Generalized Parton Distributions in Light-Front Holographic QCD

Light-cone 2018, May 14-18th 2018

 $a_x(fm)_{0.0}$

 $a_v(\text{fm})_0$

-0.5 Tianbo Liu (对天博)

0.5

Duke University and Thomas Jefferson National Accelerator Facility

In collaboration with: Guy F. de Téramond, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, Alexandre Deur

Gauge/Gravity Duality and LF holography

Maldacena's conjecture

J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).

Gauge field theory in *d*-dim

Gravitational theory in d+1-dim

A realization: AdS / CFT

semiclassical gravity approximation to strongly coupled QFTs

Light-front holographic QCD

QCD: conformal symmetry is broken by quark masses and quantum effects

Asymptotic freedom

Confinement and an infrared fixed point "bottom-up" approach: modify the background AdS space

impact LF variable- $\zeta \Leftrightarrow z$ holographic variable in AdS

measuring the separation of partons in a hadron

G.F. de Téramond and S.J. Brodsky, Phys. Rev. Lett. 102, 081601 (2009); S.J. Brodsky and G.F. de Téramond, Phys. Rev. Lett. 96, 201601 (2006); Phys. Rev. D 77, 056007 (2008); Phys. Rev. D 78, 025032 (2008).

[Brodsky & de Téramond]

J. Rodríguez-Quintero, Phys. Rev. D 96, 054026 (2017).

Hadron Spectrum in LF Holography

S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015); H.G. Dosch, G.F. de Téramond, S.J. Brodsky, Phys. Rev. D 91, 045040 (2015); D91, 085016 (2015).

Unified View of Partonic Structures

Light-front wave function $\Psi(x_i, k_{T_i})$

Form Factors in Holographic QCD

Form factor of a spinless hadron

$$\int d^4x dz \sqrt{g} \Phi_{P'}^*(x, z) \overleftrightarrow{\partial}_M \Phi_P(x, z) A^M(x, z) \longrightarrow \begin{array}{l} \text{The coupling of an extermal EM field} \\ \text{propagating in AdS space to a hadron mode} \\ \sim (2\pi)^4 \delta^4 (P' - P - q) \epsilon_\mu (P + P')^\mu F(q^2) \longrightarrow \begin{array}{l} \text{EM form factor in physical spacetime} \\ x^M = (x^\mu, z) & \sqrt{g} = (R/z)^5 \end{array} \qquad \begin{array}{l} \text{J. Polchinski and M.J. Strassler,} \\ \text{JHEP 05 (2003) 012.} \\ \Phi_P(x, z) = e^{iP \cdot x} \Phi(z) & A_\mu(x, z) = e^{iq \cdot x} V(q^2, z) \epsilon_\mu(q), \qquad A_z = 0 \end{array}$$

Extracting the momentum conservation factor

$$F(Q^2) = \int \frac{dz}{z^3} V(Q^2, z) \Phi_\tau^2(z)$$

For hadron modes scale as $\Phi_{\tau} \sim z^{\tau}$ at small $z \sim 1/Q$

 $F_{\tau}(Q^2) \sim \left(\frac{1}{Q^2}\right)^{\tau-1}$ recover the hard-scattering power scaling

S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).

V.A. Matveev, R.M. Muradian, A.N. Tevkhelidze, Lett. Nuovo Cimento 7, 719 (1973).

Form Factors in Holographic QCD

Hadron wave function of twist- τ (soft-wall)

$$\Phi_{\tau}(z) = \sqrt{\frac{2}{\Gamma(\tau-1)}} \kappa^{\tau-1} z^{\tau} e^{-\kappa^2 z^2/2}$$

EM current

$$V(Q^2, z) = \kappa^2 z^2 \int_0^1 \frac{dx}{(1-x)^2} x^{Q^2/4\kappa^2} e^{-\kappa^2 z^2 x/(1-x)} = 4\kappa^4 z^2 \sum_{n=0}^\infty \frac{L_n^1(\kappa^2 z^2)}{M_n^2 + Q^2}$$

have poles at $-Q^2 = M_n^2 = 4\kappa^2(n+1)$

H.R. Grigoryan and A.V. Radyushkin, Phys. Rev. D 76, 095007 (2007).

compare with LFHQCD spectral formula M_n^2 =corresponding to the Regge trajectory J = L = 1 ρ meson trajectory is J = L + 1 = 1shift point

$$M_n^2 = 4\kappa^2 \left(n + \frac{J+L}{2} \right)$$

shift poles to
$$-Q^2 = M_{\rho_n}^2 = 4\kappa^2 \left(n + \frac{1}{2}\right)$$

S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015).

