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The point I want to make

I Although nuclear and high energy physics once dealt with the world’s largest
datasets, this is no longer true. “Big Data” or (better) “Web Scale” analysis
regularly deals with petabytes and exabytes, and they’ve developed software
tools for it.

I We can reduce maintenance costs and improve students’ career options by
mixing industry standard tools with our in-house tools, particularly for cases
in which the purpose of the tool is the same.

I This is in line with ROOT’s new Python and TMVA interfaces, but broader:
data should flow freely to the best tool for the job and back again, leaving
the choice in the physicist’s hands.

In short, we should become like other sciences, such as astronomy or biology:
common libraries for common stuff and our own libraries for domain-specific stuff.
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We measure globally distributed data in hundreds of PB
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But for web scale companies, 100 PB = 1 truck
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Number of people (users and developers) also dwarf our field
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Number of people (users and developers) also dwarf our field

More users means more bug reports, more online help, more how-to blogs. . .

More developers means more bug-fixes, more features, more connectors. . .
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Another important metric: experience!

I Physicists have been performing big data analytics (reducing
large datasets to statistical inferences) for about 50 years.

I Web scale companies have been doing it for about 10 years.

Nuclear and high-energy physics analysis is specialized and
sophisticated— many tools we’d call “basic” are not implemented
in industry-grade software.

The simple prescription of “just use Spark” would leave analyzers
without some necessary tools.
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What should we do?

Option #1

All of our needs are
specialized.

Continue developing
our own everything.

Option #2

Modern big data
software has some
good ideas;
integrate those
ideas into our stack.

Option #4

Convince the world
to start using
physics analysis
techniques so that
they will develop
solutions for these,
too.

#3 is my opinion, but what’s domain-specific and what’s not?
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Three examples each:

What web scale software’s got

1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we need that it hasn’t got

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting
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Distributed DAG processing

not physics-specific
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Distributed DAG processing

DAG: Directed Acyclic Graph of dependencies between subtasks.
Some would say this is what big data processing is.

Many frameworks distribute work this way:

Spark (JVM), Dask, Joblib, Parsl (Python), Storm (continuous),
Thrill (C++), DAGMan (HTCondor), TensorFlow (fitting). . .

Physics software is embracing this approach:

I RDataFrame in ROOT

I Dozens of other examples at CHEP

10 / 30



RDataFrame from the ROOT Workshop (last week)
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But how will it develop?

Will RDataFrame be a programming model that interfaces
with distributed processing systems such as Spark?

Or will it be part of a ROOT implementation of distributed
DAG processing? A new PROOF, for instance?

Distributing computational tasks with dependencies is a good
example of a non-domain-specific problem.
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Nested data structures

strangely physics-specific, but shouldn’t be
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Nested data structures

Objects are essential in physics analysis.

Many physicists consider TTrees with
std::vector<float> branches to be
“minimal” or “flat.”

Most data analysis tools have an SQL
mindset, with rectangular data tables.

Objects → rectangular tables is lossy!

Performance claims often start the
stopwatch after this “data cleaning.”
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Nested data structures

Spark/Parquet/Arrow/HDF5/Pandas
has nested objects!

Nested data are in these projects’
scope, but as a second-class citizen.

I Spark DataFrames allow arrays of structs, but using them involves a
cumbersome explode-groupby or “drop to RDDs,” giving up performance.

I Parquet and Arrow specifications define lists of records, but they haven’t
been implemented in C++ and therefore Python yet (last time I checked).

I HDF5 has lists of compounds, but they’re rowwise (“unsplit”).

I Pandas can put arbitrary Python objects in DataFrames, but most
operations only apply to numbers.
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Nested data structures
>>> import uproot
>>> t = uproot.open("tests/samples/HZZ.root")["events"]
>>> t.pandas.df(["MET_px", "Muon_Px", "Electron_Px"], entrystart=-20, flatten=False)

MET_px Muon_Px Electron_Px
2401 2.998099 [-1.492689] []
2402 27.944883 [-4.560287] []
2403 3.787466 [-9.715589] []
2404 9.378232 [-31.072098] []
2405 -17.310106 [47.484627, 4.6953125] []
2406 -81.965927 [74.75617, -20.911081] []
2407 -9.059591 [25.786427, -29.265024] []
2408 25.649775 [] []
2409 29.691553 [-24.7368] []
2410 -25.754967 [53.005814, -30.208649] [-37.681973, 18.453588]
2411 -2.426847 [55.7203, -26.914448] []
2412 -15.611773 [14.896802] []
2413 18.921183 [-24.158083] []
2414 -11.730723 [-9.204197] []
2415 -10.648725 [34.506527, -31.56778] []
2416 -14.607650 [-39.285824] []
2417 22.208313 [35.067146] []
2418 18.101646 [-29.756786] []
2419 79.875191 [1.1418698] []
2420 19.713749 [23.913206] []

In some cases, maybe we’re
using the wrong idiom:
instead of working with
structured values, Pandas
prefers structured indexes.
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Nested data structures

But that shouldn’t be the only way: we should be able to use our data models
and algorithms, even if we run them in non-physics frameworks.

This is my main project now: fast manipulation of columnar data.

