

## **Deeply Virtual Compton Scattering (DVCS) in Hall A**

# Hall A collaboration meeting

24 January 2018

Bishnu Karki

**Ohio University, Athens, Ohio** 

**On behalf of DVCS collaboration** 





# **Overview**

# E12-06-114 DVCS/Hall A Experiment at 11 GeV

#### 100 PAC days approved:

- High impact experiment for nucleon
   3D imaging program
- High precision scaling tests of the DVCS cross section at constant x<sub>B</sub>
- CEBAF12 will allow to explore for the first time the high x<sub>B</sub> region

#### 50% of experiment planned & completed in 2014-2016



hmm2corr Entries 55979 900 F 1.286 Mean 0.5783 RMS 800  $ep \rightarrow e\pi^0 X$  missing 700 mass squared 600 500 400 ∬<sub>∿</sub><sub>III∿</sup>III</sub> 300 200 F 100 1.5 GeV

All calibrations (beamline+HRS+calo) completed DVCS &  $\pi^0$  cross section analyses well underway

#### Analysis path:

- **Jun'18:** Preliminary results on  $\pi^0$  at  $x_B = 0.36$
- Oct'18: Preliminary results on DVCS
- Nov'18: Short paper submitted to PRL on  $\pi^0$
- Jan'19: Letter to PRL on DVCS
- Jul'19: Long paper to PRC (DVCS & pi0)

Jefferson Lab

Slide from C. Camacho

JSA

DENERGY Office of Science

# **Generalized Parton Distributions (GPDs):**



Form Factors (FFs)
 Spatial distribution
 Momentum distribution

- Generalized Parton distribution (GPDs)
- ★ Spatial distribution
- Longitudinal momentum distribution

Patron Distribution Functions (PDFs)

- Longitudinal momentum distribution
- $\star$  Spatial distribution

**GPDs allows to access the 3D parton structure of Nucleon** 

## **Factorization**

In Bjorken limit: 
$$Q^2 = -q^2 \rightarrow \infty$$

At fixed 
$$x_B = Q^2 / 2Mv$$

 $\frac{k}{q} \frac{k'}{\gamma^*} \frac{q'}{x-\xi}$   $\frac{p}{H_q(x,\xi,t)} \frac{H_q(x,\xi,t)}{E_q(x,\xi,t)} \frac{p'}{H_q(x,\xi,t)}$ 

# $t = (p'-p)^2$

Handbag diagram for DVCS

Minimal Q<sup>2</sup> at which factorization holds must be tested

Hard/perturbative Part:

Calculable

**Soft/non-perturbative Part:** Nucleon structure is Parametrized by GPDs

4

**Definition of variables:** 

**x**: longitudinal momentum fraction carried by struck quark.

**ξ**: longtitudinal momentum transfer  $\approx x_{B}$  / (2-  $x_{B}$ ).

**t**: four momentum transfer related to  $b_{\perp}$  via Fourier transform.

**DVCS x-section** --> GPDs --> Description of internal structure

## **DVCS and Bethe-Heitler (BH):**



$$\frac{d^5\sigma}{dQ^2 dt dx_B d\phi_e d\phi} \propto |\mathcal{T}_{DVCS} + \mathcal{T}_{BH}|^2$$
$$= |\mathcal{T}_{DVCS}|^2 + |\mathcal{T}_{BH}|^2 + \mathcal{I}$$

#### At leading twist



Interference with BH gives access to Re and Im part of DVCS amplitude.

# **DVCS in Hall A**

- 3 Generation of experiments so far
  - 1<sup>st</sup> Gen (2004)
  - Q<sup>2</sup> dependence study
- 2<sup>nd</sup> Generation (2010)
  - Q<sup>2</sup> + beam energy dependence

#### 3<sup>rd</sup> Generation (2014-2016)

- High impact experiment for nucleon 3D imaging program
- High precision scaling tests of the DVCS cross section at constant x<sub>B</sub>
- CEBAF12 will allow to explore for the first time the high x<sub>B</sub> region



