflip EM nucleon FFs
we obtain from (21), (26) and (27) the asymptotic results

lim
Q 2→∞

Q 4Fp
1 ðQ 2Þ ¼ M2

n¼0M
2
n¼1 ¼ 12κ4; ð28Þ

and

lim
Q 2→∞

Q 4Fn
1ðQ 2Þ ¼ −

1

3
rM2

n¼0M
2
n¼1 ¼ −4rκ4; ð29Þ

since the valence probability Pα
qqq=p ≃ Pα

qqq=n ≃ 1. On the
other hand, for the spin-flip EM nucleon FFs we obtain

lim
Q 2→∞

Q 6FN
2 ðQ 2Þ ¼ χNP

γ
qqq=NM

2
n¼0M

2
n¼1M

2
n¼2

¼ 120χNP
γ
qqq=Nκ

6; ð30Þ

where Pγ
qqq=N ¼ ð1−γNÞ, N ¼ p, n, is the valence prob-

ability for the spin-flip EM transition amplitude. Possible
logarithmic corrections are, of course, not predicted in this
semiclassical model.
Another pair of FFs, called the electric and the magnetic

Sachs FFs, is defined by a combination of Dirac and Pauli
FFs as follows:

GN
E ðQ 2Þ ¼ FN

1 ðQ 2Þ− Q 2

4m 2
N
FN
2 ðQ 2Þ; ð31Þ

GN
MðQ 2Þ ¼ FN

1 ðQ 2Þ þ FN
2 ðQ 2Þ: ð32Þ

The results of the ratio Rp ¼ μpG
p
E=G

p
M from the

polarization experiments have triggered a revision of
various nucleon models, and for Q 2 > 10 GeV2 the ratio
Rp may vanish or become negative. We present in Fig. 3 the

FIG. 2. Polarization measurements and predictions for the
proton and neutron Pauli form factors [71,72]. The blue line is
the proton Pauli FF, Q 6Fp

2 ðQ 2Þ prediction, with γp ¼ 0.27 in
Eq. (22). The green line is the prediction for the neutron Pauli FF,
Q 6Fn

2ðQ 2Þ, with γn ¼ 0.38 in Eq. (24) from LFHQCD. The
dotted lines are the asymptotic predictions.

FIG. 1. Polarization measurements and predictions for the
proton and neutron Dirac form factors [71,72]. The blue line
is the prediction of the proton Dirac FF from LFHQCD, Eq. (21)
multiplied by Q 4. The orange and the green lines are predictions
for the neutron Dirac FF, Q 4Fn

1ðQ 2Þ, from Eq. (23) and from
Eq. (26) with the phenomenological factor r ¼ 2.08, respectively.
The dotted lines are the asymptotic predictions. The asymptotic
value of the neutron FF is determined using r ¼ 2.08.
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LFHQCD prediction of Rp up to Q 2 ¼ 30 GeV2, and
compare our result with selected world data of unpolarized
cross section and polarization measurement experiments. It
is clearly seen from Fig. 3 that LFHQCD predicts that Gp

E
will decrease more rapidly than Gp

M for Q 2 > 1 GeV2, in
agreement with the polarization measurements of Rp. The
asymptotic result for Rp follows from

lim
Q 2→∞

RpðQ 2Þ ¼ μp

!
1−5

2
ðμp −1ÞPγ

qqq=p
κ2

m 2
p

"
; ð33Þ

and has the value Rpð∞Þ ¼ −0.309 as indicated in Fig. (3).
The monotonic decrease of Rp with Q 2 demonstrates that
the FFs are not simply the sum of dipolelike contributions
from the up and down quarks. Following the discussion
presented in the Appendix, we have included in Fig. 3 an
estimate of uncertainties in the LFHQCD model. The
uncertainty band has been presented with a smooth
transition between nonperturbative and perturbative esti-
mates near the transition point Q 2

0 ≃ 1.5 GeV2.
In contrast to the proton FFs, the neutron FFs are more

difficult to measure because there is no free neutron target.
Experimental data of neutron FFs are available only up to
relatively small values of Q 2. Since most nucleon form
factor models such as [70,81–83] cannot reproduce the
experimental data for the ratio Rn ¼ μnGn

