Intro	E02-013	Analysis	PRELIMINARY RESULT	Appendix
000	0000	000000	00	00000000000000

Asymmetry Measurement of the Electric Form Factor of the Neutron at $Q^2 = 1.16 \text{ GeV}^2$

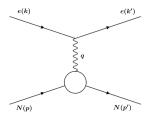
Richard F. Obrecht Hall A Collaboration Meeting 2018

January 23, 2018

UCONN

INTRO	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
● 00	0000	0000000	00	000000000000000000000000000000000000000
f i i i i i i i i i i i i i i i i i i i	/			

INTRODUCTION


- ► A brief introduction to the physics goals of E02-013, otherwise known as Gⁿ_E
- Overview of the experimental apparatus
- Summary of the analysis
- Preliminary results of G_E^n/G_M^n at $Q^2 = 1.16 \text{ GeV}^2$

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	00000000000000

NUCLEON FORM FACTORS

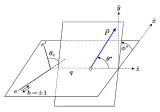
 Nucleon form factors arise by generalizing the typical vertex factor -*ieγ^μ* in OPEX:

$$\Gamma^{\nu} = \gamma^{\nu} F_1(q^2) + \frac{i\sigma^{\nu\alpha}q_{\alpha}}{2M} F_2(q^2)$$

An unpolarized calculation incorporating the nucleon structure results in the Rosenbluth formula:

$$\frac{d\sigma}{d\Omega}\Big|_{\text{LAB}} = \frac{\alpha^2 \cos^2 \frac{\theta_e}{2}}{4E_e^2 \sin^4 \frac{\theta_e}{2}} \frac{E'_e}{E_e} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta_e}{2}\right],$$

where $\tau = \frac{Q^2}{4M^2}$, $G_E = F_1 - \tau F_2$ and $G_M = F_1 + F_2$.


3 / 32

INTRO	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	00000000000000

BEAM-TARGET ASYMMETRY

 $A_{\rm phys} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$

Polarize beam and target, and an asymmetry arises by flipping the beam helicity $h = \pm 1$:

$$= -\frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_e}{2}}{\frac{\tau}{e} + \Lambda^2} \left\{ P_x \Lambda + \sqrt{\tau \left[1 + (1+\tau)\tan^2\frac{\theta_e}{2}\right]} P_z \right\},$$

= $\frac{\mathcal{B}\Lambda + \mathcal{C}}{\mathcal{D} + \Lambda^2}.$

• $\Lambda \equiv G_E/G_M$, $P_x = \sin \theta^* \cos \phi^*$ and $P_z = \cos \theta^*$

• At leading order, $A_{phys} \propto \Lambda$ if $\theta^* = \pi/2$ and $\phi^* = 0$ or 180°

4 ロ ト 4 部 ト 4 差 ト 差 の 4 (や 4 / 32)

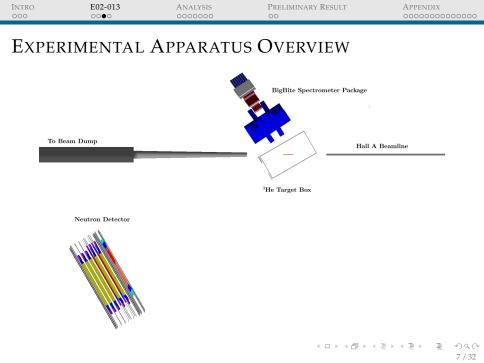
Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	000000000000000000000000000000000000000
		/		

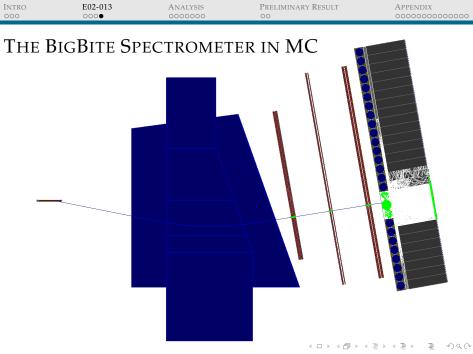
INTRODUCTION TO E02-013

- Extract Gⁿ_E via a beam-target helicity asymmetry measurement using the semi-exclusive reaction ³He(e, e'n)pp
- ► Ran in JLab's Hall A, and production took place from 3/01/2006 5/09/2006
- ► The double-arm coincidence experiment took data at four *Q*² configurations:

Q^2 [GeV ²]	Days	E _b [GeV]	θ_{BB} [deg]	$\theta_{\rm NA}$ [deg]
1.16	8	1.519	-56.3	35.74
1.72	9	2.079	-51.6	35.74
2.48	19	2.640	-51.6	30.25
3.41	33	3.291	-51.6	25.63

Table: Kinematic configurations of E02-013, red is unpublished.


INTRO 000	E02-013 ••••	Analysis 0000000	Preliminary Result 00	Appendix 00000000000000
	PRL 105, 262302 (2010)	PHYSICAL REV	VIEW LETTERS	week ending 31 DECEMBER 2010


Measurements of the Electric Form Factor of the Neutron up to $Q^2 = 3.4 \text{ GeV}^2$ Using the Reaction ${}^3\vec{\text{He}}(\vec{e}, e'n)pp$

S. Riordan,^{1,2,3} S. Abrahamyan,⁴ B. Craver,² A. Kelleher,⁵ A. Kolarkar,⁶ J. Miller,⁷ G. D. Cates,² N. Liyanage,²
 B. Wojtsekhowski,^{8,*} A. Acha,⁹ K. Allada,⁶ B. Anderson,¹⁰ K. A. Aniol,¹¹ J. R. M. Annand,¹² J. Arrington,¹³ T. Averett,⁵
 A. Beck,^{14,8} M. Bellis,¹ W. Boeglin,⁹ H. Breuer,⁷ J. R. Calarco,¹⁵ A. Camsonne,⁸ J. P. Chen,⁸ E. Chudakov,⁸ L. Coman,⁹
 B. Crowe,¹⁶ F. Cusano,¹⁷ D. Day,² P. Degtyarenko,⁸ P. A.M. Dolph,² C. Dutta,⁶ C. Fertá,¹⁸ C. Fernández-Ramírez,¹⁹
 R. Feuerbach,^{8,5} L. M. Fraile,¹⁹ G. Franklin,¹ S. Frullani,¹⁷ S. Fuchs,⁵ F. Garibaldi,¹⁷ N. Gevorgyan,⁴ R. Gilman,^{20,8}
 A. Gilamazdin,²¹ J. Gomez,⁸ K. Grimm,⁵ J.-O. Hansen,⁸ J. L. Herraiz,¹⁹ D. W. Higinbotham,⁸ R. Holmes,²² T. Holmstrom,⁵
 D. Howell,²³ C. W. de Jager,⁸ X. Jiang,²⁰ M. K. Jones,⁸ J. Katich,⁵ L. J. Kaufman,³ M. Khandaker,²⁴ J. J. Kelly,^{7,†}
 D. Kiselev,²⁵ W. Korsch,⁶ J. LeRose,⁸ R. Lindgren,² P. Markowitz,⁹ D. J. Margaziotis,¹¹ S. May-Tal Beck,^{14,48} S. Malylyan,⁴
 K. McCormick,²⁶ Z.-E. Meziani,²⁷ R. Michaels,⁸ B. Moffit,⁵ S. Nanda,⁸ V. Nelyubin,² T. Ngo,¹¹ D. M. Nikolenko,²⁸
 B. Norum,² L. Penchev,⁶ C. F. Perdrisat,⁵ E. Piasetzky,²⁰ R. Pomatsalyuk,¹¹ D. Pronchev,¹² A. J. R. Puckett,¹⁴
 V. A. Punjabi,²⁴ X. Qian,⁹⁰ Y. Qiang,¹⁴ B. Quinn,¹ L. Rachek,²⁸ R. D. Ransom,²⁰ D. Opopescu,¹² A. J. R. Puckett,¹⁴
 Yu. Shestakov,²⁸ J. Singh,² S. Sirca,¹⁴ P. Souder,²² S. Stepanyan,³¹ V. Stibunov,³² V. Sulkosky,³ S. Tajima,² W. A. Tobias,² J. M. Udias,¹⁹ G. M. Urciuoli,¹⁷ B. Soudez,²² S. Stepanyan,³¹ V. Stibunov,³² V. Sulkosky,³ S. Tajima,² W. A. Tobias,² J. M. Udias,¹⁹ G. M. Urciuoli,¹⁷ B. Soudez,²² S. Stepanyan,³¹ V. Stibunov,³² V. Sulkosky,³ S. Tajima,² W. A. Tobias,² J. M. Udias,¹⁹ G.