#### Pushing to high $Q^2$ and $x_{_B}$

| Period       | Kinematic | Q <sup>2</sup> | X <sub>B</sub> | % target<br>Charge |
|--------------|-----------|----------------|----------------|--------------------|
| F '14        | 361       | 3.20           | 0.36           | 100.0              |
| F '16        | 362       | 3.60           | 0.36           | 100.0              |
| F '16        | 363       | 4.47           | 0.36           | 100.0              |
| Sp '16       | 481       | 2.7            | 0.48           | 100.0              |
| Sp '16       | 482       | 4.37           | 0.48           | 56.6               |
| Sp '16       | 483       | 5.33           | 0.48           | 76.4               |
| Sp '16       | 484       | 6.90           | 0.48           | 53.0               |
| F '16        | 601       | 5.54           | 0.60           | 100.0              |
| <b>F '16</b> | 602       | <u>6.10</u>    | 0.60           | 0.0                |
| F '16        | 603       | 8.40           | 0.60           | 100.0              |
| F '16        | 604       | 9.00           | 0.60           | 0.0                |

 $\label{eq:F-Fall} F- \mbox{ Fall } \mbox{ Sp- Spring } \mbox{ } Q^2 \mbox{ - in } \mbox{ GeV}^2$ 

~50% of allocated 100 PAC days from Fall 2014, Spring 2016, and Fall 2016



# Analysis status



- Beam energy measurement
- Polarization measurement
- Raster calibration
- BCM/BPM calibration



#### High Resolution Spectrometer

- Trigger Efficiency
- Particle Identification
- Optics calibration
- Tracking Efficiency
- Acceptance Studies
- ✓ DIS x-section

#### Calorimeter

- Coincidence time correction
- Waveform analysis
- Elastic and  $\pi^0$  calibration
- $\pi^0$  electroproduction (in progress)

DVCS Simulation

#### Q1 Status Fall 2014 : Old Q1 at full field Spring 2016: Maximum current was limited to 2.8 GeV setting (detuned) Fall 2016: Q1 saturated

# **Geant4 Simulation** (W.P. Henry)

- Method developed to simulate one production run (~400,00 DVCS events) in about 2 hours using Auger
- R-Function, calorimeter energy smearing, and photon reconstruction has been implemented
- Simulation is moving towards the version control and will be on Git





# **Tracking efficiency (H. Rashad)**



 Analyzer 1.5 has issues with reconstructing tracks for events with more than one cluster in any given VDC wire planes

 3 cases: 0M4S, 1M3S, and 2M2S events yields single track reconstruction.
 Keep 0M4S and 1M3S exclude 2M2S

 ~5-10% events are reconstructed with more than one track and are excluded

#### Multi-cluster and Multi-track correction factors are mutually exclusive



Major correction

# **Deadtime (S. Ali/ M. Dlamini)**

Dead time = 1 -live time

 $Live time = \frac{live scaler rate}{raw scaler rate}$ 

- Scalers to compute deadtime
- Dedicated runs to check the dead time correction
- Normalized DIS rates corrected by deadtime OK
- Normalized DVCS rates corrected by deadtime shows beam current dependence
  - Accidental coincidences (calorimeter-HRS)
  - Study in progress..

| Ι (μΑ) | Livetime<br>(LT) | DIS rate /3.45 (Hz/µA) | DVCS rate /5.62 (Hz/µA) |
|--------|------------------|------------------------|-------------------------|
| 10.61  | 0.985            | 0.992                  | 0.93                    |
| 15.32  | 0.976            | 1.0                    | 1.0                     |
| 20.53  | 0.965            | 0.999                  | 1.06                    |

DIS : S2 + Cer DVCS : S2 + Cer (coincidence with Calo)

# **Optics re-calibration Spring 2016 (F. Georges)**

#### 3 out of 4 kinematics were detuned (Q1)

LHRS optics calibration 16<sup>o</sup> — poor illumination — Poor reconstruction of target vertex



Multiplication of the vertex by a scaling factor to reach ~15cm target length

#### **Z vertex reconstruction for Fall 2016 kinematics**



#### Work in progress for optimization of optics matrix for Fall 2016

### **<u>Calorimeter energy calibration</u> (M. Dlamini)** Elastic calibration (Invasive)

- Compute scattered electron energy, **E**<sub>e'</sub> (from detected p)
- Adjust calorimeter blocks' gain so that measured e' energy =  $E_{e'}$





- Calorimeter blocks gain is lost due to radiation damage
- Correct calorimeter blocks gain with  $\pi^0$  calibration

## **Calorimeter energy calibration** (F. Georges)

 $\pi^0$  calibration



#### Spectrometer Acceptance Study (G. Hamad and A. Johnson) R-Function



- R-Function: computes Min. distance (R-value) of an event from edge of spectrometer
- More efficient cut than multiple 1D cut due to correlations
- Single R-cut value defines spectrometer acceptance
- Data and MC event distribution must agree for R-value > R-cut
- MC uses the R-cut to compute the spectrometer acceptance

