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» Although nuclear and high energy physics once dealt with the world’s largest
datasets, this is no longer true. “Big Data” or (better) “Web Scale” analysis
regularly deals with petabytes and exabytes, and they've developed software
tools for it.
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» Although nuclear and high energy physics once dealt with the world’s largest
datasets, this is no longer true. “Big Data” or (better) “Web Scale” analysis
regularly deals with petabytes and exabytes, and they've developed software
tools for it.

» We can reduce maintenance costs and improve students’ career options by
mixing industry standard tools with our in-house tools, particularly for cases
in which the purpose of the tool is the same.

» This is in line with ROOT's new Python and TMVA interfaces, but broader:
data should flow freely to the best tool for the job and back again, leaving
the choice in the physicist’s hands.

In short, we should become like other sciences, such as astronomy or biology:
common libraries for common stuff and our own libraries for domain-specific stuff.
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We measure globally distributed data in hundreds of PB

CERN community

~ CERN Data Centre basses the
200-petabyte mllestone

2 by Meélissa Gaillard

CERN's Data Centre (Image: Robert HradiL, Monika Majer

T
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But for web scale companies, 100 PB = 1 truck @

About CERN Students & Educators Scientists CERN community English |~ Francais

Experiments Physics Computing Engineering g Updates  Opinion

CERN Data Centre passes the T o

« - 200-petabyte milestone -

.. by Mélissa Gaillard

- &% AWS Snowmobile: 100PB Container - 1 F

I | ./

45-foot long Connect to your Fill 'er Up! Transports Data-
rugged i d. with To AWS ,l ,
& truck fiber cable

CERN's Data Centre (Image: Robert Hradil, Mo}



Number of people (users and developers) also dwarf our field @

B Google Trends "Spark DataFrame"
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Number of people (users and developers) also dwarf our field @

B Google Trends

50

25 ar Y " Y "Spark DataFrame"

Aug 4,2013 Jan 3,2016 Jun 3, 2018

"ROOT TTree"

More users means more bug reports, more online help, more how-to blogs. ..

More developers means more bug-fixes, more features, more connectors. . .
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Another important metric: experience!

» Physicists have been performing big data analytics (reducing
large datasets to statistical inferences) for about 50 years.

» Web scale companies have been doing it for about 10 years.
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Another important metric: experience!

» Physicists have been performing big data analytics (reducing
large datasets to statistical inferences) for about 50 years.

» Web scale companies have been doing it for about 10 years.

Nuclear and high-energy physics analysis is specialized and
sophisticated— many tools we'd call “basic” are not implemented

in industry-grade software.

The simple prescription of “just use Spark” would leave analyzers
without some necessary tools.

6/30



What should we do?

Option #1

All of our needs are
specialized.

Continue developing
our own everything.
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What should we do?

Option #1

All of our needs are
specialized.

Continue developing
our own everything.

Option #2

Modern big data
software has some
good ideas;
integrate those

ideas into our stack.

Option #3

Narrow our scope to
domain-specific
tools, what no one
else is developing,
and make them
interoperate with
non-physics tools
for the common
parts.
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All of our needs are  Modern big data Narrow our scope to  Convince the world
specialized. software has some domain-specific to start using
Continue developing good ideas; tools., what no one physic.s analysis
our own everything. |.ntegr.ate those else is developing, technlques so that
ideas into our stack. and make them they will develop
interoperate with solutions for these,
non-physics tools too.
for the common
parts.

#3 is my opinion, but what’s domain-specific and what’s not?
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What web scale software’s got What we need that it hasn't got
1. Distributed DAG processing 1. Nested data structures
2. Indexed analysis 2. Advanced histogramming

3. Machine learning 3. Ansatz fitting
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Distributed DAG processing

not physics-specific
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Distributed DAG processing

DAG: Directed Acyclic Graph of dependencies between subtasks.
Some would say this is what big data processing is.

Many frameworks distribute work this way:

Spark (JVM), Dask, Joblib, Pars| (Python), Storm (continuous),
Thrill (C+4), DAGMan (HTCondor), TensorFlow (fitting). ..

