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Outline NEeF

Introduction
— HEP / NP and Deep Learning
— NERSC machines
Towards a Platform for Scientific Learning — Production DL stack at NERSC

Examples of applications: HEP/NP Deep Learning projects at NERSC
— Supervised Learning: Classification with CNNs
— Unsupervised Learning: Generation with GANs
— Alternative representations: GraphCNN
— Bayesian Inference with Probabilistic Programming
Productive DL at Scale
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HEP/NP/Cosmology In practice

I+ 1)P/2m

Theory into Simulations

e Cosmology: high-resolution;
produce mass densities;
populate with galaxies

 HEP/NP: detailed physics and
detector simulation

DataiProd

s . .
M [TV A

Summary statistics:

 E.g.2pt/3pt
correlation: spatial
distribution

e E.g. Masses of
reconstructed
particles

Exp/Obs reconstruction

* Derive position of galaxies/
stars and properties for
catalogs

* Reconstruct particle
properties



HEP/NP/Cosmology In practice
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Many areas where deep learning (etc.) can help, e. g ,
* Classification to find physics objects or new ‘signal’ events (on hlgh dimensional data)
* Regression to aid reconstruction or of fundamental physics parameters

¢ Clustering features in high-dimension raw data for new physics or instrument issues
* Generation of data to replace simulation

* Inference directly of underlying physics from instrument data
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NERSC

Mission HPC center for US Dept. of —— Global
: Filesystems

Energy Office of Science:
>7000 users; 100s of projects; diverse sciences

« 2388 Haswell 32-core 2.3 GHz; 128 GB | Z (50"

|

|

|+ 9668 KNL XeonPhi 68-core 1.4 GHz Fi@‘ﬁi/f’/;?

| 4 hardware threads; AVX-512; sl e

l 16 GB MCDRAM, 96 GB DDR4 Nodes (DTN)

: * Cray Aries high-speed “dragonfly”

I interconnect

: * 28 PB Lustre FS: 700 GB/s peak Eabric T
, ¢ 1.8 PBFlash Burst Buffer: 1.7 TB/s WAN e e
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Perimutter: A System for Science

e GPU-accelerated and CPU-only nodes meet | Milan CPL ‘

the needs of large scale simulation and data CPU-GPU Nodes
analysis from experimental facilities Future NVIDIA GPUs
o >4,000 node CPU-only partition = all of Cori PR
o Optimized stack for analytics/ ML at scale
o GPU nodes: 4 NVIDIA GPUs: Tensor Cores;
NVLink-3; 1 AMD “Milan” CPU
e Cray “Slingshot”: High-performance
Ethernet- compatible network
o Capable of Terabit connections to outside

e All-Flash Lustre based HPC file system

6x Cori’s bandwidth o mp——
o 6x Cori’s bandwidt lg ﬁi@[g@wl
T TR IAAER |

EN ERGY Science

e Cray Shasta System: 3-4x capability of Cori

External File-
systems &
Networks

“Slingshot” Interconnect

© 30PB,4TB/s

Delivery in
late-2020




Deep Learning Production
Stack at NERSC
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Provide a platform for scientific learning EliES

NERSC Data and Analytics Group:

* Provide training and tools for
machine learning

[ Science Apps ]

 Optimize tools for hardware and

for productivity and scale [ Interactive Interfaces ] [ Automation ]
4 Y
° Encourage cutﬁng_edge MEthOdS, Approaches and
methods and new applications Architectures Tailored for Science
e Collaborative Projects (with Frameworks and Libraries for Scale
SCIdentIStS/ ML Researchers/ Integrated ML/Simulation/Data HPC
Industry) System Hardware

http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/




Tools

. DL Frameworks evolving rapidly:
NERSC ML Survey (Now): Caffe/Theano popular 3 years ago — now Tensorflow (TF)

dominates (and Keras now in TF); Recent rise of PyTorch

What frameworks/tools are you using?