Form factor

$$F_{\tau}(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{M_{\rho_{n=0}}^2}\right) \left(1 + \frac{Q^2}{M_{\rho_{n=1}}^2}\right) \cdots \left(1 + \frac{Q^2}{M_{\rho_{n=\tau-2}}^2}\right)}$$

S.J. Brodsky and G.F. de Téramond, Phys. Rev. D 77, 056007 (2008).

Pion Form Factor

Pion form factor compared with data

G.F. de Téramond and S.J. Brodsky, Proc. Sci. LC2010 (2010) 029. S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015). [Sec. 6.1.5]

Form Factors in Holographic QCD

Nucleon form factor: spin-nonflip

Nucleon wave function

$$\begin{split} \Psi_{+}(z) \sim z^{\tau+1/2} e^{-\kappa^{2} z^{2}/2}, & \Psi_{-}(z) \sim z^{\tau+3/2} e^{-\kappa^{2} z^{2}/2} \\ (L=0) & (L=1) \end{split}$$

Dirac form factor

G.F. de Téramond, H.G. Dosch, S.J. Brodsky, Phys. Rev. D 87, 075005 (2013).

$$F_1^N(Q^2) = \sum_{\pm} g_{\pm}^N \int \frac{dz}{z^4} V(Q^2, z) \Psi_{\pm}^2(z)$$

 g_{\pm} are determined by the spin-flavor structure

SU(6) symmetry:
$$g_{+}^{p} = 1$$
, $g_{-}^{p} = 0$, $g_{+}^{n} = -\frac{1}{3}$, $g_{-}^{n} = \frac{1}{3}$.

Form Factors in Holographic QCD

Nucleon form factor: spin-flip

$$\int d^4x dz \sqrt{g} \bar{\Psi}_{P'}(x,z) e^M_A e^N_B [\Gamma^A, \Gamma^B] F_{MN}(x,z) \Psi_P(x,z) = 2 \delta^4 (P' - P - q) \epsilon_\mu \bar{u}(P') \frac{\sigma^{\mu\nu} q_\nu}{2M_N} F_2(q^2) u(P),$$

Effective spin-flip amplitude in AdS space of an external EM field coupling to a nucleon

> Pauli form factor in physical spacetime

Z. Abidin and C.E. Carlson, Phys. Rev. D 79, 115003 (2009).

Pauli form factor

$$F_2^N(Q^2) = \chi_N \int \frac{dz}{z^3} \Psi_+(z) V(Q^2, z) \Psi_-(z)$$

normalized to anomalous magnetic moments

Scaling: additional power of z in the wave function product of Ψ_+ and Ψ_-

the leading scaling of the Pauli form factor has additional power of $1/Q^2$

Nucleon Form Factors

Nucleon form factors compared with data

$$F_1^p(Q^2) = F_{\tau=3}(Q^2)$$

$$F_1^n(Q^2) = -\frac{r}{3}[F_{\tau=3}(Q^2) - F_{\tau=4}(Q^2)]$$

$$F_2^p(Q^2) = \chi_p[(1 - \gamma_p)F_{\tau=4}(Q^2) + \gamma_pF_{\tau=6}(Q^2)]$$

$$F_2^n(Q^2) = \chi_n[(1 - \gamma_n)F_{\tau=4}(Q^2) + \gamma_nF_{\tau=6}(Q^2)]$$

$$\gamma_p = 0.27 \qquad \gamma_n = 0.38$$

R.S. Sufian, G.F. de Téramond, S.J. Brodsky, A. Deur, H.G. Dosch, Phys. Rev. D 95 014011 (2017).

From Form Factors to GPDs

Form factor for arbitrary twist- τ

$$F_{\tau}(t) = \frac{1}{N_{\tau}} B\left(\tau - 1, \frac{1}{2} - \frac{t}{4\lambda}\right) \qquad N_{\tau} = \frac{\sqrt{\pi}\Gamma(\tau - 1)}{\Gamma(\tau - \frac{1}{2})}$$

For integer τ , it gives the pole structure

$$F_{\tau}(Q^2) = \frac{1}{(1 + \frac{Q^2}{M_0^2})(1 + \frac{Q^2}{M_1^2})\cdots(1 + \frac{Q^2}{M_{\tau-2}^2})}$$

S.J. Brodsky and G.F. de Téramond, Phys. Rev. D 77, 056007 (2008);

