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1. Form factors in local QFT

* Form factors F(g?) parametrise the non-perturbative characteristics of
matrix elements

— e.g. spin structure, charge distribution, ...

* In order to fully understand the properties of form factors one therefore
requires a non-perturbative approach

* “Local QFT” — define a QFT using a series of physical motivated axioms

— axioms hold independently of the coupling regime, hence
non-perturbative properties can be derived

* One of the key features of this framework is that quantised fields @(x) are
distributions [Streater, Wightman; Haag] — this subtlety is important for
consistently defining matrix elements and charges

[R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and all that (1964)]
[R. Haag, Local Quantum Physics, Springer-Verlag (1996)]
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2. The form factors of T""

* Due to the properties of T"" the matrix elements for spin-¥2 momentum
eigenstates can be written in the following Lorentz covariant manner:

s MIT Ol M) = e 01| 120+ )P AGP) + 0+ ) i 0, ()

1
+ (60" = *9™) C(@®) | um(p) 637 ()55 ()

where: |p;m; M) == 657 (0)lp;m) 0% () = 270(p°)S(p? — M2)

W'sm’s Mp;m; M) = (27)26*(p — p)o\F () mrm

* Physical states have the form:

4 3
W) = [ s 05 Oalm) = [ S5y, I

* For simplicity we consider massive canonical spin states, where m is
the rest frame spin projection. Could equally well use other spin
states (e.g. helicity spin)
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3. A distributional matching approach

* Approach: Use the distributional properties of the matrix elements to
impose constraints on the form factors [PL, Chiu, Brodsky, 1707.06313]

(i) Compute the matrix elements of P* and J' using the Poincaré
transformation properties of the states

— Spacetime translations: e %|p; k; M) = eP"%|p; k; M)

(p';m's M|P*|p;m; M) = p*(27)*6% (0" — p)o\F ()6 m

~ Lorentz transformations: e P7|p;k; M) = > " D;.(8)|A(B)p; l; M)

(P M|J | p: m; MY = (2m)4650 (') Sf;lfm—ﬁmfme”’“pja—k §*(p —p)

(ii) Compare these expressions with those obtained from the form factor
decomposition of the matrix elements
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3. A distributional matching approach

* In order to define the Poincaré charges in a consistent manner one
must smear the currents with appropriate test functions [Kastler et al.]

Pt = E% d*r fa.r(x)T(x) fa.r(z) := aq(zo) Fr(x)

R—o0
/da:o ag(zg) =1  ay(xg) ﬂ d(xo)

1 _ |
J'= 2% lim /d4:1f: fa.r(x) [iUJTOk(IL“) — R0 ()]
2 d—0 ’
—+00

R— oo

Fr(0)=1 Fgr(x) —— 1.

* One can then relate the matrix elements of the charges to those of the
energy-momentum tensor:

(p’sm'; M| P*|p;m; M) = clfﬂé Far(Q)®'sm’; MIT(0)|p; m; M)

R—oc0

‘ . oFf
(p'sm’s M| J'|p; m; M) = —ie”" lim a.nl0) (p'sm'; MT(0)|p; m; M)
A3 O

* Identical definitions can also be used to define light-like charges
[Jegerlehner |

[D. Kastler, D. W. Robinson and J. A. Swieca,
[F. Jegerlehner, Helv. Phys. Acta 46, 824 (1974)] Commun. Math. Phys. 2, 108 (1966)
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3. A distributional matching approach

* P’ matrix element: matching the coefficients of the distributions
with the same momentum dependence implies

( ?)0%(q) = 6*(q) - lim [ d'q5% (9 A =1
B(¢*)5*(q) =0 T
¢q'C(¢*)6"(q) = (0) =

 J'matrix element: performing the same procedure one obtains

A(q*)0"5*(q) = 0"5"(q) A(0) =1

A5 (q) = 54@ e

B(q*)0*(q) = > [B(0) =0

¢ [Al¢*) + B(QQ)] "% (q) = 0

PEC@ITT@ =0 (AR Ty it e of consteaints
¢ C(g*)o*(q) =0 are a subset of these |
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3. A distributional matching approach

* This matching approach recovers the standard results for the form
factors in the g — 0 limit, but no choice of frame, wavepacket, operator
component, or spin component m is required

* What about the boost matrix elements? Interestingly, by using the
matrix elements for the boost operator [Bakker, Leader, Trueman]:

0
Opi

(p X Um’m)i

2(p" + M) 0" = p)

—+ éémf mfpo

(p'sms M|K p;m; M) = (2m)*6'P ()

one obtains precisely the same constraints as those derived using the
angular momentum operator J'

* These findings demonstrate that the g — 0 constraints imposed on the
form factors A(g?), B(g?) and C(g?) are actually a consequence of the
physical on-shell requirement of the states, and the manner in which
they transform under Poincaré transformations

[Bakker, Leader, Trueman; hep-ph/0406139]
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4. Summary and outlook

* Using a distributional matching approach one can derive low-energy
(g — 0) constraints on the form factors associated with the matrix

elements of T"" [PL, Chiu, Brodsky, 1707.06313]

* This approach involves expanding the matrix elements of Poincaré
charges in two different ways, and then comparing the coefficients