1201116 (72%)

101 (62%)
100

Percent of ML Papers That Mention:
o 2018

80

1]
-
g —&— theano f
14 8 60 =&~ fensorflow
maf iy TensorFlow

caffe

<. 2015
o Caffe

chainer

18 (11%) - otk

40

ENERCY Jficeof Source: https://twitter gom/karpathy/status/972295865187512320?lang=en
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Tools and Training NEF

* Python DL frameworks rely on KNL - Python 3.6

optimized backends to perform L 2o e
— For CPU like Cori KNL this is Intel MKL ~ 5**| == 110
— Working with Intel to improve § ””””””” !
performance for common networks (and  °*
science problems)

alexnet googlenet vggll inception3 resnet50 DCGAN

* Training events for example WL wrcom oo o gsmn

Deep Learning at Scale

Presenters: Steven A. Farrell, Deborah Bard, Michael F. Ringenburg, Thorsten Kurth, Mr Prabhat

— Data day
https://www.nersc.gov/users/training/
data-day/data-day-2018/

12th, 8:30am - 5pm 7

. e learning is rapidly and fu dmetllytlanf formin, gth e way s and industry use data to solve D oblems. Deep ne

— Deep Learning At Scale at SC18 (next il Sl e G
grow in i e i ing problems with larger and larger datasets, the need for scalable methods and software to
rain them grows ac

.
Monday) (with Cray Inc.) et st s g S
cepts, m ppl icatiol ius ling. We wi accounts de)(mpl Jupvl n’ k-b:
U.S. DEPARTMENT OF Offlce Of well as datasets, to allow attes d s to experiment hands-on with training, inference, and scaling of deep nt
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ML Applications in Science

Counts

140

120

100

80

60

40

20

0

Qass

NERSC ML Survey:

What types of problems are you working on?

122 (75%)
116 (72%)

55 (34%)
48 (30%)

‘f‘ca"g:q‘esg\%\#“ﬁ’\'Q:me“‘a"‘m R e ered® omet
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Example projects at LBL/NERSC:

Identify dentify new
neutrinos physics events
assing through : in detector for
F P . "o Identify extreme particle physics  Identify words from
annotation of events in climate brain signals in

metagenomes simulations neuroscience

Identify type of Match sequence
event passing of amino acids

through a bacterial signaling
Generate new
mass maps of neutrino detector Classification

the universe

Unsupervised Supervjsed
Learning Machine Learning
Learning
for
Science
Predict the
properties of new
materials for energy-
efficient batteries
Identify similar Model images Identify extreme
images in x-ray of galaxies in events in climate ‘f:m g:::gg;t:
scattering Learn features in telescope data simulations Determine in genomics
experiments cosmological cosmological
mass maps parameters from
Nbedy simulation



Classification with Convolutional Neural Networks

® CNN -shared non-linear filters; reduce weights; exploit
locality and symmetries: now popular in many science studies

® E.g.LHC-CNN: Unroll cylindrical detector data for image?;

classify known (QCD) vs new physics (RPV supersymmetry) From ATLAS-CONF-2016-057:
— Use 3 channels for EM and HCal Calorimeters and number of tracks? and
whole detector image 64x64 bins (~0.1 n/¢ towers) or 224x224
— Use our own large (Pythia+Delphes) simulated data samples
— (3 or 4) alternating convolutional and pooling layers with batch norm.
-

25 q
aet=T| "’,_'

203 5 0 SRS T ,.-"'—'

el ' A

158 IS s £

% 7 ‘

input  conv+ pool 1 convépool2  conv#| pool 3 conv+pool 4
05 g 1x227x227  64x113x113 128x54x54 128x27x27 128x13x13 1024x1024 1024x2 2

C er energy [Log(MeV)]

Bhimiji, Farrell, Kurth, Paganini, Prabhat, Racah
https://arxiv.org/abs/1711.03573