S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015).

$$M_n^2 = 4\lambda(n+\frac{1}{2}), n = 0, 1, 2, ..., \tau - 2$$

 ρ vector meson and its radial excitations

It has the same structure of Veneziano amplitude $B(1 - \alpha(s), 1 - \alpha(t))$ with the s-channel dependence replaced by a fixed pole $1 - \alpha(s) \rightarrow \tau - 1$

$$\alpha(t) = \frac{t}{4\lambda} + \frac{1}{2}$$
 ρ trajectory

The mass scale λ is fixed by the ρ meson mass:

$$\sqrt{\lambda} = \kappa = m_{\rho}/\sqrt{2} = 0.548 \,\mathrm{GeV}$$

For large $Q^2 = -t$, it has the scaling behavior

$$F_{\tau}(Q^2) \sim \left(\frac{1}{Q^2}\right)^{\tau-1}$$

From Form Factors to GPDs

Writing the form factor in terms of valence GPD at zero skewness

$$F^q(t) = \int_0^1 dx \, H^q_v(x,t)$$

Express the form factor with the Euler integral representation

$$F_{\tau}(t) = \frac{1}{N_{\tau}} B\left(\tau - 1, \frac{1}{2} - \frac{t}{4\lambda}\right) \qquad \qquad B(u, v) = \int_{0}^{1} dy \, y^{u-1} (1 - y)^{v-1} \qquad y = w(x)$$

w(x) is a reparametrization function

$$\begin{aligned} H^{q}(x,t) &= \frac{1}{N_{\tau}} [1 - w(x)]^{\tau - 2} w(x)^{-\frac{1}{2}} w'(x) e^{(t/4\lambda) \log[1/w(x)]} \\ &= q_{\tau}(x) \exp[tf(x)], \end{aligned}$$

$$q_{\tau}(x) = \frac{1}{N_{\tau}} [1 - w(x)]^{\tau - 2} w(x)^{-\frac{1}{2}} w'(x) \qquad \qquad f(x) = \frac{1}{4\lambda} \log\left(\frac{1}{w(x)}\right)$$

The collinear distribution q(x) and the profile function f(x) are related by a universal τ -independent reparametrization function w(x).

Constraints on w(x)

Mathematical constraints:

$$B(u,v) = \int_0^1 dy \, y^{u-1} (1-y)^{v-1} \qquad y = w(x)$$
$$w(0) = 0, \qquad w(1) = 1, \qquad w'(x) \ge 0 \quad \text{for} \ x \in [0,1]$$

Physical requirements:

Small-*x* behavior: $H_v^q(x, t) \sim x^{-t/4\lambda} q_v(x)$ Regge theory motivated ansatz

 $w(x) \sim x$

Large-*x* behavior: $q_{\tau}(x) \sim (1-x)^{2\tau-3}$ Drell-Yan inclusive counting rule

$$w(x) = 1 - (1 - x)w'(1) + \frac{1}{2}(1 - x)^2 w''(1) + \cdots$$
$$w'(1) = 0 \quad \text{and} \quad w''(1) \neq 0$$
$$f(x) = \frac{1}{4\lambda} \log\left(\frac{1}{w(x)}\right) \qquad \qquad f'(1) = 0 \quad \text{and} \quad f''(1) \neq 0$$

Pion and Nucleon GPDs

Pion:

$$H_v^{u,\bar{d}}(x,t) = (1-\gamma)H_{\tau=2}(x,t) + \gamma H_{\tau=4}(x,t)$$

Nucleon:

Spin-nonflip:
$$H_v^u(x,t) = \left(2 - \frac{r}{3}\right) H_{\tau=3}(x,t) + \frac{r}{3} H_{\tau=4}(x,t)$$

 $H_v^d(x,t) = \left(1 - \frac{2r}{3}\right) H_{\tau=3}(x,t) + \frac{2r}{3} H_{\tau=4}(x,t)$

Spin-flip:

$$E_v^u(x,t) = \chi_u[(1-\gamma_u)H_{\tau=4}(x,t) + \gamma_u H_{\tau=6}(x,t)]$$
$$E_v^d(x,t) = \chi_u[(1-\gamma_d)H_{\tau=4}(x,t) + \gamma_d H_{\tau=6}(x,t)]$$

$$\gamma_u \equiv \frac{2\chi_p \gamma_p + \chi_n \gamma_n}{2\chi_p + \chi_n}, \qquad \gamma_d \equiv \frac{2\chi_n \gamma_n + \chi_p \gamma_p}{2\chi_n + \chi_p}$$

strange quark contribution is neglected

Matching Scale

Matching the couplings from LFHQCD and pQCD

Bjorken sum rule:

$$\frac{\alpha_{g_1}(Q^2)}{\pi} = 1 - \frac{6}{g_A} \int_0^1 dx \, g_1^{p-n}(x, Q^2)$$