Physics software is embracing this approach:

» RDataFrame in ROOT
» Dozens of other examples at CHEP
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RDataFrame from the ROOT Workshop (last week)

Case study: ATLAS SUSY ntuple — ntuple

e O data
() transformation
data cleaning & Py —
| filters |

alias systematic ==
variables 4 |
to normalized AT \
column names \ aheges \ A~ >
‘ defines. ) 4
cuts on variables -E § I I
that depend on 7 . o
systematics ;‘ |Iters ) v/
correlations defi
and other r efines | / I
useful N cutﬂow (] L)
quantities report . :
write out é) é
processed /
ntuple systematics #1  syst #2 syst #60

E. Guiraud, "RDataFrame’, ROOT users’workshop 2018

Local ntuple — ntuple processing
MC data is processed to add quantities
that are relevant for publication

program’s main reads similarly to this graph

the large blue boxes represent one single function
that applies the same operations to an RDF variable
and is re-used for all different systematics

cuts, calculations and writing of the 60 output trees
all happen in the same multi-thread event loop
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RDataFrame from the ROOT Workshop (last week)
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\ deﬁnes () similarly to this grap
ctﬁ%léiﬂibolf ; I resent one single function
systematics \ fiters | L) \ erations to an RDF variable
- : /b : erent systematics
correlations defi )
and other f\ ¢ ‘”e_? A ing of the 60 output trees
quenttes || 1 Cr‘ﬂfév o Iti-thread event loop
write out é)
processed /
R systematics #1  syst #2

E. Guiraud, "RDataFrame’, ROOT users’ workshop 201 11/30



But how will it develop?

Will RDataFrame be a programming model that interfaces
with distributed processing systems such as Spark?

Or will it be part of a ROOT implementation of distributed
DAG processing” A new PROOF, for instance?
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But how will it develop?

Will RDataFrame be a programming model that interfaces
with distributed processing systems such as Spark?

Or will it be part of a ROOT implementation of distributed
DAG processing” A new PROOF, for instance?

Distributing computational tasks with dependencies is a good
example of a non-domain-specific problem.
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Nested data structures

strangely physics-specific, but shouldn't be
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Nested data structures
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472 -0.207 0.953
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Nested data structures

mu1 mul mu2
phi eta P,

311 -0.481 0882 9.76 -0.124 0.924

5.27 1.246 -0.991

472 -0.207 0.933

859 -1.754 -0.264 8714 0.185 0.629

8.18 -0.119 0.923

Objects are essential in physics analysis.

Many physicists consider T Trees with
std: :vector<float> branches to be
“minimal” or “flat.”
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Nested data structures

-0.119

0.923

8.18

Objects are essential in physics analysis.

Many physicists consider T Trees with
std: :vector<float> branches to be
“minimal” or “flat.”

mu1 mul mu2 mu2 mu2
phi eta P, phi eta

311 -0.481 0882 9.76 -0.124 0.924

5.27 1.246 -0.991

472 -0.207 0.933

859 -1.754 -0.264 8714 0.185 0.629

Most data analysis tools have an SQL
mindset, with rectangular data tables.

Objects — rectangular tables is lossy!

Performance claims often start the
stopwatch after this “data cleaning.”
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Nested data structures

Spark/Parquet/Arrow/HDF5/Pandas
has nested objects!
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Nested data structures @

Spark/Parquet/Arrow/HDF5/Pandas | | Nested data are in these projects’
has nested objects! scope, but as a second-class citizen.

» Spark DataFrames allow arrays of structs, but using them involves a
cumbersome explode-groupby or “drop to RDDs,” giving up performance.

» Parquet and Arrow specifications define lists of records, but they haven't
been implemented in C++ and therefore Python yet (last time | checked).

» HDF5 has lists of compounds, but they're rowwise (“unsplit”).

