

University of New Hampshire Nuclear & Particle Physics Group

The g₂p Experiment: A Measurement of the Proton's Spin Structure Functions 2018 Status Update

David Ruth

Hall A Collaboration Meeting

January 24, 2018

Most Slides & Figures by Ryan Zielinski

Essential Quantities in ep Scattering

Inclusive *ep* Scattering Cross Sections describe normalized interaction rate

Elastic scattering: target remains in the ground state after interaction

$$E'_{\text{elas}} = \frac{E}{1 + \frac{2E}{M} \sin^2 \frac{\theta}{2}}$$

Mott cross section describes scattering from point-particle:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} = \frac{\alpha^2}{4E^2\sin^4\theta/2}\cos^2\frac{\theta}{2}$$

Rosenbluth cross section describes deviation from point-particle:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \tan^2 \frac{\theta}{2}\right]$$

 G_E and G_M related to charge and current distributions

Inclusive *ep* Scattering Cross Sections describe normalized interaction rate

Inelastic scattering: Target is in excited state after interaction

Structure Functions:

Inclusive *unpolarized* cross sections

 $\frac{d^2\sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$

F_1 and F_2 related to quark/gluon distribution

Adding a *polarized* beam and target adds two more structure functions

$$\frac{d^2\sigma^{\pm}}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\alpha F_1(x, Q^2) + \beta F_2(x, Q^2) \pm \gamma g_1(x, Q^2) \pm \delta g_2(x, Q^2) \right]$$

 g_1 and g_2 related to spin distribution

Extracting Spin Structure by Looking at Cross Section Differences

$$\frac{d^2\sigma^{\uparrow\uparrow}}{dE'd\Omega} - \frac{d^2\sigma^{\downarrow\uparrow}}{dE'd\Omega} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E} \left[g_1(x,Q^2) \{E + E'\cos\theta\} - \frac{Q^2}{\nu} g_2(\nu,Q^2) \} \right]$$

Inclusive notarized cross sections

Parallel

$$\frac{d^2\sigma^{\uparrow\Rightarrow}}{dE'd\Omega} - \frac{d^2\sigma^{\downarrow\Rightarrow}}{dE'd\Omega} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'^2}{E} \sin\theta \bigg[\nu g_1(x,Q^2) + 2Eg_2(\nu,Q^2)\bigg]$$

Perpendicular

Two equations, two unknowns...

Motivation:

Measure a fundamental spin observable (g_2) in the region 0.02 < Q^2 < 0.20 GeV² for the first time

- Measurements at Jefferson Lab:
 - RSS medium Q² (1-2 GeV²) (published)
 - SANE high Q² (2-6 GeV²) (analysis)
 - g₂p low Q² (0.02-0.20 GeV²) (analysis)
- Low Q² is difficult:
 - Electrons strongly influenced by target field
 - Strong kinematic dependence on observables
- Low Q² is useful:
 - Test predictions of Chiral Perturbation Theory (χPT)_S
 - Test sum rules and measure moments of g_2
 - Study finite size effects of the proton
- g₂p experiment ran spring 2012 in Hall A

Hall A Experimental Setup:

Polarized Protons Created with Dynamic Nuclear Polarization (DNP)

Creating initial polarization:

- Align spins in large B and low T
 - 5.0 T/2.5 T (a) 1 K $P_{\rm TE} = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} = \frac{e^{\frac{\mu B}{kT}} - e^{\frac{-\mu B}{kT}}}{e^{\frac{\mu B}{kT}} + e^{\frac{-\mu B}{kT}}}$
 - Large μ_e (~660 μ_p) creates large electron polarization (~99% at 5T/1K)

Enhancing initial polarization:

- Proton pol. much smaller (~0.5% 5T) at TE
- *ep* spin coupling and microwaves drive pol.
- Electrons relax much quicker than protons so polarization is sustained

Proton Polarization Measured with Q-Meter

T. Badman (2013) TN #08: http://hallaweb.jlab.org/experiment/g2p/collaborators/toby/technotes/target.pdf

g₂p Kinematic Coverage

MEASURING $g_{1,2}$ from data

Why do it this way?