ENEDAY COficeof 1 Iso in de Oliviera et. al. (arXiv:1511.05190) and others
'ENERGY s As alsoin . al. . .
SN2 Similar to Komiske, Metodiev, and Schwartz arXiv:1612.01551




WB, Steve Farrell Thorsten Kurth, Michela

Paganini, Prabhat, Evan Racah
CNN performance

e Use re-implementation of existing
physics selections on jet variables from

1.0

ATLAS-CONF-2016-057 as a benchmark O-S'H_/f/

* Also compare to boosted decision tree
(GBDT) and 1-layer NN (MLP)

o
o

©
»
L

—— CNN
GBDT
—— MLP
—— 3 Channel
® Physics Selections

True Positive Rate

Input to these jet variables used in
the physics analysis (Sum of Jet

Mass, Number of Jets, Eta 0.0 , , , :
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

between leading 2 jets) and four- False Positive Rate
momentum of first 5 jets

0.2+

Potential to increase signal efficiency (from 0.41 to 0.77) at same background rejection as
selections without using jet variables (approximate significance increase of 1.8x)

Further improvement from using 3-channels: Energy in E-Cal, H-Cal and No. tracks

MMMMMM Office of

,\\) uENERGY Science -15-
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Generative Adversarial Networks GAN NEeF

Real

Samples Goodfelloyv etal.
* Jointly optimize Discriminator (D) and . [ %
Generator (G) NNs: Loss for G/D in opposition - ‘ *{DJ -
* GANSs can be unstable, science problems can | | EH P T R <
have advantages: 1 ‘ )
* Underlying structure . ‘
.. . . . DCGAN: (Radford et. al. ICLR 2016) :
* Existing simulation samples and metrics https://arxiv.org/abs/1511.06434 o
« CosmoGAN: Cosmology simulations o] o | — F
extremely computationally expensive: o ——
— One pI’OdUCt is weak Iensing convergence Mustafa, Bard, Bhimji, Al-Rfou, Luki¢, Kratochvil o “ @

https://arxiv.org/abs/1706.02390

maps, to compare to observations

Augment simulations with generative NN
— Train using existing simulation maps

> X, U.S. DEPARTMENT OF Offlce of

\) ENERGY Science 16




Mustafa et. al

CosmOGAN https://arxiv.org/abs/1706.02390 -

10!

102

 GAN maps indistinguishable by eye

103

e Calculate power spectrum for
generated images and validation

sample N N s

— Fourier transform of 2pt correlation . "' T

— Excellent agreement (K-S p_value > b \\.ﬂ__ 5
0.995 for 246/248 moments) ol .,

— GAN not explicitly trained to I _"I"T‘r
reproduce these distributions T i T

— Also higher-order Minkowski — o
functionals are reproduced

0 0 1
Thresholds Thresholds



Full HEP detector GAN

* Train on full detector images (same data
as LHC-CNN)

* Architecture: DCGAN with 4 conv + 1
dense layer in G and D networks

— Images reconstructed with Fastlet (R=1,
pt>200GeV); Kolmogorov-Smirnoff KS
metric used to select best model and
epoch in random hyper-parameter search

 The generated samples produce realistic
jet multiplicities and kinematics -
without imposing physics knowledge

SERD,. U.S. DEPARTMENT OF Offlce of

& ENERGY oo

Steve Farrell, Wahid Bhimji, Ben Nachman, Harley
Patton and others: CHEP 2018
(See also CaloGAN Paganni, de Oliveira, Nachman

https://arxiv.org/abs/1712.10321)
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Conditional RPV GAN

Can the GAN learn to produce images
conditional on the SUSY theory parameters?

