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Physics Beyond the Standard Model at the EIC

* The EIC is primarily a QCD machine. But it can also provide for a vibrant program to study
physics beyond the Standard Model (BSM), complementing efforts at other colliders.

* The EIC can play an important role in searching/constraining various new physics scenarios that
include:

* Leptoquarks

* R-parity violating Supersymmetry
* Right-handed W-bosons

* Excited leptons (compositeness)

* Dark Photons
e Charged Lepton Flavor Violation (CLFV)

* New physics can be constrained through:

* Precision measurements of the electroweak parameters [ S
103 =~ Current polarized DIS data:

o0 CERN ADESY ¢ JLab O0SLAC

* Such a program physics is facilitated by: " Gurrent polarized BNL-RHIC pp data:
* high luminosity ® PHENDGE A STAR T
* wide kinematic range L
* range of nuclear targets S
* polarized beams C

% The addition of a polarized positron beam will

enhance the BSM program at the EIC.
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Precision Measurements of the Weak Neutral Current Couplings
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Contact Interactions

M A4 |
kCn = 28:;8{! C, = 28;-"8:\/

* For Q? << (Mgz)? limit, electron-quark scattering via the weak neutral current is mediated by
contact interactions:

Gr _ _ _— . _
L= N Z [Clq Y ystqyug + Cog O €qyysq + Cag Oy ystqyuysq
q

* Tree-level Standard Model values:

1 4 . 1 . 1
Cru = ) T gsmz(@W) , Coy = ~5 —|—251n2(6W) ., Cs, = 5
Cla = 5 gSinz(QW) ; Cog = 5 —2sin’*(6w), Cig= 5
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New Physics Effects

Es Z' Based Extensions RPV SUSY Extensions Leptoquarks

/ﬂ‘/NI\ q ..............................
. A '
181 C::'Ezg{;g:\/ ¢ vore ! ’ ’

\Cu =2g,8y

L= \/_ Z lclq by ystayug + Cog EY'€qyysq + Caq Y ystayuysq

* New physics contact interactions arise as a shift in the WNC couplings compared to the SM
prediction:

Ciq = Clq(SM) + ACiq

— ™~

SM contribution New Physics
contribution
* Deviations from the SM prediction of the WNC couplings will lead to corresponding
deviations in the weak mixing angle.
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New Physics Effects

/ A v \ Es Z' Based Extensions RPV SUSY Extensions Leptoquarks

S > e u u e u e
+ 7’ d LQ
/S/V\‘l\ q > .......... < > .......... < ..........
A N
‘. _— ' i C’,’ - 2g(" I e u e u e u

C,‘q = Clq(SM) + AC,-q

o Effective Lagrangian for New Physics Contributions can be parameterized as:

2
g ta 5 o = 4 7 p G (4 Foy pd 7 CrYulrE
5L = e Z {nLqL CLyulraryuqr + s CLyulLGrYudr + Mgy CRYUCRALY uqL + Mok &eyu&eqwuq;e}
lq

* Shift in the WNC couplings due to new physics contact interactions:

¢ ¢ ¢ ¢
> . {q q . lg (g
g Mpp T Mg — Mrr — Mrr

ACyy = A2 226, ’ Each of the WNC couplings probe a unique
) la _ fa . fa _ (g combination of chiral structures thereby
AC, = 82 Mo ~ e ™ MRL nRR’ complementing constraints arising from other low
A 2 V2Gr energy experiments or colliders.
ACs = & s * i+ My = Mo
S 2V2G
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Contact Interactions e

Gr _ _ _
—_ yei - M p= u —
L= N; Z lclq Yy ystqyuq + Cog CYLqyuysq + Cag Y ystqyuysq
q
* Precision measurements of the electroweak couplings can also be translated into
constraints in specific models.

* For example, for the different LQ states only particular chiral structures arise which leads
to a corresponding pattern of shifts in the WNC couplings:

ZEUS (prel.) 1994-2000 e*p

Coupling structure 95% CL [TeV]
Model agy  aip ayp  a%r  afy  afk  aRp ARy Mrg/ALq
gz i L 822 lq tq tq lq
o ta . 2 B o
SR 1 i 0.31 AC,, = 8 My T Mg — Mrr — Trr
sk, ~1 0.91 7 A2 ’
s = : A
IS _1 0.50 2 4 _ 4 9 _ "4
o o L1 055 AC, = 8 L 7R t g ~ TIgR
! 2 2q - A2 )
VE 1 0.69 2V2G
VE —1 0.58
/o ¢ ¢ ¢ ¢
a . lq q q . {q
i » -1 o ACs, = 8 “MNpp Y Mg T e ~ Mrr
1/2 . q — .
Vi, +1 +1 1.15 A? 2V2Gr
VL. +1 1.6
V; 1 9 .42
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Weak Mixing Angle Measurements at the EIC
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[Y.X.Zhao, A.Despande, |.Huang, K.S. Kumar, S.Riordan]

* Deviations from SM predictions for the WNC couplings will lead to corresponding
deviations in the SM behavior of the weak mixing angle.