Spokespeople:

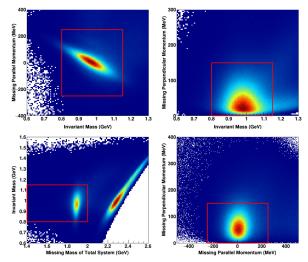
- Gordon Cates University of Virginia
- Nilanga Liyanage University of Virginia
- Bogdan Wojtsekhowski Jefferson Lab

8/32

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	000000	00	000000000000000000000000000000000000000

MAJOR GOALS OF THE ANALYSIS

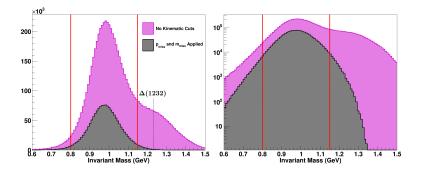
Major tasks:


- 1. Find electron tracks, reconstruct the vertex and momentum
- 2. Reconstruct the nucleon cluster and calculate the momentum via ToF
- 3. Separate quasielastic events with a set of cuts
- 4. Identify the charge of the nucleon cluster

Then we may...

- Construct the raw asymmetry
- ► Correct for all appreciable experimental realities, *i.e.* events that contaminate (or dilute) the quasielastic neutral sample

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	000000	00	000000000000000000000000000000000000000

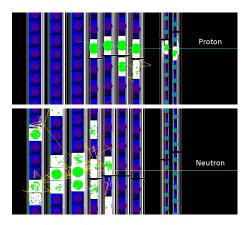

QUASIELASTIC EVENT SELECTION

Cuts on the invariant mass, the missing momentum components and the missing mass largely select the QE region for $Q^2 = 1.16 \text{ GeV}^2$.

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	000000	00	0000000000000

QUASIELASTIC EVENT SELECTION

- ► The inelastic region is heavily suppressed by the cut selection, resulting in negligible inelastic corrections to A_{raw}.
- ► A final cut of 0.8 < W < 1.15 GeV is applied


Intro	E02-013
000	0000

ANALYSIS

PRELIMINARY RESULT

Appendix 00000000000000

NUCLEON CHARGE IDENTIFICATION

Side view of the neutron detector depicting the ideal scenario of charge identification within MC. The recoiling nucleons have a kinetic energy of 1.3 GeV prior to entering the detector.

うくで 12/32

0000 0000	0000000	00	000000000000000000000000000000000000000

MAJOR CORRECTIONS TO THE RAW ASYMMETRY

The raw asymmetry for the QE neutral sample:

$$A_{\rm raw} = \frac{N^+ - N^-}{N^+ + N^-},$$

where N^{\pm} denotes the QE neutral count for \pm beam helicity.

