CHARGED LEPTON FLAVOR VIOLATION E → TAU

HOW WELL CAN AN EIC DETECTOR BASED ON SPHENIX IDENTIFY TAU JETS?

Nils Feege, Sean Jeffas, Joshua LaBounty, Abhay Deshpande

BSM/EW physics at EIC mini workshop

December 19th, 2017

$E \rightarrow TAU LFV AT EIC$

- Limits in experimental searches for LFV(1,3) are significantly worse than those for LFV(1,2).
- Some BSM models specifically allow and enhance LFV(1,3) over LFV(1,2), for example:
 - Minimal Super-symmetric Seesaw model.
 J. Ellis et al, Phys. Rev. D66 115013 (2002)
 - SU(5) GUT with leptoquarks.

I. Dorsner et al., Nucl. Phys. B723 53 (2005); P. Fileviez Perez et al., Nucl. Phys. B819 139 (2009)

Study by Gonderinger & Musolf (2010): EIC with 10 fb⁻¹ e-p at $\sqrt{s} = 90$ GeV could improve leptoquark limits.

- Assumes 100% detector and analysis efficiencies. M. Gonderinger & M. Ramsey Musolf, JHEP 1011 (045) (2010); D. Boer et al., arXiv:1108.1713
- It is a great feasibility study to test an EIC detector with.

LEPTOQUARK INTERACTIONS

 $\tau \rightarrow$ leptons with neutrinos (missing momentum) with different angular correlations in SM background and LQ events.

 $\tau \rightarrow 3\pi$ characteristic decay signature ('pencil jet').

MISSING PT SEPARATES LQ EVENTS FROM SM BACKGROUND

LQGENEP: Leptoquark generator for e-p processes using Buchmuller-Ruckl-Wyler model (L. Bellagamba, Comp. Phys. Comm. 141, 83 (2001)) Mass $M_{LQ} = 200$ GeV, coupling $\lambda_{11} = \lambda_{31} = 0.3$

ACOPLANARITY SEPARATES LQ EVENTS FROM SM BACKGROUND

LQGENEP: Leptoquark generator for e-p processes using Buchmuller-Ruckl-Wyler model (L. Bellagamba, Comp. Phys. Comm. 141, 83 (2001)) Mass $M_{LQ} = 200$ GeV, coupling $\lambda_{11} = \lambda_{31} = 0.3$

D. Boer et al. arXiv:1108.1713

5

Solenoid
Flux return
Electromagnetic calorimeter
Hadron calorimeter

Central trackingForward trackingParticle ID

FULL GEANT4 DETECTOR SIMULATION 7 WITHIN THE FUN4ALL FRAMEWORK

HCAL: Fe +

-scintillator (0.1×0.1)

HCAL: Stainless steel + scintillator (0.1×0.1)

ECAL:W+ scintillating fibre (0.025×0.025)

Continuous readout TPC **3-layer MAPS vertex detector** 4-layer silicon-strip intermediate tracker

GENERATING MC EVENTS WITH LQGENEP

- Mass M_{LQ} = 1936.5 GeV
- Coupling $\lambda_{11} = \lambda_{31} = 0.3$
- d-quark in initial and final state (s-channel)
- τ is final state lepton
- e-p beam energies are
 20 GeV x 250 GeV

MID-RAPIDITY JET RECONSTRUCTION

Jets are reconstructed using calorimeter tower and the FASTJET package anti-kT algorithm.

Jet selection: $p_T > 5 \& -1 < \eta < 1$

R=0.5: μ = -0.22, σ = 0.13 R=1.0: μ = -0.11, σ = 0.15

MID-RAPIDITY JET RECONSTRUCTION

R=0.5: μ = -0.02, σ = 0.03 R=1.0: μ = -0.03, σ = 0.03

MID-RAPIDITY TAU RECONSTRUCTION

events ($\tau \rightarrow 3\pi$): 8949 -1.0 < η_{τ} < 1.0: 6920 (77%) 6556 τ jets (73%) with $p_{T} > 5$ GeV & -1 < η < 1

11

& ∆R < 0.1

7807 non- τ jets with p_T > 5 GeV & -1 < η < 1

$$\Delta R = \sqrt{(\eta_{jet} - \eta_{\tau})^2 + (\phi_{jet} - \phi_{\tau})^2}$$

TAU AND PARTON JET SHAPES IN THE CALORIMETER

12

OBSERVABLES TO CLASSIFY TAU AND PARTON JET SHAPES

13

CHARGED TRACKS AROUND TAU AND PARTON JET AXES

TRACK OBSERVABLES TO CLASSIFY TAU AND PARTON JETS

R=0.5 track search cone around jet axis

TRACK OBSERVABLES TO CLASSIFY TAU AND PARTON JETS

R=0.5 track search cone around jet axis

TAU JET CLASSIFICATION PERFORMANCE

LQGENEP events with $\tau \rightarrow 3\pi$ final states:

6556 τ jets and 7807 non- τ jets with $p_T > 5$ GeV & -1 < $\eta < 1$

Manual τ selection A:

 $N_{tracks} = 3 \& \Sigma q_{tracks} = -1 \& R_{track}^{max} < 0.20 \& R_{jet} < 0.15$

	Manual $ au$ selection A	
Identify $ au$ as $ au$	0.601	
Identify non- $ au$ as $ au$	0.015	

TAU JET CLASSIFICATION PERFORMANCE

LQGENEP events with $\tau \rightarrow 3\pi$ final states:

6556 τ jets and 7807 non- τ jets with $p_T > 5$ GeV & -1 < $\eta < 1$

18

Manual τ selection B:

 $N_{tracks} = 3 \& \Sigma q_{tracks} = -1 \& R_{track}^{max} < 0.15 \& R_{jet} < 0.15$

	Manual $ au$ selection A	Manual $ au$ selection B	
Identify $ au$ as $ au$	0.601	0.488	
Identify non- $ au$ as $ au$	0.015	0.010	

TAU JET CLASSIFICATION PERFORMANCE

LQGENEP events with $\tau \rightarrow 3\pi$ final states:

6556 τ jets and 7807 non- τ jets with $p_T > 5$ GeV & -1 < $\eta < 1$

19

DecisionTreeClassifier from sklearn.tree with max_depth = 5, penalty (false positive) = 20, using N_{tracks}, Σ q_{tracks}, R_{track}^{max}, R_{jet}

	Manual $ au$ selection A	Manual $ au$ selection B	DecisionTree Classifier
Identify $ au$ as $ au$	0.601	0.488	0.576
Identify non- $ au$ as $ au$	0.015	0.010	0.019

Charged Lepton Flavor Violation $e \rightarrow \tau$ is a promising process to search for BSM physics at EIC:

- Potential to improve experimental limits for LFV(1,3) leptoquarks.
- sPHENIX based EIC detector can separate τ → 3π 'jets' from parton jets at mid-rapidity with >60% true positive (at <2% false positive) efficiency.
- Full feasibility study continues (with SBU UG students):
 - Include forward tracker and calorimeter.
 - Use event topologies to identify leptoquark events.
 - Quantify EIC + detector impact on LFV(1,3) limits.