* Wide kinematic range and high luminosity of the EIC can provide many more
measurements of the weak mixing angle along this curve.
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Precision Measurements of the Weak Neutral Current Couplings

* New physics reach from various precision experiments and the combination of couplings
they constrain:

Experiment A Coupling

Cesium APV | 9.9 TeV | Ci, + Cyyg

E-158 8.5 TeV | Cge
Qweak 11 TeV | 2C1, + Ciyg4
SoLID 8.9 TeV | 205, — Cyy

MOLLER 19 TeV | Cee

P2 16 TeV | 2C, + Ciq

[K.kumar, et.al. Ann.Rev.Nucl.Part.Sci. 63 (2013) 237-267]

L= Z [Clq Y ystqyug + Cog OV Cqyysq + Cag 0¥ ystqy,ysq

Gr
V245
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Asymmetries as a Probe of Electroweak Couplings

]
Lot Z Crgl" 5G4 + Cogly*€q,754 + Cagly* 5@, 754
’q \ / |
Can be further constrained by Can be further constrained by
Parity-Violating eD DIS lepton charge conjugate violating

(positron beams) asymmetry

* Measurement of these asymmetries requires:

-p, D targets
-polarized electron and positron beams
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Parity-Violating e-D Asymmetry

/
e
* Parity-violating e-D asymmetry is a powerful probe of the e /
WNC couplings: >
v, Z
or—0r |Az|  GrQ? _
APV — ‘ | ~ 10 4Q2 D X

* Due to the isoscalar nature of the Deuteron target, the dependence of the asymmetry on
the structure functions largely cancels (Cahn-Gilman formula).

1—(1—-y)

ARL _
oo 1+ (1—y)?

2 2
S0 Basy s

9
: Clean probe of
All hadronic effects cancel! > W

* e-D asymmetry allows a precision measurement of the weak mixing angle.
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Corrections to Cahn-Gilman

® Hadronic effects appear as corrections to the Cahn-Gilman formula:

2
gl,j = —§ (203 — de) [1 + Rj (HGW) + Rj (sea) + RJ(CSV) + Rj (TMC) + Rj (HT)]

T I
Charge symmetry Higher
violation twist

New physics

Sea quarks Target mass

* Hadronic effects must be well understood before any claim for evidence of new physics can
be made.

[J.Bjorken, T.Hobbs, W. Melnitchouk; S.Mantry, M.Ramsey-Musolf, G.Sacco;
A.V.Belitsky, A.Mashanov, A. Schafer; C.Seng,M.Ramsey-Musolf, ....]
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e-D PVDIS at EIC

Gr { 1—(1—y)?
a(x) - b(x } §
2\ 21 (%) 1+ (1—y)2 (%) |
_ 1 . Né
(Cru— chd) — COI’I‘CCthHS} .
' 1 qlx)—qx) .
_(Czu — ECzd) 4 +a(0) + correcuons} |

* EIC can make improve on the precision of the WNC couplings.

* High luminosity:

-allows high precision

* Measurements over wide range of y:
-allows clean separation of a(x) and b(x) terms
-clean separation of the combinations of WNC couplings:

201y — C14, 203, — Caq

* Region of high Q/2:

-larger asymmetry
-suppress higher twist effects

Current polarized DIS data:
0CERN ADESY oJLab oSLAC

[ Current polarized BNL-RHIC pp data:
I ®PHENIX7® ASTAR 1-jet

10" 10°

e Region of high Q*2 and restrict range of Bjorken-x 0.2 < x < 0.5

-suppress sea quark effects
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Status of WNC Couplings

2C,- Cyq
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* The combination 2(C,, — C,, is severely constrained by Qweak and Atomic Parity violation.

e The combination 2C2u —C24 is known to within ~50% from the JLAB 6 GeV experiment:

2C5, —Chy = —0.145 £ 0.068

* The JLAB 12 GeV (SoLID) program is expected to measure 2C —Caa to within 10%.

* The EIC can further improve on the JLAB 12 GeV expected result by a factor of 2 or 3 at 100fb”(-1).
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Leptophobic Z’

* Leptophobic Z’s are an interesting BSM scenario for a high luminosity EIC to probe.

* Leptophobic Z’s couple very weakly to leptons:

-difficult to constrain at colliders due to large QCD backgrounds

* Leptophobic Z’s only affect the b(x) term or the Cy4 coefficients in Apv.

Leptophobic Z’

——) contributes only to

the Cyq couplings!

q Z’ couples to quarks;

[M.Alonso-Gonzalez, M.Ramsey-Musolf; l
M.Buckley,M.Ramsey-Musolf]
GF [ —(1—y)*
Apy = Q° {a X) - b(x }
PV QZ\/inoc ()'1+(1—y)2()
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Mass Reach of 6 and 12 GeV |LAB

* The EIC can further improve on the
JLAB 12 GeV expected result.