A summary of the largest dilution factors:¹

- ► Accidental background: 5%
- ► Nitrogen in ³He target cell: 5%
- ► Protons misidentified as neutrons: 20%
- ► Nuclear effects + FSI (GEA): 10%

¹If interested, more details may be found in the Appendix.» $\langle \Xi \rangle \langle \Xi \rangle = 0$

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	000000000000000000000000000000000000000

CHARGE MISIDENTIFICATION

Notation: $\eta_{\text{true}}^{\text{obs}}$ where true is particle that left the target and obs is the result of charge ID $\Rightarrow \eta_p^p$ protons correctly ID'ed as protons

Simulation:

- Generate elastic *eN* coincidence events and compare to the results of the charge identification procedure (prev. slide)
- Calculate the probability that the true nucleon gets correctly identified

Data:

- Analyze the QE uncharged to charged ratio for three targets (H₂, 3 He, C) to constrain the three η ratios
- Need all three ratios to calculate the misidentification correction to A_{raw} for the uncharged and charged samples

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	000000	00	000000000000000000000000000000000000000

CHARGE MISIDENTIFICATION COMPARISON

Parameter	Data	Simulation	Description
$\frac{\eta_p^n}{\eta_p^p}$	0.021 ± 0.002	0.020 ± 0.001	Protons observed as neutrons
$rac{\eta_n^p}{\eta_p^p}$	Undetermined	0.384 ± 0.001	Neutrons observed as protons
$rac{\eta_n^n}{\eta_p^p}$	0.559 ± 0.027	0.636 ± 0.001	Neutrons observed as neutrons
$D_{ m p}$	0.812 ± 0.017	0.839 ± 0.001	Proton dilution factor

Table: Charge ID results for the data and the simulation.

The multiplicative correction to the neutral A_{raw} due to proton misidentification is given by D_{p} .

PRELIMINARY RESULT FOR $\mu_n G_E^n/G_M^n$

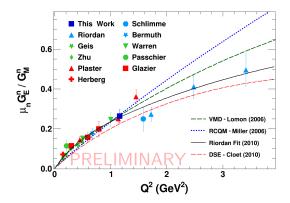


Figure: Double polarization data: ${}^{3}\vec{\mathrm{He}}(\vec{e},e'n)$ (blue markers), $\vec{d}(\vec{e},e'n)$ (green markers), and $d(\vec{e},e'\vec{n})$ (red markers). Largest contributions to systematic uncertainty come from target and beam polarization measurements. The error bar in this work is the total uncertainty.

INTRO	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	0•	000000000000000000000000000000000000000

Systematic Error Budget

Quantity	δ/G_E^n	Comments
δG_E^n	0.126	Total uncertainty contribution
δ_{sys}	0.105	Systematic
δ_{stat}	0.070	Statistical
$\delta P_{^{3}\mathrm{He}}$	0.077	Target polarization
$\delta P_{\rm beam}$	0.040	Beam polarization
$\delta D_{\rm bk}$	0.028	Background dilution
$\delta D_{\rm p}$	0.028	Proton dilution
δG_M^n	0.025	Error from chosen ${\cal G}^n_M$
$\delta D_{\rm FSI}$	0.025	Nuclear corrections
δ_{other}	0.023	Sum of remaining contributions

Contributions to the systematic uncertainty of G_E^n from individual sources, and presented as a fraction of G_E^n .

]	INTRO	E02-013	Analysis	PRELIMINARY RESULT	APPENDIX
1	000	0000	0000000	00	000000000000000000000000000000000000000
<u> </u>					

Appendix

< □ ト < □ ト < 三 ト < 三 ト < 三 ト < 三 か < ℃ 18 / 32

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	•0000000000000

MAJOR CORRECTIONS: $A_{\text{RAW}} \rightarrow A_{\text{PHYS}}$

$\langle Q^2 angle$ [GeV ²]	1.16	Remarks
W [GeV]	0.8 - 1.15	Invariant Mass
p_{\perp} [GeV]	< 0.150	Missing \perp momentum
p∥ [GeV]	< 0.250	Missing momentum
m _{miss} [GeV]	< 2	Missing mass
$\langle \mathbf{P}_{\mathbf{e}} \rangle$	0.870 ± 0.020	Longitudinal beam polarization
$\langle P_{He} \rangle$	0.416 ± 0.019	Polarization ³ He nucleus
D _{bkgr}	0.949 ± 0.029	Accidental background
$\mathbf{D}_{\mathbf{N}_2}$	0.954 ± 0.005	Nitrogen in target
$\mathbf{D}_{\mathbf{p}}$	0.812 ± 0.017	Proton contamination
D _{in}	0.980 ± 0.011	Inelastic contamination
D _{FSI}	0.896 ± 0.013	Nuclear effects + FSI (GEA)