— We conditioned on M8Y, M"e¥ by qugmenting
the discriminator (as a channel) and generator

(as a input with latent vector)

The GAN is shown to learn the conditional
distributions
— E.g., summed jet mass shifts as expected
Could ultimately use this to supplement full
simulation in MC signal grids

— Coarse full-sim grid

— Interpolate with GAN

CEBD, U.S. DEPARTMENT OF Office of

» \(,e: ENERGY Science

500

Steve Farrell, Wahid Bhimji, Ben
Nachman, Harley Patton and others
CHEP 2018

M,,, = [1400, , 1800] GeV

300 ”
200
100 AD_,’_{J
0
0 250 500

750 1000 1250 1500 1750 2000
sum jet mass [GeV]
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I
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0 ‘ —
0 250 500 750 1250 1500 1750

sum jet mass [GeV]



Steve Farrell, Wahid Bhimji, Ben

Plleup GAN Nachman, Harley Patton and others

CHEP 2018
*  Pileup poses big challenges for HL-LHC o i - Ei Z”d
computing workflows - simulate and 030 ]
store a large volume of pileup events; ::Z —
read from disk during digitization 015 B
* The distribution can be modeled with -
a whole-detector GAN: simulate 000 b
samples and train model — use for fast, M
on-the-fly pileup sampling o[k B
* To test fidelity, evaluate the effects on 13 _ ¢ L4
reconstructed object kinematics: 100 [ ,I'}
overlay real pileup or generated pileup 075 1 [1
compare the shifts in the distributions :j




Nick Choma, Joan Bruna (NYU); Federico Monti, Michael Bronstein (ICS, U. Svizzera);

G ra h c N Ns Spencer Klein, Tomasz Palczewski (LBL Physics); Lisa Gerhardt, Wahid Bhimji (NERSC)
p https://arxiv.org/abs/1809.06166
* Use detector deposits rather than an image in a IR A NI L

GraphCNN: Represent signals as nodes of a graph with
similarity as edge weights
* E.g. lceCube: Classify neutrino signal vs cosmic rays

— Deal with non-uniform detector
— Avoid sparse images

* Graph vertices are active sensors (DOMs) in event and

edges learned function of coords
— Adjacency matrix: gaussian kernel of DOM distance
— Graph ‘Convolution’ and pooling analogous to CNN

 Compared with ResNet-18 3D CNN with data on grid
and physics baseline (tuned cuts on stochasticity )

0.8

o
o

0.4

True Positive Rate (Signal Efficiency)

0.2 4

g__&‘“""‘""'ﬁ,% U.S. DEPARTMENT OF Office of
g Y . -21- 00 - - - : : ;
N ENERG Science 21 1077 106 10-5 1074 1073 102 10! 10°

False Positive Rate (1- BG rejection)




Probabilistic Programming: 9tslumie

* In HEP/NP often have detailed simulation
(forward model) of physics and detector

— Ideally could ‘invert’ this to perform inference
on real data — not easily done
* ‘Invert’ via probabilistic program (PPL) and
embedding approach

— PPL: Sample from distribution (already in HEP
sim. E.g. SHERPA) and Condition on observation
(we add via PyProb without changing SHERPA)

— Inference Compilation (IC): NN for inference

* Initially applied to tau decay: predict

Atilim Gunes Baydin, Bradley Gram-Hansen (Oxford)
Lukas Heinrich, , Kyle Cranmer (NYU) Wahid Bhimiji,

Prabhat (NERSC) Gilles Louppe (Liege), Lei Shao (Intel),
Frank Wood (UBC) https://arxiv.org/abs/1807.07706

Inference
mH Kf ‘ Parameters Parameters A p(x|y)
\ <‘
' ' ’ Program Program p(y|x)p(x)
g Output Observations y
CS Probabilistic Programming  Statistics

Inference Engine

pyprob + PyTorch ()
(Python)

SN
\

Simulator

Decay Channel

particle decay channel; momentum etc.

with full posterior and code traces
* Deep interpretability of particle decay chain

=== ground truth
W posterior

and detector interactions

\U
2
—%
28—
)
3
—T
3

)
2
o
ERS
23

SHERPA (C++)



