$\Phi_{\text {recision }}$ Measurement of the Isospin Dependence in the $2 \mathcal{N}$ and $3 \mathbb{N}$ Short Range Correlation Region

F12-11-112 (x>1 SRC) UPDATF

SHUJIE LI
University of New Hampshire
On behalf of the E12-11-112 Collaboration

Hall A Collaboration Meeting
 01.24.2018

* Short Range Correlation (SRC)

"Missing Strength"

- The closed (valence) orbits are NOT fully occupied, $\sim 30 \%$ of strength is missing.
- Nucleons can live in orbits above Fermi level ($\mathrm{k}>\mathrm{k}_{\mathrm{F}}$)

* Short Range Correlation (SRC)

"High Momentum Tail"

C. Atti and S. Simula, PRC 53. 1689 (1996)

* Short Range Correlation (SRC)

"SRC pair"

Large back-to-back momentum (> k_{F})

* Short Range Correlation (SRC)

"SRC pair"

Large back-to-back momentum (> k_{F})

JLAB E01-015

* Short Range Correlation (SRC)

" $n-p$ pair dominance"

Subedi et al, Science 320, 1476 (2008)

Subedi et al, Science 320, 1476 (2008)

* Short Range Correlation (SRC)

"Isospin Dependence"

NN potential = Repulsive core + tensor part

$$
\text { Tensor operator } \quad S_{12}=2\left[3 \frac{(\vec{S} \cdot \vec{r})^{2}}{r^{2}}-\vec{S}^{2}\right]
$$

* $\mathrm{T}=1, \mathrm{~S}=0: \mathrm{np}, \mathrm{pp}$, nn pairs. $\mathrm{S}_{12}=0$, no attractive tensor force
* $\mathrm{T}=0, \mathrm{~S}=1$: Deuteron-like np pair.

* Short Range Correlation (SRC)

"(e,e') at $x>1$ "

Single arm (e,e') measurement.

* Clean:

Detect high momentum nucleons at high x high Q 2 with high rates, small final state interaction and meson exchange current.

* Precise:

Take ratio of cross sections to cancel systematic uncertainties

* Short Range Correlation (SRC)

"(e,e') at $\mathrm{x}>1$ ":
 Plateau = probability to find Deuteron like SRC pairs in a nucleus

N. Fomin et al., Phys. Rev. Lett. 108 (2012) 092502.

* Easy:

Single arm (e,e') measurement.

* Clean:

Detect high momentum nucleons at high x high Q 2 with high rates, small final state interaction and meson exchange current.

* Precise:

Take ratio of cross sections to cancel systematic uncertainties

* E12-11-112 x > 1 SRC

"Tritium !"
"We take ratios!"

* Goal 1: Check the isospin dependence in 2 N SRC at $1<x<2$
* np pair dominance:

$$
\frac{\sigma_{3} H e}{\sigma_{3} H}=\frac{\sigma_{n p}+\sigma_{p}}{\sigma_{n p}+\sigma_{n}} \approx \frac{\sigma_{n p}}{\sigma_{n p}}=1
$$

* No isospin preference

$$
\frac{\sigma_{3} H e}{\sigma_{3} H}=\frac{\sigma_{n}+2 \sigma_{p}}{2 \sigma_{n}+\sigma_{p}} \xrightarrow{\sigma_{p} \approx 3 \sigma_{n}} 1.4
$$

Uncertainty: 1.5% on $3 \mathrm{He} / 3 \mathrm{H}$ cross section ratios $->3.8 \%$ on $\mathrm{T}=1 / \mathrm{T}=0$

* E12-11-112 x>1 SRC

"Tritium !"
"We take ratios!"