- Asymmetries are easy to measure
- Lots of data on unpolarized cross sections so models are a possibility

Need to be mindful of contributions from scattering from anything other than protons

5T Proton Asymmetries

2.5T Proton Asymmetries

1.1 GeV data has large systematics that make it hard to work with.

2.5T Asymmetries show systematic shift in many places, working on resolving before data is usable

Model Cross Section

Acceptance Study

Acceptance study is on-going, we hope to be able to use data instead of model cross sections soon

Continuity on longitudinal spectrum for most recent acceptance is good, not as much on transverse Longitudinal Transverse

Extracting the Spin Structure Functions : g₂

Model driven procedure for unmeasured part $g_2(x,Q^2) = \frac{K_1 y}{2} \left[\Delta \sigma_{\perp} \left(K_2 + \tan \frac{\theta}{2} \right) \right] - \frac{g_1(x,Q^2) y}{2}$ $K_1 = \frac{MQ^2}{4\alpha} \frac{y}{(1-y)(2-y)}$ $K_2 = \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta}.$

Adjusting to a constant Q²

$$\begin{split} &\delta_{\rm evolve} = g_{1,2}^{\rm mod}(x_{\rm data},Q_{\rm data}^2) - g_{1,2}^{\rm mod}(x_{\rm const},Q_{\rm const}^2)\,,\\ &x_{\rm const} = Q_{\rm const}^2/(W^2-M^2+Q_{\rm const}^2)\,, \end{split}$$

Small effect at the transverse settings

Extracting the Spin Structure Functions: g₁

First Moment of $g_1(x, Q^2)$

$$\Gamma_1(Q^2)=\int_0^{x_{
m th}}g_1(x,Q^2)dx$$

Moments provide a useful quantity that can be related back to theory predictions!

Extended GDH Sum

$$I_A(Q^2) = rac{2M^2}{Q^2} \int_0^{x_{
m th}} igg(g_1(x,Q^2) - rac{4M^2}{Q^2} x^2 g_2(x,Q^2)igg) dx$$

Forward Spin Polarizability

$$\gamma_0(Q^2) = rac{16lpha M^2}{Q^6} \int_0^{x_{
m th}} x^2 igg(g_1(x,Q^2) - rac{4M^2}{Q^2} x^2 g_2(x,Q^2) igg) dx$$

Higher Order Polarizability

$$\gamma_{0}st(Q^{2})=rac{64lpha M^{4}}{Q^{10}}\int_{0}^{x_{ ext{th}}}x^{4}igg(g_{1}(x,Q^{2})-rac{4M^{2}}{Q^{2}}x^{2}g_{2}(x,Q^{2})igg)dx$$

Conclusions

- Experimental measurements of proton structure are key to understanding the proton!
- The $g_2 p$ experiment was a precision measurement of proton g_2 in low Q^2 region for the first time!
- Longitudinal data agrees with previous measurements.
- 5T Data Analysis is complete, 2.5T Analysis is ongoing. We hope to have publishable data at both the 2.2 GeV and 1.7 GeV energy levels at this target field.
- Acceptance study is on-going, to allow us to use experimental unpolarized cross sections.
- Packing fraction/dilution analysis also complete for 5T data, but may need more investigation for 2.5T data.

Acknowledgements

g2p Analysis Team

Spokespeople:

Alexandre Camsonne JP Chen Don Crabb Karl Slifer

Post-Docs:

Kalyan Allada James Maxwell Vince Sulkosky Jixie Zhang

Graduate Students:

Toby Badman Melissa Cummings Chao Gu Min Huang Jie Liu Pengjia Zhu Ryan Zielinski

Special thanks again to Ryan Zielinski for allowing me to adapt his slides for this presentation.

