EW physics at HERA and connection to EIC

Why analyze preserved HERA data?

Why analyze HERA data in context of EIC?

- Physics scopes of HERA and EIC differ but have significant overlap.
 - Many aspects of EIC physics can be (partially) addressed with HERA data.
 - EIC data lie significantly in the future, HERA data are readily available now.
 - E.g. allows Master or PhD students to touch real data in conjunction with a hardware or MC study for EIC, including physics publications, talks at physics conferences, ...

ZEUS is active collaboration (more in backup):

Common Ntuple analysis model

Well tested ! almost all recent ZEUS papers based on on Common Ntuples

"Easy" to use

several recent ZEUS papers based on results produced by Master students.

PhD students could produce a ZEUS/EIC paper within only a fraction of their PhD time (e.g. ~6 months -1 year)

two new groups recently joined

2020

ZEUS

Possible HERA collider physics topics

as discussed at Future Analysis with HERA data workshop 2014

non-EW topics in backup

Electroweak and polarisation studies

- Finalize measurements of electroweak parameters, at NNLO QCD + NLO EW, ongoing, difficult !
- Implement electroweak effects in PDFs ongoing (theory)
- Measure higher order QED corrections e.g. to Bethe-Heitler dimuon production (e+ vs. e-, polarisation?) not yet
- Continue studies of prompt photons completed?
- Measure charm in charged current -> constrain strangeness in proton ongoing
- Check new theory developments
 - for all of the above

Synergies with other experimental programmes

- LHC, Tevatron, LEP, ...
- 🗆 LHeC
- EIC (this talk)

Electroweak Physics at HERA

Neutral Current (NC) interactions

Charged Current (CC) interactions

Weak interactions are "left-handed"

Electroweak Unification

Eur.Phys.J. C75 (2015) no.12, 580

Strength of weak and electromagentic forces become similar at scale Q² ~ M_W²

simultaneous PDF + EW fit of combined DIS data + ZEUS polarised data Phys.Rev. D93 (2016) no.9, 092002

Couplings of quarks to Z boson

A. Geiser, BSM/EW physics at EIC

Standard Mode

19. 12. 17

simultaneous PDF + EW fit of combined DIS data + ZEUS polarised data Phys.Rev. D93 (2016) no.9, 092002

Couplings of quarks to Z boson

V. Myronenko DIS2016

PDG average values do not yet include current ZEUS-EW-Z results.

Results presented here have a potential to decrease uncertainties of average values (u-quark in particular)

All extracted quantities agree with World average values.

simultaneous PDF + EW fit of combined DIS data + ZEUS polarised data Phys.Rev. D93 (2016) no.9, 092002

$sin^2\theta_w$ from HERA data

Similar preliminary results by H1

Daniel Britzger

DIS2016

Light quark couplings

Couplings of light quarks to Z-boson

- χ^2 / ndf = 1370.5 / (1388 21)
- *u*-type coupling better constrained than *d*-type coupling
 -> sensitivity from valence quarks
- · Results compatible with SM expectation
- PDF uncertainties are small

Comparison to H1 HERA-I

Phys.Lett.B 632 (2006) 35

- Considerably improved sensitivity using final H1 HERA-II data
- Polarisation in HERA-II important vor vector couplings

Fit: PDF + 2 couplings

- Reduced correlations and uncertainties
- Correlations between $a_{\scriptscriptstyle u}\mbox{-}a_{\scriptscriptstyle d}$ and $v_{\scriptscriptstyle u}\mbox{-}v_{\scriptscriptstyle d}$ are large

Similar preliminary results by H1

Daniel

Exploit Q² dependence of data

Britzger

DIS2016

Virtually exchanged bosons allow for SM tests at various energy scales

- Weak mixing angle is extracted for different scales $\mu = \sqrt{Q^2}$
- Simultaneous fit of PDF and values of sin²θ_w
- Data are subdivided into different Q² regions each with independent $sin^2\theta_w(Q^2)$