E=G
n
M for

Q 2 ≥2 GeV2, it is desirable that one can parametrize
the ratio Rn according to the available experimental data
and predict its behavior at large Q 2. To this end, we
compare in Figs. 4 and 5 the Sachs electric FF and the ratio

Rn, computed in LFHQCD, with selected experimental
data. From these results, one can see that LFHQCD can
properly reproduce Gn

E and Rn in the whole range of
available experimental data. We have also extended our
results for the neutron FFs to higher Q 2 in order to compare
with upcoming JLab experiments [26–29]. Here the
asymptotic value depends in a nontrivial way on the
parameter r,

lim
Q 2→∞

RnðQ 2Þ ¼ μn

!
1þ

15μnP
γ
qqq=n

2r
κ2

m 2
n

"
; ð34Þ

and has the value Rnð∞Þ ¼ 0.864 for r ¼ 2.08 as indicated
in Fig. (5).

A. Holographic predictions for nucleon radii

We now compute the magnetic root-mean-square radii of
the nucleons from the definition hr2Mi¼− 6

GMð0Þ
dGMðQ 2Þ

dQ 2 jQ 2¼0

and use hr2Ei ¼ −6 dGEðQ 2Þ
dQ2 jQ 2¼0 to compute the charge

mean-square radii of the nucleons. The LFHQCD predic-
tions of different radii are compared with the experimental
values in Table I. In determining the charge and magnetic
radii, we include the experimental uncertainty by fitting the
experimental data and also the systematic uncertainties
coming from the LFHQCD model itself. The statistical
uncertainties are related to the uncertainties in the

FIG. 3. LFHQCD prediction and comparison with selected
world data of the ratio Rp ¼ μpG

p
E=G

p
M from unpolarized cross

section measurements from [12,15,16,75] and polarization
measurements from [7,8,76–80]. The LFHQCD prediction (blue
line) from Eqs. (21) and (22) corresponds to the range
0 ≤Q 2 ≤30 GeV2. The band represents an estimated theoretical
uncertainty of the model. Our theoretical results agree well with
the polarization data and are incompatible with the experimental
results obtained from Rosenbluth separation. The dotted line is
the asymptotic prediction Rpð∞Þ ¼ −0.309 with an estimated
uncertainty of %0.12.

FIG. 4. Comparison of the neutron electric FF Gn
EðQ 2Þ world

data [84–94] with the LFHQCD prediction from Eqs. (23), (24)
and (26).
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probabilities γp;n in the fits of the experimental data with
χ2=d:o:f: ∼ 0.9 for different fits. We calculate the system-
atic uncertainties coming from the inclusion of higher Fock
components and the parameter r (only for the neutron Dirac
FF) in the FF expressions and also the uncertainty coming
form the model as described in the appendix. In all, the radii
computed from the LFHQCD model described here are in
better agreement with the experimental measurements of all
radii where no cancellations of leading terms occur. In
particular, the proton charge radius obtained from
LFHQCD tends to favor the value obtained from muonic
hydrogen Lamb shift experiments (for the most recent
experimental values see Ref. [98]). A recent analysis [99]
of various baryon properties at low Q2 values has been
performed in a LFHQCDmodel where the authors included
quark mass in the LFWFs.

B. Flavor decomposition of nucleon form factors
in light-front holographic QCD

Recent measurements of neutron form factors made it
possible to carry out, for the first time, a flavor separation of
the up and down-quark contributions to the nucleon
electromagnetic FFs up to Q2 ¼ 3.4 GeV2 [101] with
results not well understood by existing models. The initial
flavor-separation results were later expanded in [72,102],
and have been the subject of extensive theoretical analysis
with contrasting results, which often show a tension in
accounting for the down-quark contribution. Therefore,
anticipating the upcoming JLab measurements, we use our
present holographic model to compare with existing data
and extend our predictions to higherQ2 values. To this end,
we compare in Figs. 6 and 7 the flavor decomposition of
various FFs, which follows from the LFHQCD results
discussed here, with the experimental results from
Ref. [72]. In Fig. 7 the results are scaled by χ−1q , the
limiting values of Fq

2 at Q2 ¼ 0, i.e., χu ¼ μu − 2 ¼ 1.67
and χd ¼ μd − 1 ¼ −2.03. The LFHQCD prediction of a
faster increase of the up-quark contribution to Q4Fu