Productive deep learning at
supercomputing scale
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Multi-node training NEF

NERSC ML Survey
Current and Future needs:

® Complex models benefit from training

across mUItiple nOdes 100 98 (60%) User models' training scales
® Challenges to scaling include libraries a0
to optimize communication and 2w B
convergence at scale " w0 35 (22%)
25 (15%)
® One way to distribute is via data & 13 (3%)
parallel training for SGD ° 29 o) 0100) 01000
— Each node processes data
independently then a global update Compute group 1 Compute group G
— E.g. s-ynchronous; asynchronous; g gé& {Z}U&m o Kurth et al.
hybrid approaches gg”m m‘gﬁ*m SC17 arXiv:1708.05256
0-3:-0 Wt
W W W

U.S. DEPARTMENT OF Offlce of

"EN ERGY Science




Performant Multi-Node Libraries

Intel-MLSL at SC17 arXiv:1708.05256 )

Initial scaling on NERSC involved a lot of work (e.g. with Intel-Caffe and

Default TensorFlow uses gRPC for communication - non-ideal for Cori high-

speed network: (See e.g. Mathuriya et. al arXiv:1712.09388)

LHC-CNN (Intel-Caffe):
Kurth et al. SC17 arXiv:1708.05256

2500
~—&— Synchronous
2000 | —e— Hybrid, 2 groups —
—e— Hybrid, 4 groups P ’
g- 1500 A Hybrid, 8 groups
g —-= Ideal
1000 A
500 A
e
0 T T T T
0 500 1000 1500 2000
# nodes (66 cores/node)

Now libraries available based on MPI with Horovod and Cray PE ML Plugin

Kurth et al.
LHC-CNN (TF-Horvod) CosmoGAN: Concurrency Computat
Pract Exper. 2018;e4989
30000
— ideal —— ideal
##*a KNL Horovod-MP| #%*% KNL Horovod-MPI
25000] e®e KNL Horovod-MLSL Server 2 10000

mmg KNL Horovod-MLSL Server 0

T e
c vy KNL CPE ML Plug
§ 20000| *7* gin S 8000
o (8]
Q [}
£.15000 2 6000
< <@
Q.
£ 10000 £ 4000
& B
5000 2000
0 0
0 200 400 600 800 1000

#workers

®®¢ KNL Horovod-MLSL Server 2
mEm KNL Horovod-MLSL Server 0
¥¥v KNLCPE ML Plugin

0 500

1000
#workers

1500 2000



Farrell, Vose, Evans, Henderson, Cholia, Pérez,
Bhimji, Canon,Thomas , Prabhat

InteraCtlve HPC DL Wlth Jupyter ISC 2018 Interactive HPC Workshop

Con Compute Nodes

& Cori Login Node Model 20: {conv_sizes': [32, 16, 8], fc_sizes": [32], ‘dropout’: 0.42876870094576613, ‘optimizer': ‘Adam’, I": 0.0001}
docter Notebook
Server Process LA i
JupyterHub ipyparallel V
Web Server ~ kemel/ or Dask
i lel client Controller