[Zczu - CZd ]

[201 u— C1d]

FIG. 4. (Color online) Mass-exclusion plot of the mass
scales of new contact interactions assuming a physics cou-
pling strength of g = 4m. The pink (inner) region illustrates
the reach by combining the 6 GeV PVDIS experiment at JLab
and other precision experiments [7], the orange (outer) region
shows the new reach assuming final precision from Qweak [11]

and SoLLID PVDIS.
[Y.X.Zhao (SoLID Collaboration)]
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The C3q Couplings
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[X.Zheng Proc. JPOS 2009]

0.5 1
C3u'C3d

* The combination of C3q couplings are poorly known; have only been measured using
polarized muon and anti-muon beams incident on a Carbon target:

Beam Process | Q2 [GeV?] Combination Result/Status SM
SLAC | e -D DIS 1.39 2C, — Ciq —0.90£0.17 | —0.7185
SLAC | e -D DIS 1.39 2C, — Cy +0.62 £0.81 | —0.0983
CERN ,ui—C DIS 34 0.66(2C5, — Coq) + 2C5, — Csq +1.80 £0.83 | +1.4351
CERN | p*-C DIS 66 0.81(2C5, — Caq) + 205, — Csy +1.53+0.45 | +1.4204
Mainz | e -Be QE 0.20 2.68C1, — 0.64C14 + 2.16C5, — 2.00Cy; | —0.94 +0.21 | —0.8544
Bates | e™-C elastic 0.0225 Ciu + Cha 0.138 £0.034 | +0.1528
Bates e -D QE 0.1 Coy — Coyq 0.0154+0.042 | —0.0624
JLAB | e -p elastic 0.03 20, + Chyg approved +0.0357
SLAC e~ -D DIS 20 2C1, — Cia to be proposed | —0.7185
SLAC e~ -D DIS 20 205, — Cyy to be proposed | —0.0983
SLAC | e*-D DIS 20 2C5, — Csq to be proposed | +1.5000
— 133Cs APV 0 —376C, — 422C4 —72.694+0.48 | —73.16
— 20571 APV 0 —572C", — 658C"4 —116.6 £3.7 | —116.8

081(2C2u —Cry)+2C5,—Csy = 1.53+0.45

Using 12 GeV |LAB
result for the C2q
couplings

2C5, — C35 =1.65+0453

[J. Erler, M. Ramsey-Musolf, Prog. Part. Nucl. Phys. 54, 351, (2005)]

* The combination of C3q couplings only known to within 30%.
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[S.M.Berman, J.R. Primack (1974), X.Zheng Proc. |JPOS 2009]

* There is a unique opportunity to use a polarized positron beam at the 12 GeV JLAB program
to extract the C3q coupling combination to within ~3%.

* What about at the EIC?
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C-Violating Asymmetry using Polarized Electron

and Positron Beams
[S.M.Berman, J.R. Primack (1974), X.Zheng Proc. |POS 2009]

* C-violating asymmetry:
do (I, +N — ] +X) —do (I +N — I} +X)

Al —lg
do(I"+N—I"+X)+do(I"+N— It +X)

* Proton target:

ALk ( 3GrQ* ) ¥(2—y) 2Cuy — Cogdy + 2C3,uy — Cs4dy
P 2\ 2ma 2 4u—+d

* |soscalar deuteron target:

ALk _ ( 3GrQ* ) Y(2—y) (2Cu —Cog+2C3, —C3q)Ry Ry = (uy +dv)/(u+d)
d 2V 2o 2 5

e Corrections will arise from other hadronic effects.
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Contact Interactions arising from
Leptoquarks
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Leptoquarks

ei
q
LQ
eivye
—( L 4d

* Leptoquarks (LQs) are color triplet bosons that couple leptons to quarks

* LQs arise in many BSM models:

e Pati-Salam Model
e GUTs: SU(5), SO(10),...
e Extended Technicolor

* LQs have a rich phenomenology and come in 14 types, classified according to:

* Fermion number F=3B+L [ |F|=0,2 ]

* Spin scalar (S) or vector (V)]
 Chirality of coupling to leptons [L or R]

e Gauge group quantum numbers [SU(2) L X U(1)_Y]

Tuesday, December 19, 17



+ 91l i erV,

Leptoquarks

* Renormalizable and gauge invariant couplings of LQs to quarks and leptons:

Lipi=2 = g0T5elLSy + gouberSy +

* Classification of the 14 types of LQs:

Lr—o = hi)purlLSi, +h1/2§L€€R‘91/2+h1/2dR€LS1/2

+ GtV + hec.

ho QL’V/LKLVOLM
+ hl dR%eRV + Al uR%eRV + h* qL%TKLVl by he.

