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● Form factors F(q2) parametrise the non-perturbative characteristics of 
matrix elements

→  e.g. spin structure, charge distribution, ... 

● In order to fully understand the properties of form factors one therefore 
requires a non-perturbative approach 

● “Local QFT” – define a QFT using a series of physical motivated axioms

     → axioms hold independently of the coupling regime, hence 
          non-perturbative properties can be derived  

● One of the key features of this framework is that quantised fields φ(x) are  
distributions [Streater, Wightman; Haag] – this subtlety is important for 
consistently defining matrix elements and charges  

1. Form factors in local QFT

[R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and all that (1964)]
[R. Haag, Local Quantum Physics, Springer-Verlag (1996)]
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2. The form factors of T 
μν 

● Due to the properties of T 
μν  the matrix elements for spin-½ momentum 

eigenstates can be written in the following Lorentz covariant manner: 

   
where:   

● Physical states have the form: 

● For simplicity we consider massive canonical spin states, where m is 
the rest frame spin projection. Could equally well use other spin 
states (e.g. helicity spin)  
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3. A distributional matching approach

● Approach: Use the distributional properties of the matrix elements to           
                  impose constraints on the form factors [PL, Chiu, Brodsky, 1707.06313] 

(i)  Compute the matrix elements of Pμ and J 
i using the Poincaré                     

      transformation properties of the states

→ Spacetime translations:      

  
→ Lorentz transformations: 

(ii)  Compare these expressions with those obtained from the form factor        
       decomposition of the matrix elements  
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3. A distributional matching approach

● In order to define the Poincaré charges in a consistent manner one 
must smear the currents with appropriate test functions [Kastler et al.]      

● One can then relate the matrix elements of the charges to those of the 
energy-momentum tensor:

● Identical definitions can also be used to define light-like charges 
[Jegerlehner]  

[F. Jegerlehner, Helv. Phys. Acta 46, 824 (1974)]
[D. Kastler, D. W. Robinson and J. A. Swieca, 
Commun. Math. Phys. 2, 108 (1966)
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3. A distributional matching approach

● Pμ matrix element: matching the coefficients of the distributions 
with the same momentum dependence implies

● J 
i matrix element: performing the same procedure one obtains   

The first set of constraints 
are a subset of these 
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3. A distributional matching approach

● This matching approach recovers the standard results for the form 
factors in the q→0 limit, but no choice of frame, wavepacket, operator 
component, or spin component m  is required

● What about the boost matrix elements? Interestingly, by using the 
matrix elements for the boost operator [Bakker, Leader, Trueman]:

one obtains precisely the same constraints as those derived using the 
angular momentum operator J 

i 

● These findings demonstrate that the q→0 constraints imposed on the 
form factors A(q2), B(q2) and C(q2) are actually a consequence of the 
physical on-shell requirement of the states, and the manner in which 
they transform under Poincaré transformations       

[Bakker, Leader, Trueman; hep-ph/0406139]
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4. Summary and outlook

● Using a distributional matching approach one can derive low-energy 
(q→0) constraints on the form factors associated with the matrix 
elements of T 

μν  [PL, Chiu, Brodsky, 1707.06313]    

● This approach involves expanding the matrix elements of Poincaré 
charges in two different ways, and then comparing the coefficients   

● The same set of constraints: A(0)=1, B(0)=0 are derived from the 
angular momentum and boost matrix elements 

  → these constraints are a consequence of the on-shellness and             
       Poincaré transformation properties of the states

● This procedure has potentially interesting generalisations

→ form factors associated with different currents 

→ matrix elements involving states with higher spin 
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Different spin states: 

● Wick helicity states have more complicated matrix elements:

● In the spin-½ case:                         but for higher spin states this matrix 
is more complicated [Bakker, Leader, Trueman]

Backup

Canonical:

Jacob-Wick helicity:

Wick helicity:

[Bakker, Leader, Trueman; hep-ph/0406139]
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Backup

Definitions used:

Form factor calculation – angular momentum case:
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Local QFT approaches are defined by a core set of axioms:

A. Wightman

R. Haag

Backup

[R. F. Streater and A. S. Wightman, PCT, Spin 
and Statistics, and all that (1964).]

 [R. Haag, Local Quantum Physics, 
Springer-Verlag (1996).]
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● Quantum fields φ(x) are distributions – what difference does this make?

→ This means that they cannot be evaluated at a single point (e.g. think  
     of the Dirac delta δ(x) at x=0)

→ Need to 'average them out' over some spacetime region A

 

● But why? – Heisenberg's uncertainty principle! 

Can think of this as the performance 
of a measurement Mφ in the region A 

where f(x) is non-zero 

[MPI Munich (2004)]

A

φ

Backup
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● The distributional nature of form factors implies that these objects are not 
in general continuous. Nevertheless, form factors F(q2) are seemingly 
measured at specific values of q2. In order to reconcile these points of 
view one must recognise that one cannot ever physically measure a form 
factor at a specific value of q2, since this would require an experiment 
with infinite precision.

● In practice, a measurement of F(q2) at q2 = Q2 is really a measurement of 
an averaged-out quantity F(Q2; ∆) in some small but non-vanishing 
region [Q2 - ∆, Q2 +∆].

● F(Q2; ∆) is the convolution of F(q2) with a test function f∆(q2), which 
characterises the resolution ∆ of the experiment  

Backup
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