* Goal 2 Probing the possible 3N SRC at $2<x<3$
* Isospin structure and momentum sharing scheme(does not rely on cleanly isolating 3 N -SRCs)

Isospin independent:

$$
\frac{\sigma_{3} H e}{\sigma_{3} H}=\frac{\sigma_{n}+2 \sigma_{p}}{2 \sigma_{n}+\sigma_{p}} \xrightarrow{\sigma_{p} \approx 3 \sigma_{n}} 1.4
$$

* Precision measurement of the isospin dependence in the 2 N and 3 N short range correlation region

Spokespersons:

John Arrington (ANL) Donal Day (UVa) Douglas Higinbotham (Jlab) Patricia Solvignon (UNH) Zhihong Ye (ANL)

PAC38 (2011): A-
Approved for 19 PAC days HfGut IMPACT

Tritium Experiment Group:
E12-11-103 MARATHON
E12-11-112 $x>1$ (inclusive SRC)
E12-14-009 Elastic -not scheduled
E12-14-011 e'p (exclusive SRC) E12-17-003 e’K

Precision measurement of the isospin dependence in the 2 N and 3 N short range correlation region
P. Solvignon (co-spokesperson and contact), D. Higinbotham (co-spokesperson), D. Gaskel Thomas Jefferson National Accelerotor Facility, Newport News, VA 23606 . Arrington (co-spokesperson), D. F. Geesaman, K. Hafidi, R. Holt, P. Reimer Argonne National Laboratory, Argonne, IL 60439
D. B. Day (co-spokesperson), H. Baghdasaryan, N. Kalaantarians University of Virginia, Charlottesville, VA, 22901 F. Benmokhtar

Kent State University, Kent, OH K\{\&\{2
w. Bertozzi, S. Gilad, V. Sulkosky

Massachusetts Institute of Technology, Cambridge, MA 02139 R. Ransome

Rutgers, the State University of New Jersey, Piscataway, NJ 0885
E. Pasestzky, I. Pomerantz
Tel Aviv University, Tel Aviv, 69978 Isreal

The Weizmann Institute of Science, Rehovot, 76100 Israel
E. J. Beise

University of Maryland, College Park, MD 20742
A. Atkins, T. Badman, J. Maxwell, S. Phillips, K. Slifer, R. Zielinski

University of New Hampshire, Durham, NH O3823
Nos Alamos National Laboratory, Los Alamos, NM 87545
University of Glasgow, Glasgow G12 8QQ, Scotland, UK and

* $x>1$ Run Plan

"LHRS"
Tritium, 17 degrees

"RHRS"

Measurement:
QE cross section at $3 \mathrm{H}, 3 \mathrm{He}$ from $\mathrm{Q}^{2}=2$ to $3 \mathrm{GeV}^{2}$
Goal:
Test 3 H and 3 He nuclear smearing and off-shell correction models

Shujie Li, Hall A Collaboration Meeting Jan 24, 2018

A.J. Tropiano, J.J. Ethier, W. Melnitchouk, N. Sato, in preparation (2018).

* Beam?

"Patience is a virtue"
Achilles and the Tortoise \rightarrow Tritium students and the schedule
12.15.2017 1999

* Beam?

"Patience is a virtue"
Achilles and the Tortoise \rightarrow Tritium students and the schedule

* Tritium Awesome!

"Patience is a virtue"
Achilles and the Tortoise \rightarrow Tritium students and the schedule

$\mathfrak{B E A M}$ ON $\mathcal{T} \mathcal{R} I T \mathcal{T} \mathcal{U} \mathcal{M}!!!$

-	M T	-且
IOC Expert	Temperatures	$A D C, D A C$, etc.
Hall A Status: Beam Permit 1 Chamber Vacuum 4.39e-07 mbar Beam Current 2.130 uAmps		
Encoder	ion: 3330	

12.15.2017

* x>1 Run Schedule:

December 2017:

1. Tritium commissioning (12.13-12.15):
2. $B P M, B C M$ calibration
3. LHRS checkout (17 degree)
4. LHRS sieve runs (1 pass beam, standard Q1 tuning)
5. Endcap contamination ($\sim 4 \%$)