[Buchmuller, Ruckl,Wyler (BRW)]

g?ﬁ;e}%g}z + Q{JQLE%%LS?{J + gf/zai%VugLv{;g

. . Branching . . Branching
Type Q ep dominant process | Coupling : Type Q ep dominant process | Coupling _
ratio Oy ratio Gy
£ AL 1/2 ¢td AL 1/2
55 ~1/3 | efur, — Vs +2/3 | ehdp, —

0 / LUL { vyd ; 1/2 0 / Bk g AL 1/2
B —1/3 | egur —  Lu AR 1 Yo" +2/3 | efdp —  £7d AR 1
SE ~4/3 | egdp —  £d AR 1 17 +5/3 | efur —  £Tu AR 1

7 — AL 1/2 ¢td —AL 1/2

—1/3 | e;u +2/3 | efhd —
5 / e _){ ved —AL 1/2 Vi / R=L { vou AL 1/2
—4/3 GEdL — £ a —\/§/\L 1 +5/3 GE’U,L — tu \/ﬁ)\L 1
V{;Q —4/3 | efdp — ¢—d AL 1 8{72 +5/3 | efur — rtu AL 1
i —1/3 | egur,  — ~u AR 1 oR +2/3 | efd, — /+d —AR 1

e —4/3 | egd, —  £°d AR 1 12 +5/3 | efur —  ftu AR 1
v, ~1/3 | efurp — L u AL 1 515 +2/3 | efdp —  £*d AL 1
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Leptoquarks

[Buchmuller, Ruckl,Wyler (BRW)]

. . Branching . . Branching
Type Q ep dominant process | Coupling ; Type F Q ep dominant process | Coupling .
ratio [y ratio (¢

‘" u A 1/2 £+d A 1/2

54 —-1/3 | efur, — - / Vi 0| +2/3 | epdr, — _ L /
ng —/\L 1/2 Vel /\L 1/2

SOR —1/3 ERUR — " u AR 1 VOR 0 +2/3 BEdR — td AR i |
SE —4/3 | egdp — £ d AR 1 sl 0 |+5/3 |efur —  £tu AR 1
" u —AL 172 td — AL 1/2

—1/3 | e;, +2/3 | efdp —

Sk /3| eLur = { vwd | —AL 1/2 Vi o | T2/3 | erir { Dou i 1/2
—4/3 | ejd, — —d | =27 1 +5/3 | efur,  — ttu V2L i

ijg —4/3 | e;dp — ¢—d AL 1 8{72 0| +5/3 | efur — tu AL 1
ik —1/3 | egur  — ~u AR 1 R " +2/3 | efdr — /+d — AR 1
Y —4/3 | egdy, —  £7d AR 1 12 +5/3 | efup, —  ftu AR 1
VII/‘Q —1/3 | egur — i~ u AL 1 5‘{72 0| +2/3 | esdrn — itd AL |

* In order to maximally exploit the phenomenology of LQs and be able to

distinguish between different types of LQ states, we need:

-electron and positron beams
-proton and deuteron targets
-polarized beams

-wide kinematic range

separate |F

=0 vs |F|=2 ]

'separate “eu’’ vs “ed” LQs ]
separate L vs R]
'separate scalar vs vector LQs]
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Leptoquarks: Electron vs Positron Beams

"N\ e /T "N\ e /T 6\/q
---- ' LQ Tt 1O

s-channel u-channel

s-channel u-channel

F|=2 cl

* With electron beams, LQs couple to:

IF|=2: F=0:

-quarks in s-channel
-antiquarks in u-channel

* With positron beams, LQs couple to:

|F|= 2:
-antiquarks in s-channel
-quarks in u-channel

-antiquarks in s-channel
-quarks in the u-channel

F=0:

-quarks in s-channel
-antiquarks in the u-channel
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Leptoquarks: Electron vs Positron Beams

e 14
LQ
§ — Aeg Atg,
d; q;

Contact Interaction

e For Mg > V/s ,the cross section for contact-interaction mediated processes are:
2

s | N 17 ( 3
or_g = ) R / drdy a7, (z,xs) f (y) + / drdy xqp (2, —u) g (y)
" 321 | Mig :
’ - oy
s | X Na. | B
O|p|—a = Z o j\quQqJ 3 /dacdy rq, (x,x8) [ (y) + /dxdy rqg (T, —u) g (y)}
[ 1/2  (scalar) [ (1—1y)*/2 (scalar) y-dependence can
f(y) =4 , . g(y) =4 — distinguish scalar and vector
| 2(1 =) (vector) \ 2 (vector) leptoquarks
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Leptoquarks: Polarized Lepton and Nuclear (p,D) Beams

* Different nuclear targets (p vs D) can help untangle different leptoquark states (“eu” vs “ed” LQs).

* The chiral structure can be further unraveled through asymmetries involving both polarized lepton

and nuclear beams.