General programming model

@numba.jit # LLVM-compiled Python
def deltaphi(event):

metphi = event.MET.phi
for jet in event.jets:

yield metphi - jet.phi

Numpy-like broadcasting

# one per event one per particle
event["MET"]["phi"] - event["jet"]["phi"]

Also, this should be of wider interest than physics: developers of Arrow, Dask,
and XND (∼Numpy 2.0) are curious about it.
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Missed opportunity

1970 1980 1990 2000 2010 2020

ZEBRA
(1983)

YBOS
(CDF r1)

Objectivity
(c.1994-2004)

HYDRA
(1973)

ZBOOK
(1974)

BOS
(1975)

ROOT
(1995)

CWN
in PAW
(1989)

FORTRAN C++

MonetDB
(2002)

C-Store
(2005)

Dremel
(2010)

Parquet
(2013)

Arrow
(2016)

ProtoBuf
(2001) Avro

(2009) 

Nested data structures
in particle physics

Industry solutions

Google Dremel paper (2010):
(inspired Parquet)
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Indexed analysis

not well-known in our field
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What is indexing?

A way of organizing analysis:

I PAW/HBOOK histograms were indexed by integer IDs

I ROOT histograms are indexed by string names

I ROOT TTrees are indexed by integer entry numbers

I Excel spreadsheets are indexed by integer row and letter column IDs

I SQL tables are indexed by unordered sets

I Pandas DataFrames are indexed by ordered, structured series
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Pandas is not a TTree replacement!

Most of Pandas’s functionality is about manipulating data by index, and the
whole DataFrame must fit in memory.

result = left.join(right, how="inner")

None (?) of TTree’s functionality is about manipulating data by index, and it’s
focused on lazily loading large datasets.
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Pandas DataFrames resemble histograms, not TTrees

Histograms are mappings from intervals to weighted counts and their errors.

Profiles are mappings from intervals to weighted means and standard deviations.

Pandas has an interval key type, as well as MultiIndexes for multiple dimensions.

Since the index is explicit, rather than by position in an array, there’s no
distinction between sparse and dense histograms. (Drop zero-valued rows and
impute zero on merge.)

Fluidly convert between MultiIndexes and columns with pivot_table().

(Stop making arrays and std::maps of TH3!)
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Indexed analysis

>>> from histbook import *
>>> multihist = Hist(
... bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.pandas()

MultiIndex key Columns
--------------------------------------------------+---------------------

| count() err(count())
mass q1*q2 < 0 mt1 mt2 |
[-inf, 0.0) fail [-inf, 0.2) [-inf, 0.2) | 0.0 0.0

[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0

[0.2, 0.5) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0

[0.5, inf) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0

pass [-inf, 0.2) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0

[0.2, 0.5) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0

[0.5, inf) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
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Indexed analysis

>>> from histbook import *
>>> multihist = Hist(
... bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.step("mass")
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Indexed analysis

>>> from histbook import *
>>> multihist = Hist(
... bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
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Indexed analysis
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Indexed analysis

>>> from histbook import *
>>> multihist = Hist(
... bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
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Indexed analysis

>>> from histbook import *
>>> multihist = Hist(
... bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.below("mt1").beside("mt2").overlay("q1*q2 < 0").step("mass")
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From “Pandas DataFrames for F.A.S.T. binned analysis at CMS”

Pandas
DataFrames
filled by
AlphaTwirl,
analyzed by
F.A.S.T.
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Advanced histogramming

very physics-specific
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Advanced histogramming

The histograms themselves, however, are more sophisticated in
particle physics software than elsewhere.

I As far as I have found, only particle physics packages (ROOT, YODA,
go-hep/hbook, AIDA, HippoDraw, Jas3, mn fit, PAW, HBOOK)
conceive of histograms as containers to be filled.

Exception: Boost.Histogram, currently under review (Hans Dembinski, LHCb)

I In non-physics packages, “histogram” is more of a display option than an
analysis tool, with no way to access contents or control binnning.

I Profile plots are only in our tools.

I Good log-scale handling is hard to find, too.

These features are our responsibility.
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Machine learning versus ansatz fitting

27 / 30



Machine learning versus ansatz fitting

Machine learning: it’s just fitting.

It’s fitting with thousands of free parameters, where the goal is not to find a
global minimum or understand the limiting value of those parameters, but to
generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters,
and the exact shape of the minimum has implications for the theory.

Qualitatively different purposes: both needed.

We can look to industry for machine learning innovations, but the best ansatz
fitters are in our field: RooFit, GooFit, HistFitter, HistFactory, Combiner, pyhf. . .
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Areas of overlap

What they’ve got

1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting
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What they’ve got

1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting

Nearly all ML techniques require flattened or sequences of flattened data,
but we have real problems that need nested data: e.g. classifying Ni jets per event
(nested, unordered sets). RNNs and LSTMs (for non-nested, ordered sequences)
are designed for a different data type!
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What they’ve got

1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting

F.A.S.T. and histbook are incorporating Pandas indexing into advanced
histogramming.
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Areas of overlap

What they’ve got

1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting

As fits get bigger, they may need to be distributed, for instance with
iterative map-reduce.
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Conclusions

Data analysis tools outside of particle physics are mature but not a
perfect fit to our needs.

I Some of what we need is available now: can we use it?

I Some exists only as physics software: can it interoperate?

I Some of what’s available is unlike anything we do now:
an opportunity to do better physics?

I The door swings both ways: we have things to teach the world!
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