$$A_{\rm phys} = rac{1}{P \cdot D} \left(A_{\rm raw} - \sum A_{\rm corr} \right),$$

where A_{corr} are corrections to A_{raw} which are associated to a dilution factor *D* within the table, and $P = P_{\text{e}}P_{\text{Hey}}$, where $P_{\text{e}} = P_{\text{e}}P_{\text{Hey}}$ are $P_{\text{e}} = P_{\text{e}}P_{\text{Hey}}$.

19/32

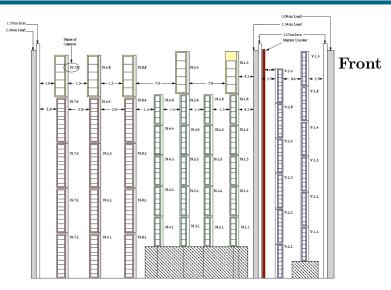
Intro 000	E02-013 0000	Analysis 0000000	Preliminary Result 00	APPENDIX 000000000000000000000000000000000000

TARGETS OF E02-013

- Polarized ³He is used as an effective neutron target as the symmetric S-state dominates the ground-state in which proton spins tend to cancel
 ⇒ ~ 86% of the nuclear spin is carried by the neutron
- Hybrid spin-exchange optical pumping (alkali vapors Rb and K) was used to polarize the ³He target
- ► Target cells exceeded polarizations of 50%, operating at a pressure of ~ 10 atm with a beam current of 8µA
- ► Other targets included BeO-C foils and an empty ref. cell that may be filled with H₂ / N₂
- Targets are mounted to a ladder which is suspended in a 0.25" thick iron "target-box"

INTRO	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	000000000000000000000000000000000000000

THE BIGBITE SPECTROMETER

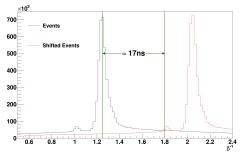

- ► The purpose is to measure the four momentum of the quasielastically scattered electron
- ► BigBite is a large dipole magnet that subtends ~ 76 msr and accepts scattered e⁻ in the range 0.6
- Three multiwire drift chambers (15 wire planes) reconstruct the scattered track post magnetic deflection
- A segmented lead-glass preshower + shower package for triggering and pion rejection. Can reconstruct track energy and is used to confine search region of track recon.
- A hodoscope consisting of 13 scintillator paddles (resolution of 35 ps/channel) is used for event timing information

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	000000000000000000000000000000000000000

THE NEUTRON DETECTOR

- ► The purpose is to measure the momentum of the recoiling nucleons in coincidence via ToF and to identify the charge
- ► Designed to match the acceptance of BigBite at the largest Q^2 point
- ► A time of flight resolution of 300 ps has been obtained
- Detector consists of two "veto" layers (charge ID) and seven neutron layers (ToF)
- The veto layers are built out of 48 rows of long/short scintillating bars with two PMTs per row
- The neutron layers consist of rows of scintillating bars (1 per row) with two PMTs per row

INTRO



The two veto layers (charge identification) and the seven neutron layers (nucleon ToF)

Ξ

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	000000000000000000000000000000000000000

BACKGROUND SUBTRACTION

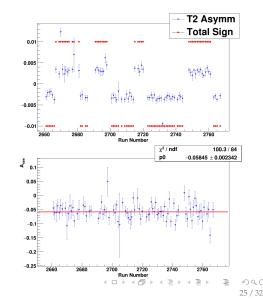
• Shift data in time before QE cuts are applied \Rightarrow adjust β :

$$eta_{\mathrm{bk}} = rac{1}{rac{1}{eta_{\mathrm{QE}}} + 0.8} pprox 0.5 \quad \Rightarrow \quad eta_{\mathrm{bk}}^{-1} = 2$$

where 0.8 is a shift parameter and $\beta_{QE} = 0.8$.