Results

- Results compatible with precise value from Z-pole measurements
- Unique measurement of weak mixing angle at different scales
- Comparison to MSbar values straight forward

Issues to be addressed in the future

personal remarks

Leading order EW parameter extractions are in good shape

for a combined NNLO QCD + NLO EW fit:

The EW NLO theory corrections need to be implemented in a fully consistent way, including proper NLO EW PDF treatment (so far only partial implementation)

Recommendation to EIC:

Avoid correction of cross sections to Born level using LO+PS MC's (might make NLO EW analysis impossible)

W+c and strangeness in proton

19. 12. 17

Associated W+c: comparison to ATLAS

dơ(**W+c)/d**|ղ[|]

100

 $p_{T}^{jet} > 25 \text{ GeV}$

 p_{T}^{μ} > 25 GeV

data: CMS JHEP 02 (2014) 013

75 K. Lipka prediction: MCFM NLO using 50 ATLAS-epWZ pdf • CMS JHEP 02 (2014) 013 arXiv:1612.03016 25 MCFM x ATLAS-epWZ16 PDF total uncertainty (based on ATLAS MCFM x ATLAS-epWZ16 PDF fit uncertainty (scale uncertainties not included) inclusive $W_{Z} + HERA$) 0 n 2 1.25 0.250.5 0.751.5 1.75 see also talk N. Zakharchuk this conference |η**'**|

predicts larger cross section than CMS data -> strangeness contribution too large?

19. 12. 17

 $W \rightarrow Iv (I=\mu)$

courtesy

Charm production in CC at HERA

- Via d/b is Cabibbosuppressed
- Probes the strangeness in the sea

ZEUS analysis ongoing through person power also involved in EIC, will hopefully contribute to resolving ATLAS/CMS tension (also future topic for EIC)

Charm production in CC at HERA

J. Nam, JPOS17 workshop

Current Status & Summary

- CC events have been selected from all HERA II data.
- Charm signal with suppressed LQ contribution has been observed in the mirrored L_{xy} and S_{xy} plots.
- Detector-level & Reconstruction-level corrections will be quantified along with analysis on systematic uncertainty
- The charm cross section will be extracted by sub-dividing the kinematic plane into Q^2 bins.

Conclusions and Outlook

The EIC project is unique and exciting !
 HERA data are unique, exciting, and available !

 many HERA data topics continue to be of interest, and quite a few are still not finished or even not yet started <u>arXiv:1601.01499</u> <u>arXiv:1512.03624</u> (also see backup)
 Many, including EW, have overlap with topics relevant for EIC

-> of particular interest until EIC data become available

bottleneck: manpower after end of HERA funding

in the interest of advancing ep/eA physics it might be worthwhile to team up interest in future EIC data and existing HERA data to boost the EIC project and to fully exploit the HERA physics program 19. 12. 17 A. Geiser, BSM/EW physics at EIC

List of topics from HERA perspective

List for EW topics in main part of talk. Here: other topics (QCD and other)

Should be cross-calibrated with and further extended by topics particularly interesting for EIC.

Possible HERA collider physics topics

as discussed at Future Analysis with HERA data workshop

BSM:

Provide standard candles against which new physics searches can be calibrated

Proton structure:

- FL combination, integration of high x results into PDF fit, finalize heavy flavour combinations and fit, improved transverse momentum dependent PDFs, investigation of low x phenomenology, ...
- -> understand the proton, understand QCD, provide detailed descriptions for other colliders
- Are we starting to hit the nonperturbative limit?
- Can we make further decisive measurements from existing data?
- Can we achieve improved theoretical interpretations from existing results?
- Can statements about new physics at high scales be made from the low energy data?