. _ Branching _ . Branching
Type | J | F Q ep dominant process | Coupling : Type | J | F Q ep dominant process | Coupling )
ratio 3y ratio 3y
u AL 1/2 +d AL 1/2
S o] 2]|-1/3| ezu VE | 1|0 | +2/3 | efd
0 / LUL _’{ 30 “AL 1/2 0 / RAL Dpu AL 1/2
& | a —1/3 | egur — ~u AR 1 Vit | 1|0 | +2/3 | efdp — ¢td AR 1
SE |0 —4/3 | egdrp —  £d AR 1 VE |1|0]|+5/3|efur —  £tu AR 1
B {~u —AL 1/2 £+d —AL 1/2
—1/3 — +2/3 | ehd —
st |o|a| 3| LU { vd | —Ap 1/2 vE | 1|0 | TH3 | el { D s 1/2
—4/3 | e d;, — —d | =22 1 +5/3 | efur,  — ttu V2L 1
Vlf72 12| -4/3 | edr — ¢—d AL 1 5{72 0|0 |+5/3|epur — ttu AL 1
v |1 |5 —1/3 | equr, — ~u AR 1 B |l +2/3 | efdp, — td —AR 1
e ~4/3 | egdr. —  £7d AR 1 L +5/3 | efur —  tu AR 1
Vi, |1 2| -1/3 |egur —  L7u AL 1 Sty |0 0| +2/3 | efdp —  £Hd AL 1

We feel that it was important to get an answer to the following question :

(lepton and proton) polarizations mandatory to completely disentangle the various LQ
models present in the BRW lagrangians 7 According to our analysis the answer is yes.

-P.Taxil, E. Tugcu, ].M.Virey (Eur.Phys.J. C14 (2000) 165-168)

are both
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Leptoquarks: Polarized Lepton and Nuclear (p,D) Beams

* Various asymmetries involving both polarized leptons and e,D beams have been proposed to

identify the nature of LQ states.

[P. Taxil, E. Tugcu, |.M.Virey]

—— ++
APV(et) _ 04 — Oy
LL - —— ++
oy + O
——_ ¥
APC O_ O_
1 T —— —+
o_ + o_
++ _ e
APC B O _ O _
2 — —
ot + of
-+ -
AP _ O+ 4
30T oft Lot
+ +
B — oo —ott+oit -0 4ot -0t 4ot -0l
U oot ot T o ot o ot ol
B o= —ott+o,  —oit+otT —oTt 4o T -0l
V p—

o 4ot +o  +olt ot v ot + o

(SlL’S3)

S

SCALARS
1) (RaRy)
S, R, R

2R

2R

LEPTOQUARKS

( U L’U3 )
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R-Parity Violating (RPV) SUSY

squark
* R-parity: e production
---- %
_ (_1\3B+L+25 N
R, = (—1) q

* With R-parity violation (RPV), the LSP is no longer stable, and many of the sparticle mass
bounds from the LHC can be relaxed.

* SUSY RPV couplings (MSSM):

1

WarL=1 = 5)\ijkLiLj€k HNIRLQ dy |+ ' L H,
1 e — —
WAle — 5)\”7"7kuidjdk \
Single squark production at
HERA, EIC
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R-Parity Violating (RPV) SUSY

* For RPV production and RPV decay, the contact interaction generated is the same as
through Leptoquarks:

€

squark
production Rpviolating
decay €1TV LQ
————q q———— ——-))‘eqi )‘Eq
q
qi

* The bounds on LQs can be applied to squarks if they proceed via RPV decay.

/¢
J
d;
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Lepton Flavor Violation
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Lepton Flavor Violation

* Discovery of neutrino oscillations indicate that neutrinos have mass!

* Neutrino oscillations imply Lepton Flavor Violation (LFV).

* LFV in the neutrinos also implies Charged Lepton Flavor Violation (CLFV):

BR(p — ey) < 10724

However, SM rate for CLFV is tiny
due to small neutrino masses

* No hope of detecting such small
rates for CLFV at any present or
future planned experiments!
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Lepton Flavor Violation in BSM

* However, many BSM scenarios predict enhanced CLFV rates:

e SUSY (RPV) v
ﬁR/ ,x§/€:R
e SU(5), SO(10) GUTS ’

e Left-Right symmetric models

e Randall-Sundrum Models

e LeptoQuarks

/
/\211

1 \/ d e~ T e q
LQ) e

| Ala —— = - A?’B

ki

! qy qa q/\
A
d /)\‘\\ ] 3B

!/
111 € s-channel u-channel

t~
R

* Leptoquarks can generate CLFV at tree level! Likely to produce enhanced CLFV rates
compared to loop level processes in other models.
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Charged Lepton Flavor Violation Limits

® Present and future limits:

Process Experiment Limit (90% C.L.) Year

SINDRUMII | Tuonp/Teape < 7.0 X 1072 | 2006
BELLE Br < 3.6 x 1078 2008

* Note that CLFV(1,2) is severely constrained. Limits on CLFV(1,3) are
weaker by several orders of magnitude.

* Limits on CLFV(1,2) are expected to improve even further in future
experiments.
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CLFV in DIS

® The EIC can search for CLFV(1,3) in the DIS process:

ep — 17X

* Such a process could be mediated, for example, by leptoquarks:

W
e T e
) LO ) : (o
(O == = = - 3p (
1 : LQ)
aﬂﬁ a-ﬁ qﬁ I T
/llgﬁ\

s-channel u-channel
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CLFV mediated by Leptoquarks

* Detailed theoretical study of ep — 7 X has been performed in the

Leptoquark framework  [M.Gonderinger, M.Ramsey-Musolf]

Locatar = AOqLelLSL + ARugen SR + ARdReRSR + 217q, “ecl, St

+A /ZuRlLS 1/2 + Al/zﬁLeeRS'l/z + }. /ZdeLS 1/2 + h.c.