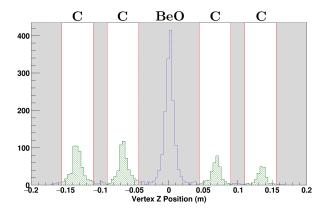
► Apply QE cuts, and the result is random background

Intro	E02-013	Analysis	Preliminary Result	Appendix
000	0000	0000000	00	00000000000000
(


RAW ASYMMETRY

Top Panel:

- BB single arm trigger rate T2 is sensitive to beam helicity
- Total sign = (target sign)×(precession sign)×(HWP sign)


Bottom Panel:

- Background corrected raw asymmetry
- Need to apply additional corrections to remove unwanted events

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	00000000000000

NITROGEN DILUTION

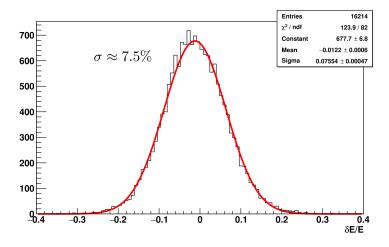
▶ No N₂ data \Rightarrow use C foils and exclude the BeO foil

$$D_{N_2} = 1 - \frac{\Sigma(C) - \Sigma_{back}(C)}{\Sigma - \Sigma_{back}} \frac{Q(^3\text{He})}{Q(C)} \frac{\rho_{N_2}(^3\text{He})}{\rho_C(C)} \frac{t_{^3\text{He}}}{t_C}$$

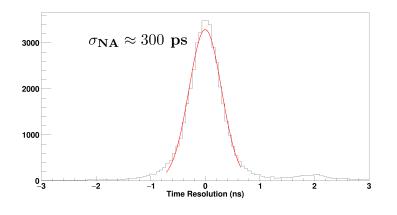
26 / 32

Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	000000000000000000000000000000000000000

VERTEX RESOLUTION


Intro	E02-013	Analysis	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	00000000000000000

MOMENTUM RESOLUTION


Intro	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	00000000000000

BB ENERGY RESOLUTION

4 ロ ト 4 部 ト 4 語 ト 4 語 ト 語 の 4 で 29 / 32

NA TOF RESOLUTION

<□ ト < □ ト < □ ト < 三 ト < 三 ト < 三 ト ○ Q (~ 30 / 32)

INTRO E	E02-013	Analysis	PRELIMINARY RESULT	APPENDIX
000 (0000	000000	00	00000000000000

CORRECTIONS

Corrections

- Accidental Background: 2%
- Nitrogen dilution: 5%
- Misidentified protons: 20%
 - Evaluated through data and Geant4 monte carlo
- Inelastic Events: 0 15%
 - Evaluated through Geant4 monte carlo + MAID
- Nuclear effects + FSI: 5%

Seamus Riordan — SBS Review, March 2012 G2-II 21/44

Figure: S. Riordan 2012 SBS Review

INTRO	E02-013	ANALYSIS	PRELIMINARY RESULT	Appendix
000	0000	0000000	00	000000000000●
(/		

IN CASE I FORGET...

$$t_{\text{ToF,ex}} = \frac{\ell}{c} \sqrt{1 + \left(\frac{M}{|\vec{q}|}\right)^2}$$
$$\beta = \frac{v}{c} = \frac{|\vec{\ell}|}{c t_{\text{ToF}}}$$
$$p_{\text{na}} = \frac{M\beta}{\sqrt{1 - \beta^2}}$$
$$\delta p = \frac{Mc\beta^2}{\ell} \left(\frac{1}{(1 - \beta^2)^{\frac{3}{2}}}\right) \delta t$$

ペロト 《日 》 《 三 》 《 三 》 《 三 》 へ (² 32 / 32