1 for
Q2 > 1 GeV2 compared to Q4Fd

1 is consistent with the
flavor decomposition performed in Ref. [101]. The flavor
decomposed FFs described here are in good agreement
with the flavor decomposition which follows from incor-
porating the Regge contribution into generalized parton
distributions [103]. A faster falloff of the down-quark
contribution with Q2 has been interpreted as a possible
axial-vector diquark contribution in Refs. [104–106].
Although a complete flavor decomposition requires a
contribution from the strange quark and antiquark, a recent
high precision lattice QCD calculation [107] indicates that
the strange quark contribution to the proton EMFFs is quite
small and becomes even smaller at Q2 > 1 GeV2.
Finally, it is important to recall that we have used a

universal value for the confinement scale κ in deriving
Eq. (9), but in fact the value of κ for the nucleon wave
function, which is obtained from the nucleon slope, is

FIG. 5. Selected world data of the ratio Rn ¼ μnGn
E=G

n
M from

double polarization experiments, recoil polarization with deu-
terium target, asymmetry with polarized deuterium target, and
asymmetry with polarized 3He target. The data points are taken
from Refs. [71,84,85,87,91,95–97]. For more data points and
other theoretical predictions, see Ref. [5]. The dotted line is the
asymptotic prediction Rnð∞Þ ¼ 0.864 with an estimated uncer-
tainty of $0.11 for r ¼ 2.08 in Eq. (26).

TABLE I. Comparison between the experimental values of the
nucleon charge and magnetic radii and LFHQCD predictions
from this work. The radii agree with the experimental values
[100]. They also agree with the predictions without contributions
of higher Fock states made in [34].

Nucleon radii Experimental values [100]
LFHQCD
(this work)

ffiffiffiffiffiffiffiffiffiffiffi
hrpEi2

p
0.8775(51) fm (ep CODATA) 0.801(54) fm

ffiffiffiffiffiffiffiffiffiffiffi
hrpEi2

p
0.84087(39) fm
(μp Lamb shift)

0.801(54) fm

ffiffiffiffiffiffiffiffiffiffiffiffi
hrpMi2

p
0.777(16) fm 0.789(79) fm

hðrnEÞ2i −0.1161ð22Þ fm2 −0.073ð30Þ fm2

ffiffiffiffiffiffiffiffiffiffiffiffi
hrnMi2

p
0.862(9) fm 0.796(81) fm

FIG. 6. LFHQCD prediction of the up and the down-quark
contributions to the Dirac FF multiplied byQ4. The data are from
Ref. [72].
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III. STRANGE QUARK FORM FACTORS
FROM LATTICE QCD

We have calculated the strange quark contribution to
nucleon’s magnetic moment and charge radius in Ref. [24]
using the overlap fermion on the (2þ 1) flavor RBC/
UKQCD domain wall fermion (DWF) gauge configura-
tions. Details of these ensembles are listed in Table I. We
use 24 valence quark masses in total for the 24I, 32I, 32ID,
and 48I ensembles representing pion masses in the range
mπ ∈ ð135; 400Þ MeV to explore the quark-mass depend-
ence of the s-quark FFs. One can perform the model-
independent z-expansion fit [64,65]

Gs;z- expðQ2Þ ¼
Xkmax

k¼ 0

akzk; z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
− ffiffiffiffiffiffi

tcut
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
þ ffiffiffiffiffiffi

tcut
p ; ð11Þ

using the lattice data to extrapolate the s-quark magnetic
moment and charge radius as shown in [24] and then use
the fit parameters ak to interpolate Gs

E;M values at various
Q2 for a given valence quark mass on the lattice. The
available Q2 on the 24I and 32I ensembles are
Q2 ∈ ð0.22; 1.31Þ GeV2, on the 32ID ensemble are Q2 ∈
ð0.07; 0.43Þ GeV2 and on the 48I ensemble are
Q2 ∈ ð0.05; 0.31Þ GeV2. It is a common problem for lattice
QCD calculations that the signal-to-noise-ratio decreases as
one reaches the physical pion mass. From our study, we
also find that the lattice results of Gs

E;MðQ2Þ near the
physical pion mass mπ ¼ 140 MeV for the 48I ensemble
[66] is noisier compared to theGs