LQ o
_ o = — : LQ
e G
s-channel u-channel
F=0
F=3B+1L

4o

s-channel

B =2

u-channel
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CLFV mediated by Leptoquarks

e Cross-section for ep —> T X takes the form:

2

_)\ ) -
Op_g = E 3; ]1\42 38 {/ drdy xq,, (x,xs) f (y) + /dxdy xqs (x,—u)g (y)}
- Le 1/2 (scalar) (1—y)°/2 (scalar)

fly) = , , 9(y) =
2(1—y)" (vector) 2 (vector)

Ala
e~ T E—\n/ * HERA set limits on the ratios )‘10‘5‘35

_ 1 o My
N\ e/ - - all LQs e
lay = = = = 3B e, T
! - all combinations of quark
— — I .
4o s 45 T generations (no top quarks)
/1133\ - degenerate masses assumed for LQ
s-channel u-channel multiplets
F =0 [S. Chekanov et.al (ZEUS),A.Atkas et.al (H1)]
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* Comparison of HERA
limits with limits from other
rare CLFV processes:
[S.Davidson, D.C. Bailey, B.A.Campbell]

* HERA limits that are
stronger are highlighted in
yellow.

* HERA limits are generally
better for couplings with
second and third
generations.

oB| sty | sz, |8,
e i e (1 4+ d) e d
et u e’ (u+d) etd
T — TE T — TE T — We
11 0.4 (0.2 0.4
1.8 1.5 2.7
T — Ke K — muo
12 6.3 5.8 x 101
1.9] 1.6 2.9
B —TE B —-rT1é
13 = 0.3 0.3
3.2 3.3
r— Ke K — mvo
21 6.3 08 x 1014
6ol | 1] | so
— 3¢ r — 3¢ T — Jde
22 5 8 17
w0 | 56 | jes)
B—reX | B—reX |
23 e 14 14
s1] | rs
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EIC Sensitivity

* How much can the EIC improve upon HERA limits?

* Study was done for EIC at a center of mass energy of 90 GeV
[M.Gonderinger, M.Ramsey-Musolf]

* At 10 fb"! of luminosity, a cross-section of 0.1 fb yields order one events.

* This cross-section of 0.1 fb corresponds to a typical size of )‘1“?35 that is
about a factor of 2 to almost 2 orders of magnitude smaller, . Mio
compared to the HERA limits.
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o (fh)

EIC Sensitivity

~R
10F S,
0.1k —
0.001F
107°F
U.l01 0.;]2 0.:35 U.;I.O 0..20 0.250 1.210
* Present limits involving first
generation quarks are harder
to improve upon.
* Limits can be improved upon &
for couplings involving higher )
generation quarks.

* Larger center of mass
energy will increase the cross-
section, giving better limits.

— (11)
(12)
(13) 2
e | (Madsp)/(Mig)
_ 2
—_— (22) [()\104)\35)/(MLQ)]HERAIimit
— (23)
(31)
(32)
— (33)
=== 0.1fb [M.Gonderinger, M.Ramsey-Musolf]
100 3 — (11)
SL
b M2 (12)
(13)
1F
— (21)
0.1F —_— (22)
0.01F — (23)
(31)
0.001F
(32)
107%F
. . . . . " m— (33)
0.01 0.02 0.05 0.10 0.20 0.50 1.00 ——— 0.1 b

* Of course, higher luminosity
will also give better limits.
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Leptoquark Mediated CLFV(1,3) Decays

* Leptoquarks can also mediate the rare decay:

T — €7

* These diagrams are also proportional to the combination:

)\1@)\35 but only for o = 3
M Z%Q (quark flavor-diagonal case)
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EIC Sensitivity

* How does the EIC sensitivity compare to limits from rare decays?

[M.Gonderinger, M.Ramsey-Musolf]

i 0 i 1 i H
~R
wof {55 !
i il >
| I | |
1F = el ]
| | | |
| | | |
| | |
o 0lpt— — it
0
g | P .
= | 1 |
0.01F | | i
| | |
0.001 : : : : :
: I | : : —(22)
ot 11 I
L . 1, . 1, . — (33)
0.01 0.02 0.05 0.10 0.20 0.50 1.00
=== (0.1 fb
Z

* Vertical dashed lines and horizontal arrows indicate the range of limits from rare decays
(“Totalitarian” vs “Democratic”’ scenarios).

* Atl10-fb, the EIC cannot compete with limits from rare decays.
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EIC Sensitivity vs Super-B

* How does the EIC sensitivity compare to limits from rare decays?
[M.Gonderinger, M.Ramsey-Musolf]

=

Nt
o

l

-.I----------

R —

10~* I 4

; — (11)

:

! — (22)
105 :

I m— (33)

0.001 0.005 0.010 0.050 0.100 0.500 1.000
—== 0.001 fb
Z

* Vertical dashed lines and horizontal arrows indicate the range of limits from rare decays
(“Totalitarian” vs “Democratic”’ scenarios).