» Pandas can put arbitrary Python objects in DataFrames, but most
operations only apply to numbers.
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Nested data structures

>>> import uproot

>>> t = uproot.open("tests/samples/HZZ.root") ["events"]

>>> t.pandas.df (["MET_px", "Muon_Px", "Electron_Px"], entrystart=-20, flatten=False)
MET_px Muon_Px Electron_Px

2401 2.998099 [-1.492689 [1

2402 27.944883 [-4.560287 [1

2403 3.787466 [-9.715589 [1

2404 9.378232 [-31.072098 [1

2405 -17.310106 [47.484627, 4.6953125 [1

2406 -81.965927 [74.75617, -20.911081 [1

2407 -9.059591 [25.786427, -29.265024 [1

]

]

]

]

]

]

]
2408 25.649775 0 0 ,
2409 29.691553 (-24.7368) 0 In some cases, maybe we're
2410 -25.754967 [53.005814, -30.208649] [-37.681973, 18.453588] . - .
2411 -2.426847 [55.7203, -26.914448] 1 using the wrong idiom:
2412 -15.611773 [14.896802] 0 . : .
2413 18.921183 [-24.158083] [ instead of WOrklng with
2414 -11.730723 [-9.204197] 0
2415 -10.648725  [34.506527, -31.56778] [ structured values, Pandas
2416 -14.607650 [-39.285824] 0 .
2417 22.208313 [35.067146] 0 prefers structured indexes.
2418 18.101646 [-29.756786] 0
2419 79.875191 [1.1418698] 0
2420 19.713749 [23.913206] 0
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Nested data structures

>>> import uproot

>>> t = uproot.open("tests/samples/HZZ.root") ["events"]
>>> t.pandas.df (["MET_px", "Muon_Px", "Electron_Px"], entrystart=-20, flatten=True)
MET_px Muon_Px Electron_Px
entry subentry
2401 0 2.998099 -1.492689 NaN
2402 0 27.944883 -4.560287 NaN
2403 0 3.787466 -9.715589 NaN
2404 0 9.378232 -31.072098 NaN
2405 0 -17.310106 47.484627 NaN
1 NaN 4.695312 NaN
2406 0 -81.965927 74.756172 NaN '
1 NaN —20.611081 N In some cases, maybe we're
2407 0 -9.059591 25.786427 NaN . T i
1 NaN -29.265024 NaN using the wrong idiom:
2408 0 25.649775 NaN NaN . . .
2409 0 29.691553 -24.736799 NaN instead of Worklng with
2410 0 -25.754967 53.005814  -37.681973
1 NaN -30.208649  18.453588 structured values, Pandas
2411 0 -2.426847 55.720299 NaN .
1 NaN —26.914448 Naw prefers structured indexes.
2412 0 -15.611773 14.896802 NaN
2413 0 18.921183 -24.158083 NaN
2414 0 -11.730723 -9.204197 NaN
2415 0 -10.648725 34.506527 NaN
1 NaN -31.567780 NaN
2416 0 -14.607650 -39.285824 NaN
2417 0 22.208313 35.067146 NaN
2418 0 18.101646 -29.756786 NaN
2419 0 79.875191  1.141870 NaN
2420 0 19.713749 23.913206 NaN 16 /30
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But that shouldn't be the only way: we should be able to use our data models
and algorithms, even if we run them in non-physics frameworks.
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Nested data structures

But that shouldn't be the only way: we should be able to use our data models
and algorithms, even if we run them in non-physics frameworks.

This is my main project now: fast manipulation of columnar data.

General programming model Numpy-like broadcasting

@numba. jit # LLVM-compiled Python

def deltaphi (event): # one per event one per particle
metphi = event.MET.phi event ["MET"] ["phi"] — event["jet"]["phi"]

for jet in event. jets:
yield metphi - jet.phi
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But that shouldn't be the only way: we should be able to use our data models
and algorithms, even if we run them in non-physics frameworks.

This is my main project now: fast manipulation of columnar data.