E;MðQ2Þ obtained from the
lattice ensembles with heavier pion mass. Although the
largest available momentum transfer we have on the 24I
and 32I ensemble isQ2 ∼ 1.3 GeV2, the largest momentum
transfer available on the 48I ensemble is Q2 ∼ 0.31 GeV2.
We note that the extrapolation of the nucleon strange EMFF
starts to break down after Q2 ∼ 0.4 GeV2 for the 48I
ensemble and we therefore constrain the extrapolations
of the 48I ensemble EMFF up to Q2 ¼ 0.5 GeV2. It is
important to note that the lattice QCD estimate of
Gs

E;MðQ2Þ we present here is the most precise and accurate

FIG. 2. LFHQCD prediction and comparison with selected
world data of the ratio Rp ¼ μpG

p
E=G

p
M from unpolarized cross

section measurements [53–56] and polarization measurements
[57–63]. The blue uncertainty band in the LFHQCD prediction of
Rp is obtained from the variation of κ determined by the nucleon
and the ρ-trajectories. The uncertainty in the cyan band of the
asymptotic value Rasymp

p ð∞Þ ¼ −0.309 is obtained form the
difference between κ ¼ 0.548 GeV and κ ¼ 0.537 GeV.

(a) (b)

FIG. 1. Comparison of the LFHQCD results with selected world data [51,52] for the Dirac and Pauli form factors for the proton and
neutron. The orange line corresponds to the SU(6) symmetry limit for the neutron Dirac form factor. The dotted lines are the asymptotic
predictions of the form factors from LFHQCD. The blue and green uncertainty bands are obtained from the variation of κ determined by
the nucleon and the ρ-trajectories.

TABLE I. The parameters for the DWF configurations: spatial/
temporal size, lattice spacing [66,67], the sea strange quark mass
under M̄S scheme at 2 GeV, the pion mass corresponding to the
degenerate light sea quark mass and the numbers of configura-
tions used in this work.

Ensemble L3 × T a (fm) mðsÞ
s (MeV) mπ (MeV) Nconfig

24I [67] 243 × 64 0.1105(3) 120 330 203
32I [67] 323 × 64 0.0828(3) 110 300 309
32ID [66] 323 × 64 0.1431(7) 89.4 171 200
48I [66] 483 × 96 0.1141(2) 94.9 139 81
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Different w(x) ansatz
Nucleon PDFs with different w(x) forms
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Effective LF Wave Functions
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γu ≡
2χpγp þ χnγn
2χp þ χn

; γd ≡
2χnγn þ χpγp
2χn þ χp

; ð19Þ

where the higher Fock probabilities γp;n represent the large
distance pion contribution and have the values γp ¼ 0.27
and γn ¼ 0.38 [56]. Our results for Eq

vðx; tÞ are displayed
in Fig. 3.
Pion GPD.—The expression for the pion GPD

Hu;d̄
v ðx; tÞ ¼ qu;d̄v ðxÞ exp ½tfðxÞ& follows from the pion FF

in [81], where the contribution from higher Fock compo-
nents was determined from the analysis of the timelike
region [81]. Up to twist 4,

qu;d̄v ðxÞ ¼ ð1 − γÞqτ¼2ðxÞ þ γqτ¼4ðxÞ; ð20Þ

where the PDFs are normalized to the valence quark
content of the pion

R
1
0 dxq

u;d̄
v ðxÞ ¼ 1, and γ ¼ 0.125

represents the meson cloud contribution determined in [28].
The pion PDFs are evolved to μ2 ¼ 27 GeV2 at next-to-

leadingorder (NLO) to comparewith theNLOglobal analysis
in [82,83] of the data [84]. The initial scale is set at μ0 ¼
1.1'0.2 GeV from the matching procedure in Ref. [75] at
NLO. The result is shown in Fig. 4, and the t dependence of
Hq

vðx; tÞ is illustrated in Fig. 5. We have also included the
NNLO results in Fig. 4, to comparewith future data analysis.
Our results are in good agreement with the data analysis

in Ref. [82] and consistent with the nucleon global fit
results through the GPD universality described here. There
is, however, a tension with the data analysis in [83] for
x ≥ 0.6 and with the Dyson-Schwinger results in [85],
which incorporate the ð1 − xÞ2 pQCD falloff at large x from
hard gluon transfer to the spectator quarks. In contrast, our
nonperturbative results falloff as 1 − x from the leading