## **DIS x-section (B. Karki/ G. Hamad)**

 Reproducing DIS cross section ensure our understanding of luminosity and e detection by HRS

$$\frac{d^2\sigma}{dxdQ^2} = \frac{N_c}{\mathcal{L}} \times \left(\frac{1}{\alpha \times \eta_{virt} \times \eta_{exp} \times \Gamma_{DIS}}\right)$$

DIS  

$$k$$
 $k'$ 
 $p^{*}$ 
 $p$ 
 $x$ 

Integrated luminosity

- α term to modify phase space due to radiative effects
- $\eta_{\mbox{\tiny virt}}$  term correcting virtual radiative effects
- $\eta_{_{exp}}$  term correcting detectors inefficiencies
- $\Gamma_{_{\rm DIS}}\,$  phase space covered by LHRS
- N<sub>c</sub> no. of event passing analysis cut (PID, vertex, track...)



#### **DIS x-section**

- E12-06-114 DIS cross section compared to world data from M. E. Christy et al. Phys. Rev. C81, 055213 (2010)
- Upto 5% uncertainty in reference cross-section



| Period      | Kinematic | Relative<br>difference(%) |
|-------------|-----------|---------------------------|
| Fall 2014   | 361       | -2                        |
| Fall 2016   | 362       | -8                        |
| Fall 2016   | 363*      | -15                       |
| Spring 2016 | 481**     | -2                        |
| Spring 2016 | 482       | -7                        |
| Spring 2016 | 483       | -5                        |
| Spring 2016 | 484       | -6                        |
| Fall 2016   | 601**     | -5                        |
| Fall 2016   | 603       | +3                        |

\* Q1 saturation effect\*\* atypical run to run stability

# **π<sup>o</sup> electroproduction (M. Dlamini)**

- Experimental setup allows exclusive  $\pi^0$  events
- Provides interesting and complementary insight into GPDs of nucleon





**Other cuts:** 

- → Electron PID (same as DIS)
- $\rightarrow$  Cut on photon energy, E<sub>v</sub>>1.2 GeV
- → Accidental subtraction

# **π<sup>0</sup> electroproduction** (M. Dlamini) simulation–data

 $\pi^0$  Mass - kin36\_1 5000 f Exp. Data Simulation - smeared 4000 3000 2000 1000 0<u>64</u> 0.08 .2 0.22 Μ<sup>π⁰</sup><sub>invariant</sub> [GeV] 0.1 0.12 0.14 0.16 0.18 0.2  $\pi^0 M_x^2$  - kin36\_1 1200 Exp. Data Simulation - smeared 1000 800 600 400 200 0 0.5 1.5 2.5 2 3 M<sub>X</sub><sup>2</sup> [GeV<sup>2</sup>]

Data in good agreement with simulation

#### **π<sup>0</sup> electroproduction (**M. Dlamini) (π<sup>0</sup> data sample)



Working on total and helicity-dependent cross sections for all  $x_{B}$ =0.36 points.

## **Summary and outlook**

## E12-06-114 DVCS/Hall A Experiment at 11 GeV

#### 100 PAC days approved:

- High impact experiment for nucleon
   3D imaging program
- High precision scaling tests of the DVCS cross section at constant x<sub>B</sub>
- CEBAF12 will allow to explore for the first time the high x<sub>B</sub> region

#### 50% of experiment planned & completed in 2014-2016





All calibrations (beamline+HRS+calo) completed DVCS &  $\pi^0$  cross section analyses well underway

#### Analysis path:

- **Jun'18:** Preliminary results on  $\pi^0$  at  $x_B = 0.36$
- Oct'18: Preliminary results on DVCS
- Nov'18: Short paper submitted to PRL on  $\pi^0$
- Jan'19: Letter to PRL on DVCS
- Jul'19: Long paper to PRC (DVCS & pi0)

#### Jefferson Lab

## **Acknowledgments:**

Hall A DVCS Collaboration Hall A Collaboration Hall A technical staff Accelerator staff

# THANK YOU !

## **GPDs: Quarks helicity and nucleon spin orientation:**



M. Guidal et al 2013 Rep. Prog. Phys. **76** 066202



# **Definition of R-value**



# **Trigger efficiency studies (H. Rashad)**



Trigger Efficiency with Time / Kinematic change



- DVCS production is triggered by S2M && Cherenkov in coincidence with DVCS calorimeter
- S0, S2M, and Cherenkov all have > 99% efficiency