e Jupyter notebooks very popular development

environment at NERSC s N

e Demonstrate interfacing jupyter to Cori interactive

training metrics

[ . epéchs
gueue via ipyparallel or Dask cluster
Y D' t 'b t d t H% Y H ti H H M PI Stop selected Restart selected
Istriputed tralining communication Is via
index Y status Y epoch Y conv_sizesY fc sizes Y dropout Y optimizerY Ir Y loss Y valloss Y acc Y valacc+T
H d h d H t b k 15 Ended Traini... 15 8,64,32)  [256] 001919  Adam 0001  0.0067703.. 0.058146.. 099775  0.98596875
orovoda — no overnea In hOtepoo 19 Ended Traini... 15 [64,16,64)  [256] 061802  Adam 0001  00497609.. 0.039992.. 0982625  0.98496875
. . . 21 Ended Traini... 15 ©48 64 013547  Adam 00001  00735504.. 00512%6.. 09740625 0982
¢ Load-ba Ia nced Hype rpa ra meter optl m Izatlon taSks 2 Ended Traini... 15 G2168 (@2 042677  Adam 00001  0.0971096.. 0.082174.. 096575  0.98021875
o o o 18 Ended Traini... 15 B.8,16 (128 020008  Adam 001 00700781... 0.073561... 0.975390... 0.969625
* Live plots and task loss / accuracies in notebook; L D S T e
2% Ended Traini... 15 (2,83 [ 057433  Nadam 001 02148241... 0.181064... 0.91615625 0.93253125
t t t d -t d 'th lk I ’ 13 Ended Traini... 15 [8.64,128)  [256] 04238  Nadam 001 02105947... 0.191747... 09185  0.92828125
star /s Op an monitor node resources wi ﬁ 2 Ended Traini... 15 (16,8,128)  [128] 050067  Nadam 001 02333027... 0.201570... 09076875 0.92446875

U.S. DEPARTMENT OF Off'Ce of

'ENERGY | science
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Rise of Al focused computing hardware Elaaa

Intel adding mixed
precision to Xeon
Phi (Knights Mill),
Also bought custom-
chip startup Nervana
and FPGA company
Altera

Many startups designing custom chips

GRAFHCORE

Extra motivation to use (pure-)ML/DL based
algorithms/frameworks for HEP/NP?

Office of
Science

27

NVIDIA builds DGX deep
learning appliance with
P100 and now V100 Voltas

Microsoft and
Baidu deploy
FPGA’s

Google
designs its
own TPU




Conclusions NEF

* Deep learning — fast moving field with many techniques and
tools applicable to HEP/NP problems
— Some HEP applications in ‘production” many more coming.
— Allows higher-dimensional ‘raw’ data, unsupervised learning, etc.
— Potential gains from new approaches e.g. in inference and simulation

* Build on industry tools and hardware to enable researchers
to develop new ML/DL algorithms and easily run at scale

— Challenges are computational; methodological and practical
— Welcome new collaborations; new ideas; joint events etc.

& "e,,% EEEEEEEEEEEEEE Office of
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Machine Learning in High Energy Physics NEF

* Machine learning including Neural Nets
(NN) have a long history in experimental
high-energy physics

— E.g. Peterson (1988) “Track finding with
Neural Networks”

:
:
:
S
i

iciency

Signal Eff
e o 2
~ oo

e
=N

=]
%

S«
N
A mp T

- ° ———— Angles

° ——— Cones + Angles

——o&—— Cones + Angles + Thrust + Sph

e
[SS)

* Heavy use for last ~20 years — largely
linear discriminants, decision trees
and NNS With one hidden Iayer 0 0‘.1 | 0‘.2 | 0‘.3 | 0‘.4 | 0‘.5 | 0‘.6 | 0‘.7 | 0‘8 | 0‘9 |

. . 1
Background Efficiency

——e—— Calc before cosf;) cut

e
[*)

—=—— Calcon K MC

S
—_

— To form or combine high-level domain-

- _ ROC curve — compares efficiency
specific variables

of searched for physics
— E.g. ‘Fisher linear’ discriminant in my 2002  ‘signal’ (true positive rate) to
PhD thesis on Babar experiment boring known-physics
@ ENERGY 2T 0. background (false positive rate)

Science




Deep learning: Rise of the Machine NEF

* Neutral Networks with multiple hidden layers
— Highly non-linear; millions of weights — huge capacity

— Clever architectures (e.g. convolutional neural networks
(CNNs)) to share weights — computationally tractable

— Not expolained in detail here — but a few important elements:

¢ d Compare outputs with correct
_ answer to get error derivatives
¥ =1z) . : '
Output units () 0, 2= S woy MUIUIayer - WelghtSl(W}Ej)/ -t Cost/loss funchon
o aE _ . dE .
Hidden units H2 ”Z(“ ) Nonﬁihzégr"_ft £ Backpropagation
jeH1 YRES to update weights

fl2) Z ia%(0,2) W

y;=1z)
&= }: W, X
e Input Fully-connected/hs

iw SmENE=EWNF R | SCence  Figyres from LeCun,Bengio,Hinton doi:10.1038/nature14539

, -3 w  Canbe trained by
stochastic gradient
descent
(SGD)

Hidden units H1 .