Effective coupling in LFHQCD (valid at low- Q^2)

$$\alpha_{g_1}^{AdS}(Q^2) = \pi \exp\left(-Q^2/4\kappa^2\right)$$

Imposing continuity for α and its first derivative

A. Deur, S.J. Brodsky, G.F. de Téramond, Phys. Lett. B 750, 528 (2015); J. Phys. G 44, 105005 (2017).

Nucleon PDFs

Nucleon PDFs in comparison with global fits

$$f(x) = \frac{1}{4\lambda} \left[(1-x) \log\left(\frac{1}{x}\right) + a(1-x)^2 \right]$$
$$w(x) = x^{1-x} e^{-a(1-x)^2}$$

Parameter "*a*" is fixed by the first moment $a = 0.531 \pm 0.037$

Evolved from the matching scale 1.06 ± 0.15 GeV

Red bands: the uncertainties of the matching scale and the parameter "a".

G.F. de Téramond, TL, R.S. Sufian, H.G. Dosch, S.J. Brodsky, A. Deur, Phys. Rev. Lett. 120, 182001 (2018).

Nucleon PDFs

Difference between LFHQCD results and global fits

Red bands: the uncertainties of the matching scale and the parameter "a".

G.F. de Téramond, TL, R.S. Sufian, H.G. Dosch, S.J. Brodsky, A. Deur, Phys. Rev. Lett. 120, 182001 (2018).

Pion PDF

Nucleon GPDs

G.F. de Téramond, TL, R.S. Sufian, H.G. Dosch, S.J. Brodsky, A. Deur, Phys. Rev. Lett. 120, 182001 (2018).

Pion GPD

G.F. de Téramond, TL, R.S. Sufian, H.G. Dosch, S.J. Brodsky, A. Deur, Phys. Rev. Lett. 120, 182001 (2018).

Impact Parameter Distributions

Summary

The structure of GPDs is determined from LF holographic QCD up to a universal reparametrization function w(x).

Imposing constraints on w(x) to incorporate Regge behavior of small-x and inclusive counting rules at $x \rightarrow 1$. A simple w(x) ansatz results in precise descriptions of parton distributions for both nucleon and pion.

The LF holographic QCD provides a unified framework to describe hadron spectrum and structure.

Thanks!

Nucleon Form Factors

Sachs form factors

$$G_E^N(Q^2) = F_1^N(Q^2) - \frac{Q^2}{4m_N^2}F_2^N(Q^2)$$
$$G_M^N(Q^2) = F_1^N(Q^2) + F_2^N(Q^2).$$

R.S. Sufian, G.F. de Téramond, S.J. Brodsky, A. Deur, H.G. Dosch, Phys Rev. D 95 014011 (2017).

20

Different w(x) ansatz

Nucleon PDFs with different w(x) forms

(1)
$$w(x) = x^{1-x}e^{-a(1-x)^2}$$

(2)
$$w(x) = Ax + Bx^2 + Cx^3$$

 $B = 3 - 2A, \quad C = A - 2$

Effective LF Wave Functions

b⊥-space:

$$\psi_{\text{eff}}^{\tau}(x, \mathbf{b}_{\perp}) = \frac{1}{2\sqrt{\pi}} \sqrt{\frac{q_{\tau}(x)}{f(x)}} (1-x) \exp\left(-\frac{(1-x)^2}{8f(x)} \mathbf{b}_{\perp}^2\right)$$

normalization:

$$\int_0^1 dx \int d^2 \mathbf{b}_\perp |\psi_{\text{eff}}(x, \mathbf{b}_\perp)|^2 = 1$$

k⊥-space:

$$\psi_{\text{eff}}^{\tau}(x, \mathbf{k}_{\perp}) = 8\pi \frac{\sqrt{q_{\tau}(x)f(x)}}{1-x} \exp\left(-\frac{2f(x)}{(1-x)^2}\mathbf{k}_{\perp}^2\right)$$

normalization:
$$\int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{16\pi^3} |\psi_{\text{eff}}(x, \mathbf{k}_\perp)|^2 = 1$$