* At 1000-fb, the EIC could compete with Super-B in for first generation quark couplings but
not for higher generation quark couplings.

Tuesday, December 19, 17



Lepton Beam Polarization to Distinguish Between Leptoquark States
[J. Furletova, S.Mantry]

* Lepton beam polarization can be
0100 used to enhance or suppress the L
vs R LQ cross section.
g 0.010 — SR,(e"beam)
— S*42(e"beam)
0.001
107 :
* For example, the cross section
: difference between F=2 and F=0
LQs for an unpolarized (dashed)
P — ——y electron beam, can be enhanced by
= varying the beam polarization.
P "
0.100 | g P
= 7T
- -~
a"’ a"‘
£ 0010} 2= — SRo(e‘beam)
] Py -
a", 4"‘
’r” ’a" — SL1,.2(e'beam)
0.001 pr 22 oet
e Pe=[-80%,80%]
L -
-4 . N
10 0.05 0.10 0.50 1

Tuesday, December 19, 17



Right-Handed W-Boson
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Right-Handed W-Boson

SU@B) SU@R) Uy

o= (i) () G) o+
. - * The W-boson has interactions only with the left-
(@i= @ () ; ! s handed quarks and leptons.

e Electroweak interactions in the Standard model
violates parity maximally.
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|
N

* Right-handed neutrinos, as evidenced by
()i = (e (1)1 (7)1 1 1 1 neutrino oscillations, require physics beyond the
Standard Model

* Left-Right Symmetric Models restore the symmetry between and left and right-handed quarks
and leptons at high energies beyond the electroweak scale:

SU2)L @ SUR2)R @ U(1)B-L ey SU(2); ® U(1)y

* Left-Right symmetric models predict the existence of new degrees of freedom, including a heavy
right-handed W-boson and heavy right-handed neutrinos.
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* The Standard Model W-boson only couples to
left-handed electrons and right-handed positrons.

* Thus, the Standard Model predicts a linear
dependence of the charged current (CC) cross-
section on the lepton beam polarization.

* Polarized electron and positron beams can test
this Standard Model paradigm.

HERA limits on the right-handed WV mass:

eMp: > 208 GeV [A.Atkas et.al (H1)]
eM-p: > 186 GeV

(assuming equal couplings for left and right handed Ws)
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Right-Handed W-Boson at EIC

* The lower center of mass energy (compared to HERA) at the EIC will lead to smaller charged
current cross sections.

* However, the higher luminosity and degree of lepton beam polarization at the EIC can lead to
higher precision on the charged current cross section measurements.

* Higher precision could lead to stronger mass bounds.
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SM Polarization Dependence of
Charged Current Cross Section

* The Standard Model W-boson only couples to left-handed electrons and right-handed positrons:

_ Np—Np

e*p _ e*p _
T (Pe) = (1 £ Pe)ogy (Pe =0) P, = Ne TN,

* Electron and positron beams act as independent probes of the polarization dependence charged
current cross section due to the difference in initial state PDFs that contribute:

O'g\f[)(Pe)_ Gr( My V. N 2 2 2 2
s —<1+Pe>2ﬂ(M%V+Q2) x, 0%) + 2(x, 03 + (1 = y(d(x, 0% + (x, 0)|
O'g\f[)(Pe) _ Gp( My 2 2 2 2( 3 2\ L = 2
s —<1—Pe>2ﬂ(M‘2V+Q2) ux, 0%) + €, 03 + (1 = yP(d(x, 0% + 5(x, )|
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BSM Polarization Dependence of
Charged Current Cross Section

* SM polarization dependence:

* Polarization dependence in the presence of a right-handed W boson (with SM coupling strength):

T P(P) = (1 £ P) 0l (Pe = 0) + (1 F P,) 05,P (P, = 0, My, — M)
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P (Pe = F1) = 20 (Pe = 0, My — Mp)

95% confidence
interval of
measurement leads
to upper bound

\4

e*p -
O-upper bound (Pe =+1)

2

O'g;;(Pe :O,MW —)MR) <

\4

MR dependence
leads to a mass limit
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Preliminary Simulation Results

[J. Furletova, S. Mantry]
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Polarization

* Center of mass energy: * Center of mass energy:

Vs = 63.25 GeV Vs = 109.5 GeV.

