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Deep Learning

» Neural networks as function
approximator

= Learns from map of inputs and
outputs

= Outputs given by
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Deep Learning in HEP

Inspiration Questions

= Machine learning approaches are “ How big does the network
already used to solve have to be?

I ) . :
classification problems in HEP = This effects how effectively we

= “Searching for Exotic Particles in survey hyperparameter space

High-Energy Physics with Deep . .
Learning” (P. Baldi et al., 2014) = Too big — overfitting
" Too small — can’t fit



Deep Learning Study

“ Network training

= Examine basic functions = GPUs
“ Vector to Vector = Keras with Theano
= Vector to Vector? = 5 trials (trained on | million
= Vector to |Vector|?2 samples, validated on 10,000)
= Used toy model to generate = MSE loss function
reasonable parameters for = Adam optimizer with default
momentum vectors parameters
= Inputs standardized for training = Batch size: 000  Epochs: 5000

= Saved model from best epoch



Vector to Vector

Mapping a vector onto itself

The solution needs to satisfy...

AB=I Ba+b=0
Obvious solution:
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What the NN training actually found (one trial):
0.711  0.279  0.266 ] [1.474
a =

A=10.023 0.494 —-0.102 1.929

—0.091 0.354 0.471 1.448

B =1-0.009 1.754 0.386 —1.154

0.260 —1.354 1.682 —2.203

1.313  —0.182 0.782] [2.294]
b =

NN finds a correct solution even if it is not the simplest solution (fewest non-zero
weights).
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In networks with few nodes, we can see the segments used to
approximate the function.




Vector to Vector?>

|00 Nodes

input2
Entrigs 10000
Mean x 0.01187
Mean y 3.318
RMS x 1.821
RMS y 2.832
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As the number of nodes increases, the curve becomes smoother.
This indicates a better approximation of the function V2.



Vector to Vector?>

inProf2
Entries 10000
Mean B.01156
Meany oloo2728
RMS 1 1.821

= Zero crossings correspond to
the segments used to
approximate V2
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= Divided among the 3 variables
(not always evenly)
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= Suspect this is from RelLU case
where all inputs < 0 and
gradient becomes 0.
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= |nitial weights also play a role



Cost Function
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Vector to |Vector|?

“ Intuitive Strategy

= Use the best networks fromV to
V2

= One layer with 500 nodes

= Add a summation layer that adds
the V2 outputs

“ One layer with 3 nodes

( 500 hidden nodes )




Vector to |Vector|?

= Intuitive Strategy = Alternative Strategies
= Use the best networks fromV to = Tried many, for example, add a
V2 layer, but keep the total nodes
constant

= Add a summation layer that adds
the V2 outputs

251 hidden nodes )
251 hidden nodes )

3 hidden nodes

( 500 hidden nodes )




Intuitive

Validation Plot for Two Layer Network with 500 Nodes and 3 Nodes
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Future Work

Ask questions similar to Vector to |Vector|? experiment, but this time
taking multiple four vectors as inputs.

Intuitive Unstructured
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Conclusions

“ NN’s find solutions to problems that aren’t always the most intuitive

= It is important to understand the fundamentals of NN behavior before
applying them to more complicated problems

“ We can develop better intuition for creating networks that work for HEP
analysis

= Do we guide the network towards the solutions we’d like or give it free
reign?



Questions?