twist-2 term in (20). A softer falloff ∼ð1 − xÞ1.5 in Fig. 4
follows from DGLAP evolution. Our analysis incorporates
the nonperturbative behavior of effective LFWFs in the
limit of zero quark masses. However, if we include a
nonzero quark mass in the LFWFs [28,86,87], the PDFs
will be further suppressed at x → 1.
Effective LFWFs.—Form factors in light-front quantiza-

tion can be written in terms of an effective single-particle
density [88]

FðQ2Þ ¼
Z

1

0
dxρðx;QÞ; ð21Þ

where ρðx;QÞ ¼ 2π
R∞
0 dbbJ0½bQð1 − xÞ&jψ effðx; bÞj2

with transverse separation b ¼ jb⊥j. From (8), we find
the effective LFWF

ψτ
effðx;b⊥Þ ¼

1

2
ffiffiffi
π

p

ffiffiffiffiffiffiffiffiffiffiffi
qτðxÞ
fðxÞ

s

ð1 − xÞ exp
"
−
ð1 − xÞ2

8fðxÞ
b2⊥

#
;

ð22Þ

FIG. 3. Nucleon GPDs for different values of −t ¼ Q2 at
the scale μ0 ¼ 1.06'0.15 GeV. (Top) Spin nonflip Hq

vðx; tÞ.
(Bottom) Spin-flip Eq

vðx; tÞ.

FIG. 4. Comparison for xqðxÞ in the pion from LFHQCD (red
band) with the NLO fits [82,83] (gray band and green curve) and
the LO extraction [84]. NNLO results are also included (light blue
band). LFHQCD results are evolved from the initial scale μ0 ¼
1.1'0.2 GeV at NLO and the initial scale μ0 ¼ 1.06'0.15 GeV
at NNLO.

FIG. 5. Pion GPD for different values of −t ¼ Q2 at the scale
μ0 ¼ 1.1'0.2 GeV.
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b⊥-space:

Z 1

0
dx

Z
d2b?| e↵(x,b?)|2 = 1normalization:

k⊥-space:

in the transverse impact space representation with qτðxÞ
and fðxÞ given by (9) and (10). The normalization isR
1
0 dx

R
d2b⊥jψ effðx;b⊥Þj2¼1, provided that

R
1
0 dxqτðxÞ¼1.

In the transverse momentum space,

ψτ
effðx;k⊥Þ ¼ 8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qτðxÞfðxÞ

p

1 − x
exp

"
−

2fðxÞ
ð1 − xÞ2

k2
⊥

#
; ð23Þ

with normalization
R
1
0 dx

R
ðd2k⊥=16π3Þjψ effðx;k⊥Þj2 ¼ 1.

Conclusion and outlook.—The results presented here for
the GPDs provide a new nonperturbative structural frame-
work for the exclusive-inclusive connection, which is fully
consistent with the LFHQCD results for the hadron
spectrum. The PDFs are flavor-dependent and expressed
as a superposition of PDFs qτðxÞ of different twist. In
contrast, the GPD profile function fðxÞ is universal. Both
qðxÞ and fðxÞ can be expressed in terms of a universal
reparametrization function wðxÞ, which incorporates Regge
behavior at small x and inclusive counting rules at large x.
A simple ansatz for wðxÞ, which satisfies all the physics
constraints, leads to a precise description of parton dis-
tributions and form factors for the pion and nucleons in
terms of a single physically constrained parameter. In
contrast with the eigenfunctions of the holographic light-
front Hamiltonian [28], the effective LFWFs obtained here
incorporate the nonperturbative pole structure of the
amplitudes, Regge behavior, and exclusive and inclusive
counting rules. The LFWFs can be used to study other
parton distributions, such as the transverse momentum-
dependent parton distributions and the Wigner distribu-
tions. The analytic structure of FFs and GPDs leads to a
connection with the Veneziano amplitude, which incorpo-
rates the ρ Regge trajectory determined in LFHQCD. It
could give further insights in understanding the quark-
hadron duality and hadron structure. The falloff of the pion
PDF at large x is an unresolved issue [89].
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