

A = 3 Nuclei: A Lab for Energy Sharing in Asymmetric Systems

Reynier Cruz Torres Hall A Collaboration Meeting January 24, 2018

SRC 101

Majority = most abundant nucleon species in an asymmetric nucleus Minority = least abundant nucleon species in an asymmetric nucleus

SRC 101

O. Hen et al., Science 364 (2014) 614.
Korover et al., PRL 113 (2014) 022501.
N. Fomin et al., PRL 108, 092502 (2012).
R. Subedi et al., Science 320 (2008) 1476.
K. Sh. Egiyan et al., PRC 68, 014313 (2003).
H. Baghdasaryan et al., PRL 105, 222501 (2010).

Account for ~20% of all nucleons in any nucleus.

Dominate the momentum distribution above the Fermi momentum (k_F) .

Nucleons in the pair have high relative momentum and low center of mass momentum relative to k_F.

O. Hen, L. B. Weinstein, E. Piasetzky, *et al.*, PRC 92, no. 4, 045205 (2015).

SRC Pair fraction (%)

00

50

10

np fraction

pp fraction

Α

SRC 101

2. Dominant NN force in 2N-SRC is tensor force.

High momentum tail (300-600 MeV/c) is dominated by L=0,2 S=1 pn-SRC pairs.

Fe

50

Pb

68% C.L.

95% C.L.

100

Reynier Cruz Torres

Reynier Cruz Torres

Plii

Competing effects

Competing effects

Competing effects

For light nuclei correlations are predicted to win

<T>_{Minority} VS

	$\frac{ N-Z }{A}$	<t<sub>p></t<sub>	< <i>T</i> _n >	<t<sub>p> - <t<sub>n></t<sub></t<sub>
⁸ He	0.50	30.13	18.60	11.53
$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
9 Li	0.33	31.39	24.91	6.48
³ He	0.33	14.71	19.35	-4.64
$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
⁸ Li	0.25	28.95	23.98	4.97
$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
⁹ Be	0.11	29.82	27.09	2.73
$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

VMC calculations by R. Wiringa et al. (PRC 89, 024305 (2013))

For light nuclei correlations are predicted to win

<T>_{Minority} VS

Can we test these predictions experimentally?

	$\frac{ N-Z }{A}$	<t<sub>p></t<sub>	< <i>T</i> _n >	<t<sub>p> - <t<sub>n></t<sub></t<sub>
⁸ He	0.50	30.13	18.60	11.53
$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
9 Li	0.33	31.39	24.91	6.48
³ He	0.33	14.71	19.35	-4.64
$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
⁸ Li	0.25	28.95	23.98	4.97
$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
$^{9}\mathrm{Be}$	0.11	29.82	27.09	2.73
$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

VMC calculations by R. Wiringa et al. (PRC 89, 024305 (2013))

Heavy Nuclei

Reynier Cruz Torres

Heavy Nuclei

A=3 nuclear systems

 \Box ³H and ³He are mirror nuclei:

- $n in {}^{3}H = p in {}^{3}He$
- $p in {}^{3}H = n in {}^{3}He$

A=3 nuclear systems

Plir

 \square ³H and ³He are mirror nuclei:

- $n in {}^{3}H = p in {}^{3}He$
- $p in {}^{3}H = n in {}^{3}He$

Two ways to study the proton-to-neutron momentum distribution ratio in ³He:

A=3 nuclear systems

ШiГ

 \square ³H and ³He are mirror nuclei:

- $n in {}^{3}H = p in {}^{3}He$
- $p in {}^{3}H = n in {}^{3}He$
- Two ways to study the proton-to-neutron momentum distribution ratio in ³He:
 - Measure the ³He(e,e'p)/³He(e,e'n) ratio.
 [Low accuracy due to the neutron measurement]

 \square ³H and ³He are mirror nuclei:

- $n in {}^{3}H = p in {}^{3}He$
- $p in {}^{3}H = n in {}^{3}He$
- Two ways to study the proton-to-neutron momentum distribution ratio in ³He:
 - Measure the ³He(e,e'p)/³He(e,e'n) ratio.
 [Low accuracy due to the neutron measurement]
 - Measure the ³He(e,e'p)/³H(e,e'p) ratio.
 [Complicated due to the need for a Tritium target]

n

³He

³H

 \square ³H and ³He are mirror nuclei:

- $n in {}^{3}H = p in {}^{3}He$
- $p in {}^{3}H = n in {}^{3}He$
- Two ways to study the proton-to-neutron momentum distribution ratio in ³He:
 - Measure the ³He(e,e'p)/³He(e,e'n) ratio.
 [Low accuracy due to the neutron measurement]
 - Measure the ³He(e,e'p)/³H(e,e'p) ratio.
 [Complicated due to the need for a Tritium target]

[Hall A has one]

Accessing momentum distributions - FSI

Rescattering effects as a function of the angle between P_{miss} and q.

Rescattering effects cancel in the ³He/³H ratio

- Rescattering minimized at small angles (verified for deuterium).
- Small angles => x_B>1 => suppress MEC and IC effects.

Reduced cross sections

Jefferson Lab Extracting the proton/neutron ratio

n

þ

Jefferson Lab Extracting the proton/neutron ratio

Jefferson Lab Inversion in the kinetic energy sharing

$$\langle T_p \rangle |_0^k = \int_0^k n_p(k')(\sqrt{m_p^2 + k'^2} - m_p) d^3k'$$

Experiment preparation

Kinematics optimization:

- Start with back-of-the-envelope calculation to determine "interesting" kinematics.
- 2) Fix electron arm kinematics and look where protons go.
- Scan proton θ vs. p phase-space with a "box" the size of the HRS acceptance looking for maximum yield.

Fast kinematics

E _{beam}	p _e (MeV/c)	θ _e (deg)	p _p (MeV/c)	θ _p (deg)				
4.3 GeV	3543.28	20.88	1480.5	48.8				
Slow kinematics								
E _{beam}	p _e (MeV/c)	θ _e (deg)	p _p (MeV/c)	θ _p (deg)				
4.3 GeV	3543.28	20.88	1246	58.5				
		a an						

Expected events

- First extraction of momentum distribution ratio via mirror-nuclei measurements to study relative kinetic energies of protons and neutrons in asymmetric nuclei
- First direct test of calculated distributions in ³H/
 ³He
- Coincidence trigger is already setup
- Kinematics have been studied and optimized

Thank you!