General programming model Numpy-like broadcasting

@numba. jit # LLVM-compiled Python

def deltaphi (event) : # one per event one per particle
metphi = event.MET.phi event ["MET"] ["phi"] — event["jet"]["phi"]

for jet in event. jets:
yield metphi - jet.phi

Also, this should be of wider interest than physics: developers of Arrow, Dask,
and XND (~Numpy 2.0) are curious about it.
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Missed opportunity

FORTRAN C++ Nested data structures
in particle physics

>

Objectivity
(c.1994-2004)

Industry solutions

ProtoBuf

Avro
(2001) (2009) Arrow

C-Store (2016)
(2005) Parquet

MonetDB ()

Dremel
(2002) (2010)

1 1 1 I 1 1 1 1 I 1 1 1 1 I >
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Missed opportunity

FORTRAN C+ Nested data structures
in particle physics

>

(1995)

Objectivity

(c.1994-2004)
Industry solutions
ProtoBuf Avio
(2001) (2009) Arrow
C-Store {2016)
(2005) Pgrquet
MonetDB D (I i)
2002) reme
( (2010)
1 1 1 I 1 1 1 1 I 1 1 1 1 I ;
1970 1980 1990 2000 2010 2020

storage and reduce CPU cost due to cheaper compression. Column
stores have been adopted for analyzing relational data [1] but to the
best of our knowledge have not been extended to nested data mod-
els. The columnar storage format that we present is supported by

Google Dremel paper (2010):

(inspired Parquet)
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Indexed analysis

not well-known in our field
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What is indexing?

A way of organizing analysis:

PAW/HBOOK histograms were indexed by integer IDs
ROQOT histograms are indexed by string names
ROOT TTrees are indexed by integer entry numbers

Excel spreadsheets are indexed by integer row and letter column IDs

>
>
>
>
» SQL tables are indexed by unordered sets
>

Pandas DataFrames are indexed by ordered, structured series
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Pandas is not a T Tree replacement! @

Most of Pandas's functionality is about manipulating data by index, and the
whole DataFrame must fit in memory.

result = left.join(right, how="inner")

left right Result

(= o A -] [ o

o m

an|a|a

]
IR
i

glalao]|&
dla]l=s]d
graojaja
dglAa]l&]d
ElEB|E|E
BRIB|ER] B
glaolola

o3 o

[}

None (?) of TTree's functionality is about manipulating data by index, and it's
focused on lazily loading large datasets.
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- ]
Pandas DataFrames resemble histograms, not T Trees ' @

Histograms are mappings from intervals to weighted counts and their errors.
Profiles are mappings from intervals to weighted means and standard deviations.

Pandas has an interval key type, as well as Multilndexes for multiple dimensions.
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Pandas DataFrames resemble histograms, not T Trees @

Histograms are mappings from intervals to weighted counts and their errors.
Profiles are mappings from intervals to weighted means and standard deviations.
Pandas has an interval key type, as well as Multilndexes for multiple dimensions.
Since the index is explicit, rather than by position in an array, there's no
distinction between sparse and dense histograms. (Drop zero-valued rows and
impute zero on merge.)

Fluidly convert between Multilndexes and columns with pivot_table().

(Stop making arrays and std: :maps of TH3!)
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Indexed analysis

>>> from histbook import =

>>> multihist = Hist (
bin("mass", 100, 0, 500), cut("gl+xg2 < 0"),
split ("mt1l", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.pandas ()
MultiIndex key Columns
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U,
| count () err(count())
mass glxg2 < 0 mtl mt2
[-inf, 0.0) fail [-inf, 0.2) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0
[0.2, 0.5) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0
[0.5, inf) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0
pass [-inf, 0.2) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0
[0.5, inf) | 0.0 0.0
[0.2, 0.5) [-inf, 0.2) | 0.0 0.0
[0.2, 0.5) | 0.0 0.0 23/30



Indexed analysis

>>> from histbook import =

>>> multihist Hist (
bin("mass", 100, O,
split ("mt1l", [0.2,

>>> multihist.step("mass")

500), cut("glxg2 < 0"),

0.51), split("mt2", [0.2, 0.5]), fill=df)

count

0 160 200 300 400 500
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Indexed analysis

>>> from histbook import =
>>> multihist = Hist(
bin("mass", 100, 0, 500),
split ("mt1l", [0.2, 0.51),
>>> multihist.overlay ("glxg2 < 0")

count

cut ("glxg2 < 0"),

split ("mt2", [0.2,

.step("mass")

al*q2 <0
0 fail

) pass

0.51),

fill=df)
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Indexed analysis

>>> from histbook import =

>>> multihist = Hist(

bin("mass", 100, 0, 500), cut("glxg2 < 0"),

split ("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), £fill=df)
>>> multihist.stack ("glxg2 < 0").area("mass")

al*q2 <0
® fail

® pass

stacked count
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Indexed analysis