Diffraction and DVCS

- Finalize inclusive diffractive measurements, make them more differential
- Finalize measurements of elastic vector meson production and compare to improved theory models and to other experiments
- Measure elastic scalar model production, test odderon hypothesis
- Finalize measurements of DVCS

19. 12. 17

Possible HERA collider physics topics

as discussed at Future Analysis with HERA data workshop

Jets:

- Finalize (ZEUS) measurements, combine,
- make more differential measurements, event shape measurements,
- apply NNLO theory, remeasure alphas

Hadronic final states:

- Study multiparton interactions and other nonperturbative effects
- (re)measure photon structure
- (re)measure QCD instanton production
- Search for exotic resonances
- Complete total gamma-p cross section

Heavy Flavours:

- Intrinsic charm
- □ NNLO measurements of c- and b-masses
- Multi-differential heavy flavour cross sections
- More cross section combinations
- Improved measurements of charm fragmentation functions

Deliverables	Observables	What we learn	Requirements
GPDs of	DVCS and $J/\Psi, \rho^0, \phi$	transverse spatial distrib.	$\int dt L \sim 10$ to 100fb^{-1} ; ~0.5 f
sea quarks	production cross-section	of sea quarks and gluons;	leading proton detection;
and gluons	and polarization	total angular momentum	polarized e^- and p beams;
	asymmetries	and spin-orbit correlations	wide range of x and Q^2 ;
GPDs of	electro-production of	dependence on	range of beam energies;
valence and	$\pi^+, K \text{ and } \rho^+, K^*$?	quark flavor and	e^+ beam
sea quarks		polarization	valuable for DVCS

19. 12. 17

«ÉD»

Figure 2.18: Graphs for deeply virtual Compton scattering (left) and for exclusive vector meson production (right) in terms of generalized parton distributions, which are represented by the lower blobs. The upper filled oval in the right figure represents the meson wave function.

- ZEUS DVCS analysis for HERA II not completed
- many possible exclusive vector (or other) meson analyses for HERA II not completed or not even started (lack of manpower)

Electron Ion Collider: The Next QCD Frontier

Understanding the glue that binds us all

A. Geiser, BSM/E

SECOND EDITION

Your favourite EIC topic ③

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

 for list of topics from HERA perspective, see backup, and workshop on Future Analysis with HERA data, <u>arXiv:1601.01499</u> <u>arXiv:1512.03624</u>
 19. 12. 17 A. Geiser, BSM/EW physics at EIC 2

Analysis of preserved ZEUS data

EIC is still some time away.

Most items in list of topics can be addressed now with HERA data. Here: focus on ZEUS

What is ZEUS?

- **International Particle Physics Experiment** which recorded high energy electronproton collisions at the world's (so far) unique lepton-proton collider HERA at DESY in Hamburg, Germany
- Physics data taking: 1992-2007
- one of main physics goals: measure structure of the proton to ~10⁻¹⁸ m, i.e. 1/1000 of proton size ("X ray" of proton with electrons)
- also well suited to study general QCD and electroweak physics

What do ZEUS data look like?

Zeus Run 1 (Simrun 59924) Event 208			date:	4-06-2006 time: 00:06:30
E=55 GeV	E _t =9.44 GeV	E-p _z =2.98 GeV	E _r =52.8 GeV	E _b =2.07 GeV
E _r =0.138 GeV	p _t =2.72 GeV	p _x =-2.66 GeV	p _y =0.583 GeV	p_=52.1 GeV
phi=2.93	t _f =3.08 ns	t _b =-0.371 ns	t _r =-100 ns	t_=2.97 ns

event display from "Common Ntuple"

ZEUS

complicated data format and content: for useful analysis, need significant expert knowledge + documentation + guidance how to use it 19.12.17 A. Geiser, BSM/EW physics at EIC 32 **Data Preservation Challenge:**

How to organize the Management?

DPHEP data preservation levels

Preservation Model	Use case
1. Provide additional documentation	Publication-related information search
2. Preserve the data in a simplified format	Outreach, simple training analyses -> education
3. Preserve the analysis level software	Full scientific analysis based on existing
and data format	reconstruction
4. Preserve the reconstruction and simulation software and basic level data	Full potential of the experimental data

Table 3: Various preservation models, listed in order of increasing complexity.

