
For the Machine Intelligence and Reconstruction Group
Aristeidis Tsaris - atsaris@fnal.gov
Machine Learning Seminar @ JLab // November 6, 2018

Machine Intelligence Applications for Particle Physics 
@Fermilab



7/19/2016 A. TsarisMachine Learning Seminar @ JLab // November 6, 2018 A. Tsaris

Science @Fermilab
• Fermilab is America’s particle 

physics and accelerator 
laboratory.

• Diverse program: neutrinos, 
collider physics, muons, astronomy 
and cosmology, theory, dark matter 
and dark energy searches.

• We are pioneers in detector 
technology, computing, and 
quantum initiatives.

• Fermilab is using machine learning 
across all programs.

• Today: case studies from NOvA. 
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The NOvA Experiment
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• NuMI Off-axis νe  Appearance 
Experiment

• NuMI: Neutrinos at the Main 
Injector

• Long-baseline (anti-)neutrino  
oscillation experiment

• Two functionally identical 
detectors, optimized for νe 

identification
• Primary goal: 

measurement of 3-flavor 
oscillations via νμ→νμ and 
νμ→νe

• Other goals include: 
– Searches for sterile neutrinos
– Neutrino cross sections
– Supernova neutrinos
– Cosmic ray physics
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NOvA Detectors
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» Highly segmented low Z tracking calorimeter.
» Cells are filled wit liquid scintillator

» wave shifting fiber readout.
» 65% active by volume
» Detection with avalanche photo diodes.
» Alternating X/Y planar geometry: 3D reconstruction
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Part I
Neutrino Flavor Classification
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Can You Find the Neutrino?
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High cosmic rate of 148 kHz
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Zooming in …
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Cosmic rays 
down going

Beam forward going
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Event Topologies

• Low Z detector materials 
lead to long tracks and 
well developed showers

• Key challenges:
» Discriminating between 

muons and charged 
pions (muons produce 
longer tracks and less 
interaction with nuclei)

» Discrimination between 
electron and photons 
(photons can travel a 
short distance before 
showering)

8
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Traditional Electron Neutrino Selectors

• Likelihood based ID:
» Calculates transverse and 

longitudinal dE/dx 
likelihoods for various 
particle hypothesis

» There, plus topological 
features, are fed into a 
standard neural network

• Library Event Matching ID:
» Finds best matches to a 

library of simulated events
» Properties of the best 

matches are fed into a 
decision tree

9

– This techniques are only as good 
as our ability to think up features 
with good separation power and 
our ability to construct them 
robustly

– Number of hidden layers is limited 
due to large number of weights 
produced by fully connected layers
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Convolutional Neural Networks
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• Convolutional Layers: kernels are used to extract features          
and create feature maps

• Pooling Layers: downsample feature maps

• Fully Connected Layers: multi-classification output
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A Muon Neutrino Event
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Input Image
256 Feature Maps
Learned variations on the 

original image

Responding	
to	μ tracks.

Responding	to	
hadronic	activity.

νμ
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An Electron Neutrino Event

Input Image
256 Feature Maps
Learned variations on the 

original image

Responding	
to	e	showers.

Responding	to	
hadronic	activity.

νe
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Convolutional Visual Network (CVN)
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» Create a bi-columnar networks with shared weights
» Split views early to extract parallel features
» Merge together at the end before going through 

fully connected layers
» Ends with a feed forward neural network to create 

multi-classification
• Trained on 4.5+ million Monte Carlo beam events 

combined with cosmic ray data

A. Aurisano and A. Radovic 
and D. Rocco et. al, JINST 

11 P09001 (2016)

Going Deeper with Convolutions (arXiv:1409.4842)

https://arxiv.org/pdf/1604.01444.pdf
https://arxiv.org/pdf/1409.4842.pdf
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CVN Event Classification Matrix

• NOνA was the first HEP 
experiment to use CNN 
to extract published 
physics results

• It improved the 
headline analysis 
performance by 30%, 
equivalent to an 
equipment savings of 
approximately $72 
million
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Understanding the Network: Feature Embedding with t-SNE

15

https://indico.io/blog/visualizing-with-t-sne/

https://indico.io/blog/visualizing-with-t-sne/
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https://indico.io/blog/visualizing-with-t-sne/

Understanding the Network: Feature Embedding with t-SNE

https://indico.io/blog/visualizing-with-t-sne/
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Understanding the Network: Occlusion Tests

π
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Hybrid Event Testing: CVN on Read Data
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Part II
Beyond Neutrino Flavor Classification

19
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Particle Classification Using CNNs (Prong CVN)

20
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Particle Classification: Prong CVN

21

Single particles are separated 
using geometric reconstruction 
methods.

Classify particles using full 
event topology from both views 
as well as reconstructed cluster 
information (4 views)
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Prong CVN: Particle Classification Matrix

22

Read it by rowRead it by column
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Use case: π0 Mass Peak

• Data driven method to gauge the energy 
response of our near detector.

• Comparing the old method using 
traditional reconstruction with deep 
learning technique  lets us gain 12% 
increase in purity in selection. About the 
same efficiency. 
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Energy Reconstruction with Regression CNN

24
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Energy Reconstruction with Regression CNN: Architecture

• A variant of the CVN architecture
• To consider position dependence, reconstructed vertex 

positions in the two views used as neural network inputs
• Linear output for continuous variables
• No regularization

Triangle represent 
neural networksEstimate 

energy directly 
from pixel maps 
with minimal 
reconstruction
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Energy Reconstruction with Regression CNN: Training

• To precisely reconstruct energy, interested in energy 
resolution Ereco - Etrue / Etrue, so define loss function as:

• Use absolute error instead of mean squared error to prevent 
large impacts from outliers

• New hyperparameter optimization was necessary
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• Calorimetric energy: Sum of calibrated energy with a scale factor
• Kinetic energy: Based on NOvA’s νe analysis 2017:

– E(νe) = A*EEM +B*EHAD +CEEM2 + DEHAD2

• CNN Energy: Regression CNN energy estimator

Energy Reconstruction with Regression CNN: Results
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Future Endeavors: Full Event Reconstruction

• Single particle classifier 
depends on the quality of 
clustering hits

• Hit level identification, were 
clustering and classifying 
particles at the same time: 
semantic segmentation

28

http://cvlab.postech.ac.kr/research/deconvnet/

http://cvlab.postech.ac.kr/research/deconvnet/
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Fermilab is using machine learning across all programs
Few examples…

29
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Many More Fermilab Machine Intelligence Applications

• Minerva: Reducing model bias in a deep learning classifier using 
domain adversarial neural networks in the MINERvA experiment 
(arXiv:1808.08332)

• MicroBooNE: A Deep Neural Network for Pixel-Level 
Electromagnetic Particle Identification in the MicroBooNE Liquid 
Argon Time Projection Chamber (arXiv:1808.07269)

• LHC: Real Time AI: Fast inference of deep neural networks in 
FPGAs for particle physics (arXiv:1804.06913v3)

• Cosmology/Astronomy: DeepCMB: Lensing Reconstruction of 
the Cosmic Microwave Background with Deep Neural Networks 
(arXiv:1810.01483v1)
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https://arxiv.org/pdf/1808.08332.pdf
https://arxiv.org/pdf/1808.07269.pdf
https://arxiv.org/pdf/1804.06913.pdf
https://arxiv.org/pdf/1810.01483.pdf


7/19/2016 A. TsarisMachine Learning Seminar @ JLab // November 6, 2018 A. Tsaris

Thanks for Listening!
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Special thanks to NOvA collaborators