>>> from histbook import =
>>> multihist = Hist(

bin("mass", 100, 0, 500), cut("gl+xg2 < 0"),

split ("mt1l", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.beside ("glxg2 < 0").step("mass")

alrq2 <0
fail pass

’l M
ol

0 160 200 300 400506 0 160 200 300 400 500

count
&
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Indexed analysis

>>> from histbook import =
>>> multihist = Hist(

bin("mass", 100, 0, 500), cut("gl+xg2 < 0"),

split ("mt1l", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.below ("mt1") .beside ("mt2") .step ("mass")

mt2
[inf, 0.2) 10.2,0.5) (0.5, inf)

102,05
count

(0.5, inf)
count

10
aM TR Ak, I

o 160 200 360 4b0sod 0 160 200 300 460500 0 160 200 300 460 500 23/30




Indexed analysis

>>> from histbook import =
>>> multihist = Hist(
bin("mass", 100, 0, 500), cut("gl+xg2 < 0"),
split ("mt1l", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.below("mt1") .beside ("mt2") .overlay ("glxg2 < 0").step("mass")

mt2
[nf, 0.2) 102,05) (0.5, inf)

ar*q2 <0
50 O fail

I
.
U b P M

pass

-inf, 0.2)
count

10

0 160 200 300 400500 0 160 200 300 400500 O 160 200 300 400 500 23/30




From “Pandas DataFrames for F.A.S.T. binned analysis at CMS" w @

component depth

class

single_top

LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr

ev:len(evMuon_lso_ldx) >=2
ev: evriggerisoMu24[0]
ev:evMuon_P(0]>25
ev:len(evMuon_lso_ldx) >=2
ev: eviriggerlsoMu24[0]
ev:evMuon_P(0]>25
ev:len(evMuon_lso_ldx) >= 2
ev: ev.riggerisoMu24[0]
ev:evMuon_P(0]>25
ev:len(evMuon_lso_ldx) >= 2
ev: eviriggerlsoMu24[0]
ev:evMuon_P(0]>25
ev:len(ey

evi

16208
16208
15995
37559
37569
37263

469384
16208
16208
77729
37559
37559

« component depth

Selection:

class

Selection:
All:

- len(ev.Muon_Iso_Idx)
- ev.triggerIsoMu24[0]
- ev.Muon_Pt[0] > 25

Example Cut-flow
Dataframe

evtlen(ey
data
ovi
o
ev:len(e
ovd
B
ev:len(es
ovd

o

ev:len(ey
ev:ev.triggerlsoMu24{0]
ev:evMuon_P{0]>25

ernch

1235
1232

1

LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr

LambdaStr

ev:len(ev.Muon_lso_ldx) >=2
ev: ev.triggerlsoMu24[0]
ev:ev.Muon_Pt[0] > 25
ev:len(ev.Muon_lso_ldx) >=2
ev: ev.triggerlsoMu24[0]
ev:ev.Muon_P{[0] > 25

FAST: Pan

16208
16208
15995
37559
37559
37263

469384
16208
16208
77729
37559
37559

sed binned

Pandas
DataFrames
filled by
AlphaTwirl,
analyzed by
F.AS.T.
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From “Pandas DataFrames for F.A.S.T. binned analysis at CMS" w @

Pandas
Manipulating DFs: Long to wide form DataFrames
# Cnar vrinee -t filled by

df["err"] = np.sqrt(df.nvar)

# Switch to long-form AIphaTW|r|,
df2 df.pivot table(index="dimu mass" component", values=["n", "err"])
analyzed by

df2 = df2.sort_index(axis=1,
a2t rqca, *single.top'] F.AST.