• ZEUS: level 3 (data and existing Monte Carlo (MC) data), level 4 (additional Monte Carlo data)

other HERA experiments: level 4

Publicly available information on DPHEP and ZEUS data preservation

	HEP 6 records found	Search took 0.15 seconds.
Eile Edit View Higtory Bookmarks Iools Help find d × FCC - Future W SLAC Nat © pentaqua W Heisenbe https://inspirehep.net/search?ln=en&ln=en&p=find+data+preservation+and+CN+ZEUS&of= NSPIRE Welcome to INSPIRE, t HEP :: HEPNAMES :: INSTITUTIONS :: 0	Status Report of the DPHEP Collaboration: A Global Effort for Sustai DPHEP Collaboration (Silvia Americ (INFN, Padua) <i>et al.</i>). Feb 17, 2015. 60 pp. DPHEP-2015-001 DOI: 10.5281/zenodo.46158 e-Print: arXiv:1512.02019 [hep-ex] PDE References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote CERN Document Server.; ADS Abstract Service Detailed record - Cited by 2 records South for the collaboration). 2013. 6 pp. Published in PoS ICHEP2012 (2013) 536 Conferences BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote Proceedings of Science Server; Link to Fulltext Detailed record	inable Data Preservation in High Energy Physics + DPHEP@DESY documents
find data preservation and CN ZEUS Brief f find ["PhysRevLett, 105"] :: more Display results: stest first • desc. • - or rank by - • 25 results • single list • • HEP 2 records found 1. The ZEUS data preservation project ZEUS and DESY DPHEP Group Collaborations (J. Malka (DESY) for the collaboration). 20 DDI: 10.1109/NSSMIC.2012.6551468 Conference: C12-10-29, p.2022-2023 Proceedings References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote Detailed record 2. The ZEUS data preservation project ZEUS Collaboration (Janusz Malka et al.). 2012. 4 pp. Published in J.Phys.Conf. Ser. 396 (2012) 022033 DI: 10.1088/1742-6596/396/2/022033 DDI: 10.1088/1742-6596/396/2/022033 Conference: C12-05-21.3 Proceedings References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote Detailed record	 3. DPHEP: From Study Group to Collaboration DPHEP Collaboration (David M. South (DESY) for the collaboration). Sep 30, 2013. 6 pp. Published in PoS DIS2013 (2013) 267 Conference: C13-07-18 Proceedings e-Print: arXiv:1309.7868 [hep-ex] PDE References BibTaY LaTaX(US) LaTeX(EU) Harvmac EndNote ADS Abstract Service: Proceedings of Science Server: Link to Fulltext Dataled record 4. Status Report of the DPHEP Study Group: Towards a Global Effort for DPHEP Study Group Collaboration (Zaven Akopov (DESY) et al.). May 2012. 93 pp. DPHEP 2012.001. FERMILAB-PUB-12-878-PPD e-Print: arXiv:1205.4667 [hep-ex] PDF References BibTaY LaTeX(US) LaTeX(EU) Harvmac EndNote CERN Document Server; ADS Abstract Service; OSTI Information Bridge Server; Fe Detailed record - Cited by 18 records 5. Data Preservation in High Energy Physics DPHEP Study Group Collaboration (David M. South (DESY) for the collaboration). Jan 201 Published in J.Phys.Conf.Ser. 331 (2011) 012005 CHEP-2010 DOI: 10.1088/1742-6596/3311/1012005 Proceedings of plenary talk given at Conference: C10-10-18.4 Proceedings e-Print: arXiv:1101.3186 [hep-ex] PDF References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote ADS Abstract Service Detailed record - Cited by 6 records 6. Data Preservation in High Energy Physics DPHEP Study Group Collaboration (Richard Mount (SLAC) et al.). Nov 2009. 18 pp. SLAC-R-987, DPHEP-2009-001, FERMILAB-PUB-09-856-CD e-Print: arXiv:1001.2055 [hep-ex] PDF References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote ADS Abstract Service Detailed record - Cited by 6 records 6. Data Preservation in High Energy Physics DPHEP Study Group Collaboration (Richard Mount (SLAC) et al.). Nov 2009. 18 pp. SLAC-R-987, DPHEP-2009-001, FERMILAB-PUB-09-856-CD e-Print: arXiv:10012.0255 [hep-ex] PDE References BibTeX LaTeX(EU) Harvmac EndNote 	er Sustainable Data Preservation in High Energy Physics ermilab Library Server (fulltext available): Link to Fulltext 1. 10 pp. CNSPIRE itself s a `level 1 lata preservation
	CERN Document Server ; ADS Abstract Service; SLAC Document Server; Fermilab Detailed record - Cited by 15 records	Library Server (fulltext available); Link to Fulltext