® 95% CL upper bound: * 95% CL upper bound:

o< P(P, = —1) < 0.0207pb c'P(P, = —1) < 0.0776pb
* WR-boson mass limit: * WR-boson mass limit:

Mg 2 270 GeV My > 285 GeV
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Preliminary Simulation Results

Assumed polarization
uncertainty:

AP,/P, ~ 1%

Assumed systematic
uncertainty:

~ 3%

Cross gecnonégb]

[\o]
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o

| [

..... :1095GeV
100 GeV2

—
oo

Polanzatlon

* Preliminary results indicate that the high luminosity and degree of polarization can

improve the HERA limits on the right-handed W boson mass.
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Light Dark Matter (LDM) search at EIC

Dark Matter (DM) vs Baryonic Matter (BM)

* How much DM w.r.t. BM? .. even worse if we consider the total balance

* % \L._
L ‘
" 1
b 3
o N
"
e

7% Gu ™
7% Diffuse Gas

7 3% DARK ENERGY

85% DARK MATTER

QAWR

596 INTERGALACTIC GAS
1 STA

Only ~4% of the Universe is explained by
the Standard Model of the elementary
particles

* |s DM undergoing to other interactions? is the DM made by ‘particles’ (such as the ones in the Standard Model)?
* Constraint on DM mass and interactions

- should be ‘dark’ (no em interaction)

* should weekly interact with SM particles ... assuming that the gravity is not modified

* should provide the correct relic abundance and DM undergoes to other interactions
* should be compatible with CMB power spectrum

*  We can use what we know about standard model particles to build a DM theory
Two options:

* New matter interacting trough the same forces
* New matter interacting trough new forces

| Light Dark Matter search at accelerators M.Battaglieri - INFN GE
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4 parameters: my, ma;, €, &p

my, ~ ma: MeV - GeV

Visible e Minimal decay ot
Al e * Decay regulated by &2 - & A’
>_<: e Independent of mx A’ i
............ (-
+ e Requires ma<2my (on-shell) ; b A
e o X € I’.3.5lcale
Invisible

’ e Depends on 4 parameters _ A’ X
A X ® ma > 2mx (on-shell) A
............ )-< e Op= gzx/4n >> £20(em 2 X

I'yx ox %o
(not e-supressed!

| I |
B . ey v(3s) ci-)l'
e Jupiter 77 ] =
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~ Unified [iM | =
— 6 | .
>§ — h¢gMB -
)
o pr— -
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— LHCb,
) ol oo oo b b baa ba gy o 1 Mev
T -15 -12 -9 -6 3 0 3 ) 13 AJI;'IA\S’GCCS,
e
Logmy[eV] 10 GeV ( )
Axions-like low mass particles (M<IMeV) window

ObQ : )3 d < B d d d c1eradacid Y.
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Light Dark Matter - Direct Detection limits

Limits from XENONI0 e Best limits on LDM interaction cross
10~ - section obtained by direct DM detection
o Excluded by (XENON 10)

3 XENON10

data

10~ * Xcosmic-€ scattering

) P o |-electron ionization sensitivity
A 1073 1§ S . - = :
=

5 S N 3 e No FF for the scattering
5 10 S\t -

IIRML‘]]
Photon

models

10-36 el RS AN e ey

107

Fixed target & high intensity e- beam

< (g_z)}l
10—37

XENON 10
1

Dark Matter Mass [MeV |

ete” = y +inv.

PhysRevLett. 109.021301 R.Essig, A.Manalaysay, ].Mardon, PSorensen, T.Volansky,

¢~ Beam

e Fixed target electron beam experiments
can be 10° - 10* more sensitive in the
| MeV - | GeV mass range

Model Point: m - = 500 MeV, ap =1

0.01  0.02 0.05 0.10 0.20 0.50 1.00
m, (GeV)
PhysRevD.88.114015 E.lzaguirre,G.Krnjaic, Gordan, PSchuster, N.Toro

c@lao12 3
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A’ production: fixed target vs. collider

Fixed Target ete- colliders

Process ()

Nucleus

1011 e 1011 et
o.’a:'
'.:.'...

Luminosity

Cross-Section

* |/MA’ .VS. |/Ebeam

*Coherent scattering 2 high baCkgrounds : IC?W baclfgrounds
from Nucleus (~Z?) * limited A’ mass * higher A’ mass
4 Light Dark Matter search at accelerators M.Battaglieri - INFN GE
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A’/LDM production at EIC

e All the advantages of a large CM energy

e Extended A’ mass range exploration

e High luminosity requested to explore weekly interactive particles (A’, LDM, ...)

e Advantages of both fixed target + collider experiments

e Multipurpose 4pi detector to measure final states

e Possibility of including some extra detectors for uncovered regions (very forward)
e Access to meson decay with a large statistics

e E|IC: detailed evolution of accessible kinematics and reach under evaluation
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* The EIC is primarily a QCD machine. But it can also provide for a vibrant program to study
physics beyond the Standard Model (BSM), complementing efforts at other colliders.

* The EIC can play an important role in searching/constraining various new physics scenarios that

include:

Conclusions

* Leptoquarks

* R-parity violating Supersymmetry
* Right-handed W-bosons

* Excited leptons (compositeness)

* Dark Photons
e Charged Lepton Flavor Violation (CLFV)

* New physics can be constrained through:

* Precision measurements of the electroweak parameters e
1081

* Such a program physics is facilitated by:

* high luminosity
* wide kinematic range L
* range of nuclear targets S
* polarized beams

% The addition of a polarized positron beam will

enhance the BSM program at the EIC.

I T T T T T 71T II
Current polarized DIS data:
o0 CERN ADESY ¢ JLab O0SLAC

Current polarized BNL-RHIC pp data:
® PHENIXt® ASTAR 1-jet
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