# Sort components to match tutorial
order = ["data", "ttbar", "wjets", "dy", us
df2 = df2.reindex(order, axis=1, level="component")

# Show first 10 rows
df2.head(10)

n err
component data ttbar wiets  dy single_top data ttbar  wjets
dimu_mass
-inf 9930 11.392980 0311917 655570771 3600221 0320914 0.360053 1.741041 31511903 1.752727 0311917

60.000000 380 0840432 0.000000 23.963227 0.063284 0.053328 0.000000 0.065288 6.164414 0.486302 0.000000

61.000000 250 0319709 25572841 0.102053 0.000000 NaN  0.005831 5000000 0.275655

62.000000 220 0274432 20271624 0.068484 0.038697 NaN  0.000000 4690416 0.274432

63.000000 280  0.000000 22.941727 0.194258 0.000000 0.009475 NaN 5291503 0.000000

64.000000 290 0847224 20534599 0.065338 0.081642 0.009540 NaN 5385165 0.490427

65.000000 17.0 0352667 20464412 0.130224 0000000 0.004153 ~ 0.093700 4.123106 0.282423

66.000000 37.0 0570011 27.861013 0.128668 0.059988 0.015375 0.000000 6.082763 0403615

67.000000 340 0817704 34173523 0.063818 0000000 0.017707 0.000652 5830952 0.475827

68.000000 31.0 0753107 26971645 0.024008 0.042326 0.000000 0.000000 5567764 0.440761

Depending on task, ‘wide-form” tables can be easier
to work with

8, b.krikler@cern.ch

FAST: Pan based binned analysis 24/30



Advanced histogramming

very physics-specific
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Advanced histogramming @

The histograms themselves, however, are more sophisticated in
particle physics software than elsewhere.

> As far as | have found, only particle physics packages (ROOT, YODA,
go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK)
conceive of histograms as containers to be filled.

Exception: Boost.Histogram, currently under review (Hans Dembinski, LHCb)

» In non-physics packages, “histogram” is more of a display option than an
analysis tool, with no way to access contents or control binnning.

» Profile plots are only in our tools.

» Good log-scale handling is hard to find, too.

These features are our responsibility.
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Machine learning versus ansatz fitting @

Machine learning: it’s just fitting.

It's fitting with thousands of free parameters, where the goal is not to find a
global minimum or understand the limiting value of those parameters, but to
generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters,
and the exact shape of the minimum has implications for the theory.

Qualitatively different purposes: both needed.

We can look to industry for machine learning innovations, but the best ansatz
fitters are in our field: RooFit, GooFit, HistFitter, HistFactory, Combiner, pyhf. ..
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Areas of overlap

What they've got What we'd need
1. Distributed DAG processing 1. Nested data structures
2. Indexed analysis 2. Advanced histogramming

3. Machine learning 3. Ansatz fitting
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Areas of overlap @

What they've got What we'd need
1. Distributed DAG processing 1. Nested data structures
2. Indexed analysis 2. Advanced histogramming
3. Machine learning 3. Ansatz fitting

Nearly all ML techniques require flattened or sequences of flattened data,
but we have real problems that need nested data: e.g. classifying N; jets per event
(nested, unordered sets). RNNs and LSTMs (for non-nested, ordered sequences)
are designed for a different data type!
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Areas of overlap

What they've got What we'd need

1. Distributed DAG processing 1. Nested data structures

2. Indexed analysis 2. Advanced histogramming
3. Machine learning 3. Ansatz fitting

F.A.S.T. and histbook are incorporating Pandas indexing into advanced
histogramming.
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Areas of overlap

What they've got What we'd need

1. Distributed DAG processing 1. Nested data structures
2. Indexed analysis 2. Advanced histogramming
3. Machine learning 3. Ansatz fitting

As fits get bigger, they may need to be distributed, for instance with
iterative map-reduce.
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Data analysis tools outside of particle physics are mature but not a
perfect fit to our needs.

» Some of what we need is available now: can we use it?
» Some exists only as physics software: can it interoperate?

» Some of what's available is unlike anything we do now:
an opportunity to do better physics?
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perfect fit to our needs.

» Some of what we need is available now: can we use it?
» Some exists only as physics software: can it interoperate?

» Some of what's available is unlike anything we do now:
an opportunity to do better physics?

» The door swings both ways: we have things to teach the world!
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