19. 12. 17

DPHEP portal:

- <u>http://hep-project-dphep-portal.web.cern.ch</u>
- ZEUS web page:
- <u>http://www-zeus.desy.de/</u>
- information on ZEUS far from perfect

(manpower ..., in case of availability conflict, content/useability takes preference over (organisation of) documentation)

... but we are proud of what we achieved \bigcirc

see also presentation A. Verbytskyi at DIS2016 conference https://indico.desy.de/contributionDisplay.py?contribId=176&sessionId=7&confId=12482

and ZEUS MPI web page https://www.zeus.mpp.mpg.de/

Analog and digital archive

- analog archive in DESY library
- ZEUS technical notes digitized on INSPIRE (via DESY library)
- frozen plain html documentation web pages (DESY web office)
 Introduction to ZEUS analysis

Introduction

General

Are you the new member of the ZEUS community and want to start a new analysis??? Or have you already started analyzing data but still have a lot of questions? We hope that on these web pages you will find an answer to most of your questions.

Analysis

Tools

 knowledge preservation in "human neural networks" (ZEUS collaboration)

Other

Challenge: Bit preservation

HERA Bit-Preservation

 at DESY: common approach for all three HERA experiments

status 06/2015 (now complet<mark>e</mark>)

Size	of a	lata	set	compiled	by D. Z	otkin/A.G.	
Root files	(officiall	y preser	<u>ved</u>)	units: Tb	(status 4	l.9.13)	ZEUS
HERA II	v02	v06	v08	HERA I VO8	total		
Data	1.9	5.2	7.0	1.7+1. +v07	17.		
MC	10.5	64.0	70.	4.8 +4 .	153.	+30 for fu	ture MC

~ 100 million inclusive DIS events (Q²>5 GeV², triggered almost bias-free)

~ 100 million semi-inclusive photoproduction events (mainly via p_T>4 GeV dijet trigger)
 smaller sets of more specialised triggers/samples (e.g. heavy flavours, vector mesons, ...)
 ~ equal sample sizes for e+, e-, righthanded/lefthanded polarisation

~ 4 billion MC events, for almost any analysis

generation of additional MC samples might be possible (see talk A. Verbytskyi)

can technically read/analyze full ZEUS data set on NAF/BIRD at DESY within ~1 day (for even faster access, many analyzers produce their own mini-ntuples for analysis) 19. 12. 17 A. Geiser, BSM/EW physics at EIC 40

How to analyze ZEUS data at DESY?

(additional possibilities at MPI)

need:

- interest in some physics topic 😳

- agreement with ZEUS management and DESY to obtain
- ZEUS user account at DESY
 - -> access to NAF/BIRD analysis farm via ZEUS NAF server (can log on from remote)
- basic knowledge of ROOT

(no special ZEUS software to learn!)

- basic knowledge of particle physics

Instead of a conclusion: Win-Win-situation?

- We offer:
 access to real data (and MC)
 support for interpretation of data
- You offer: (wo)manpower
- We share:

student supervision (if wished and person power allows), interest in physics results ③

19. 12. 17