* The same set of constraints: A(0)=1, B(0)=0 are derived from the
angular momentum and boost matrix elements

— these constraints are a consequence of the on-shellness and
Poincaré transformation properties of the states

* This procedure has potentially interesting generalisations

— form factors associated with different currents
— matrix elements involving states with higher spin

P. Lowdon — LC2018 9



Different spin states:

Canonical: p,s) = B(v)|0,s) = B(U)Diﬁz(}%(s))\(}, m)

Jacob-Wick helicity: p, AN gw = R.(¢) Ry(0) R.(—¢) B.(v)|0,m = \)

Wick helicity: p, Ay = R.(¢) Ry(0) B.(v)|0,m = \)

* Wick helicity states have more complicated matrix elements:

(6°'p*+5%2p?)|p|
(p1)2+(p?)?

w(p'sm's M|J*p;m; Myw = (2m)4685 (p) [m 6rim eIk

- 35m m€

p Bp 54(39 _p)

* In the spin-% case: S.,,, = +o%..,, but for higher spin states this matrix

1S more COIIlphCE:ltEd [Bakker Leader, Trueman]

[Bakker, Leader, Trueman; hep-ph/0406139]
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Definitions used:

h(q) 8°6%(q) = h(0) "6 (q) — (8"h)(0) 6*(q) ¢=1p' —p, D=3 +p)

0 _ _ - v kin -l _n
8—% {[Um’ (p+ §Q) Um (p_ Qq)]qﬂ—‘q}q_o o (I—)O + M)E P Omrm:

_;_jk —:2jkf _OE;— ).
Um (p)o‘ um(p) € [p Tm'm ﬁo + M ] )

Form factor calculation — angular momentum case:

1, 9
2 4 oy i.r :-5171_"171_ _@Jk_j— 54 =
(20)! [ g+ 9 | 5100
(2) 6 (q“— %) T {l“in:m Far(@)A?) + i6me i 2EE 4 (g2)
R—oo
7 5 (p - 504, (5) 09You,, () q, OF,

P PP Omm) | oy ik PV Uy (P) 07 Puy (D) a, Ofar 5 5
o Omm ~ B(g®) — ¥ A B
+[2M”m m QM(ﬁ’JrAJde’R(Q) (¢7) — SM 0 3g, A+ B(@)]
ik °¢ Ofar e . @’p Pid' P (P % omrm)*] 2
5m’m -Uk 119 —C 2 .L‘?"L (Sm«'?n - mm , 2
0 €7 g ) e 0™ T MO 1 M) fa.r(@)C(q7)

P. Lowdon — LC2018 11




Backup

Local QFT approaches are defined by a core set of axioms:

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert
space H which possesses a continuous unitary representation Ula, o) of the Poincaré

SpinoT group FT :

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator

P* is confined to the closed forward light cone V' = {p* | p* = 0, p" = 0}, where
Ula,1) = e,

Iy

htman

Axiom 3 (Uniqueness of the vacuum). There erists a unit state vector |0) (the A. Wi g
vacuum state) which is a unique translationally invariant state in H. )

o L . [R. F. Streater and A. S. Wightman, PCT, Spin
Axiom 4 (Field operators). The theory consists of fields o' (x) (of type (k)) which and Statistics, and all that (1964).]

= R R . .
have components o, (x) that are operator-valued tempered distributions in H, and the

vacuum state |0) is a cyclic vector for the fields.

% T . P . K} . .
Axiom 5 (Relativistic covariance). The fields ;" (x) transform covariantly under
the action of ,"57“‘1 :

Ula, o)l (x)U(a,e) = S (a )l (Ala)z + a)

where S(ev) is a finite dimensional matriz representation of the Lorentz spinor group

7 |T,. and A(a) is the Loventz transformation corresponding to o € %] .

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of

the fields o, o) are space-like separated, then:

[ (), 08 (9))+ = o™ ()l (g) £ @ (@)™ (F) = 0

when applied to any state in H, for any fields o\, ol

[R. Haag, Local Quantum Physics,
Springer-Verlag (1996).]
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* Quantum fields ¢(x) are distributions — what difference does this make?

— This means that they cannot be evaluated at a single point (e.g. think
of the Dirac delta 6(x) at x=0)

— Need to 'average them out' over some spacetime region A

My = [ d'zpla)fa)

4

D [MPI Munich (2004)]

Can think of this as the performance s .
of a measurement M, in the region A //V 3 :
where f(x) is non-zero o s S

* But why? — Heisenberg's uncertainty principle! AzAp ~ g
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* The distributional nature of form factors implies that these objects are not
in general continuous. Nevertheless, form factors F(g?) are seemingly
measured at specific values of @°. In order to reconcile these points of
view one must recognise that one cannot ever physically measure a form
factor at a specific value of @2, since this would require an experiment
with infinite precision.

* In practice, a measurement of F(g?) at g° = Q? is really a measurement of
an averaged-out quantity F(Q?; A) in some small but non-vanishing
region [Q?- A, Q*+Al.

« F(Q? A) is the convolution of F(g?) with a test function f,(g?), which
characterises the resolution A of the experiment

F(Q% A) = (F* fa)(@%)
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