Input units .




« —-—
a7 AN

i,

¢ person seo00 ROGET
; U
' e \Y\\‘“Q e
SO on aSK e
©

e |

e iBrain Is Here—and It’s Already Inside Your Phone

Forbes Inside Baidu's
Global Leader

Intel is paying more t
learning startup Nerv

The chip giant is betting that machine learn|




Tools: Deep Learning Stack on HPC TR

‘+ PYTLRcH Caffe Neon, CNTK, MXNet, ...

Deep Learning Frameworks

TensorFlow

Cray ML PE
Multi Node libraries Plugin Horovod
MLSL
j | GRPC
Single Node libraries
MKL-DNN CuDNN
Hardware CPUs (KNL) GPUs FPGAs Accelerators

E By, U.S. DEPARTMENT OF Office of

& ) ENERGY Science | e




Deep networks with high-level variables &l i

ARTICLE
+ Firststepwastoreplace i SRl
E)SIStmg HEP ML approaches physics with deep learning
with deep fully connected

P. Baldi!, P. Sadowski' & D. Whiteson?
networks _comblplng hlgh- ATLAS ‘DL1": ATL-PHYS-PUB-2017-013
level physics variables

* Such approaches now used X ‘\\\‘:\
in production in HEP e
experiments aur| o4

From 21 to 28 4
input features 6-10 hidden Linear+Maxout layers

e Software tools and methods
have moved on considerably
since then allowing move to :
more raw information

( R% U.S. DEPARTMENT OF Office of
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Vs=13 TeV, 2016
£ 'F'CMS Simulafion Preimnary .
[ ttevents i i

CMS Dee ECSV. :;E;; | _ AKajets (o, > 30 GeV)
é g L

—udsg | | i

E, 1 gt i 1 1 -
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LHC — CNN Robustness and interpreting T

1.0

°
o

e Can apply without retraining to

other signal models (particle 2o
masseS) 20.4 —— Original

—— MGIlu_1400_MNeu_1050
—— MGIu_1400_MNeu_650
—— MGIu_1600_MNeu_850
—— MGIlu_1800_MNeu_850

* Captures power of jet variables "o oomz  oowa  omws  owos oo
— e.g. add selections to CNN
outputina 1l layer NN

I
[N]

10 A1
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Comparing CNN to jet variables NEF

* Plot NN output (P(signal)) vs
benchmark analysis varlable )

 (Clear correlation

— (Signal cuts:
Nlets >=4 /5
MJet >= 800/600 GeV)

500 1000 1500 2000 2500 3000 3500

e GV
 Add jet variable to CNN |
output in a 1 layer NN Folf ad
— Little/no increase in Tjﬁ
performance —an
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0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Science -36- . o
False Positive Rate (1 - Background Rejection)




Different signals and pileup NEF
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Repeat analysis with Delphes
pileup card (mu=20)
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Timings and Tensorflow

NS R
d CPU performance Of defaU|t TF Lasagne + Theano M Keras + Theano Keras + Tensorflow
i Keras + TF (Intel) Keras + TF (Latest)  Caffe
1.2 was poor : a6
* Intel optimisations with Intel g
Math Kernel Library (MKL) e.g. | &
Conv layers multi- 2. g 14
. = 1 0.6 4 )
threaded,vectorize channels/ o 0 . P
filters and cache blocking Hrete | Toeane Fomornowtrencorion] - tnten | tatest) [roncorou] e | ftaseeg | | <
— Released in main TF-repo GPu CPU - HsW CPU - KNL cPU -8