* x>1 Run Schedule:

December 2017:

1. Tritium commissioning (12.13-12.15):
2. $\mathrm{BPM}, \mathrm{BCM}$ calibration
3. LHRS checkout (17 degree)
4. LHRS sieve runs (1 pass beam, standard Q1 tuning)
5. Endcap contamination
6. Target boiling study (In progress, 8 -12\% boiling at 22.5 uA)

* x>1 Run Schedule:

December 2017:

No SRC physics since 2 pass beam was not available
2.Production runs with 2.2 GeV beam(12.16): Quasi-elastic $2 \mathrm{H}, 3 \mathrm{H}, 3 \mathrm{He}$ data, and elastic 1 H data at $\mathrm{Q} 2=0.4,0.6 \mathrm{GeV} 2$

- Data under quality check. Planned analysis:
$3 \mathrm{He} / 3 \mathrm{H}$ cross section ratio $\rightarrow \mathrm{GMn}$

* x>1 Run Schedule:

December 2017:

No SRC physics since 2 pass beam was not available
3. Target position issue (12.16):
$\rightarrow 9$ am: beam centering position changed
$\rightarrow 10$ am: missed part of multifoil
$\rightarrow 11 \mathrm{am}$ to 20 pm : beam centering failed
$\rightarrow 21 \mathrm{pm}$: missed multifoil completely, done

Follow-up Re: Follow-up Re: Hall A Lifter Issues
Lognumber 3508343. Submitted by meekins on Tue, 01/02/2018-01:13. Last updated on Tue, 01/02/2018-01:20

Logbooks:	HALOG TARGETLOG
Tags:	Hall A Tritium
References:	3508342 - Follow-up Re: Hall A Lifter Issues

cause of lifter failure was a spun shaft coupler see figure 1

* x>1 Run Schedule:

December 2017 (mostly commissioning)

March 2018: 4 days
October 2018: 30 days

TODO:

1.finish QE measurement at low Q2 with 1 pass beam
2. Take 2 N SRC data on $2 \mathrm{H}, 3 \mathrm{H}, 3 \mathrm{He}$ at $1<\mathrm{x}<2$
3. Take 3 N SRC data at $\mathrm{x}>2$

Issues:
Q1 saturation
2 pass beam
Right arm dipole (works now!)

"Q1 saturation"

"Q1 power supply has a hard limit of 800 A (to be fixed in the summer)"

Hall probe mesured field strength, Generated by J. Gomez

LHRS Q1 current settings from J. Gomez

Solution 1: take GMp Q1 tuning (208 A/GeV) with a current correction at p0>3GeV.
The correction factor is provided by GMp data and MC simulation
Solution 2: take standard tuning ($200 \mathrm{~A} / \mathrm{GeV}$)

* Either way requires optics check at every high momentum setting

* x>1 Issues:

"Q1 saturation"
Optics check from December $x>1$ (200A/GeV) and MARATHON (208A/GeV) with GMp optics

Plan:

1. December run: calibrate optics from sieve data we took.
2. Future $x>1$ run: take sieve data at each LHRS setting

*Thank you!

*Thanks to Tritium collaboration, target group, GMp collaboration, MCC ...

In memory of Patricia Solvignon

Fig. 3. The minimum momentum for scattering from a nucleon in deuterium (left) and gold (right) as a function of x and Q^{2} for quasi-elastic $\gamma+2 N \rightarrow N+N$ scattering for Q^{2} values of $0.5,1.5,3$, and $10 \mathrm{GeV}^{2}$. For heavy nuclei, the minimum momentum for a given x and Q^{2} value is somewhat smaller, as the heavie recoil system requires less kinetic energy to balance the momentum of the struck nucleon. This, combined with the larger Fermi momentum for heavy nuclei, means that slightly higher x or Q^{2} values are required to fully suppress scattering from nucleons associated with the mean-field structure. Source: Figure adapted from Ref. [44].