Node KNL

(now
also upstreamed): e.g. MKL
element-wise operations (avoid
MKL->Eigen conversions)

similar optimizations and Multi-
node with MLSL library e.g. scale to 8 nodes
time 6x faster for this 64x64 network
SRS U.S. DEPARTMENT OF Oﬁ»’ice Of
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Convolutional Autoencoder (ConvAE)

Figure from Dumoulin, Vincent, and
Francesco Visin. arXiv:1603.07285

 Learn alower dimensional, latent
representation of data
— Training target output is the input

* Encoder: (Convolutional) layers
transform input into feature vector

at bottleneck layer
L D eco d er: t rans p ose d Convolution step (convolution + pooling) Fully connected encoding step Deconvolution step (deconvolution + unpooling)

conv (deconvolutional) '

Iayers to reconstruct DL R
input Bk o | [
] Ij:/
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HEP use-case: Daya Bay Neutrino Experiment 0 aael

 Detector has 192 Photomultiplier
tubes in 8x24 cylinder

— Use calibrated charge in ‘image’

* Unsupervised training on experiment
data. But use existing analysis for
labeling after. Event types include:

— Inverse Beta Decay (IBD) prompt and
delayed signals

— Cosmic muon

— Flasher — instrument effect

U.S. DEPARTMENT OF Offlce of
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Clustering results

* Use 2 conv-layer ConvAE with a 10-d
bottleneck feature vector
— Project onto 2 arbirary axes with t-SNE

* Deep autoencoder reconstructs
patterns of physics interest

— Forms clusters for different physics
types (not trained with those labels)

* Potential for data quality monitoring
for new instrument effects or
generic new physics filters where
simulated training data doesn’t exist

U.S. DEPARTMENT OF Off.ce of

<> ENERGY Science M

Evan Racah, Seyoon Ko, Peter Sadowski, WB,
Craig Tull, Sang-Yun Oh, Pierre Baldi, Prabhat
https://arxiv.org/abs/1601.07621
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Generative Adversarial Networks — Loss functio

Minimax game formulation (saturating):

1 1
JP) = __E, p,  logD(x)— 5 Benp. log(1 = D((G(2)))

2
G D | I I I
J( ) — _J( ) i \ lan Goodfellow arXiv:1701.00160
0

Heuristic loss function (non-saturating): = _i| ]
1 _15 I — Minimax

J(G) — EZsz log D (G(Z)) . — Norll-saturating Iheuristic | |
2 0.0 0.2 0.4 0.6 0.8 1.0

D(G(=2))
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GAN not memorizing training images
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Michela Paganini, Luke de Oliveira,
Benjamin Nachmann
ca I 0 GAN https://arxiv.org/abs/1705.02355
. Particle physics uses detailed micro-physics detector o T
simulations (e.g. with Geant4)
¢ >~50% LHC computing budget (10° CPU hours)
e Much of this compute time in calorimeter ‘shower’
« CaloGAN models a 3-layer calorimeter
detector inspired by that of the ATLAS LHC
experiment

« Custom NN design
e Sparsity i,

« high dynamic range m L E
. highly location-dependent - ‘ M I
features ?96‘
)
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Michela Paganini, Luke de Oliveira,

Benjamin Nachmann
ca I 0 GAN - res u Its https://arxiv.org/abs/1705.02355

of
1

 Realistic average and
individual images

« Conditional generation

Average energy deposition per calorimeter layer in the GEANT4

based on p hysica I training dataset (top) and in the GAN generated dataset (bottom)

attributes I =

102

. Allowing parameter O ai BN BF ok gk ok pr g k)| @

Energy (MeV)

. . - - - ] - - - - - = 1071
interpolation and A W = w s A & W
extrapolation Reqwesed @) 19 31 2 ©3 B4 1 1o 1me mme mog
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