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I. Introduction: Physics 

- Improve signal jet efficiency

- Employ clusters and towers 
with and without signal timing 
cuts

- Apply pile-up suppression 
techniques: jet area, 
constituent subtraction, and 
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- New particle at m = 2.6 TeV produced in hi-lum LHC by Vector Boson Fusion (VBF)
- Goals: 

- Reconstruct the two “tag” quarks (→ jets) indicating WW scattering

constituent subtraction + soft killer to signals



III. Introduction to Supervised Machine Learning 

- Training computer to recognize patterns in data 

- i.e. a certain pT distribution over rapidity 

space of jets and pile-up, respectively

- Neural Networks, non-linear data modeling 

tools, are used to identify statistical structure 

- Modeled after biological neural networks, a 

connected system 
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- Computer learns to recognize patterns through training data 

2. “KDnuggets.” KDnuggets Analytics Big Data Data Mining and Data Science, 
www.kdnuggets.com/2017/05/machine-learning-crash-course-part-1.html.



TensorFlow and Tflearn

- Google’s open source software library for dataflow programming

- Especially well suited for designing and implementing DNN’s 

- Most stable for coding in Python and C 
- Also provides interfaces for JavaScript, Java, C++, Go, 

and Swift 

- Tflearn is a deep learning library built on top 

of TensorFlow

- Fully transparent

- Speeds up computation 

- Provides functions for training, evaluation, and prediction

53. TensorFlow. (n.d.). Retrieved from https://www.tensorflow.org/



Algorithms and Configuration

- Looking at a single object

- Current model: 4-layer neural 
network

- Includes one dropout function 

(prevents overfitting)

- TfLearn DNN function 

performs  training, prediction, 

etc. 

64. Gupta, Vikas. “Home.” Learn OpenCV, 9 Oct. 2017, www.learnopencv.com/understanding-feedforward-neural-networks/.

Only 1 
hidden 
layer, we 
have 3! 

Dropout fxn here



Relevance of Observables

- Network built up by rapidity region using one observable at a time by significance, 
Accuracy improved as more observables were added

- Mass only: 54% certainty for average signal jet
- All observables: 100% certainty for average signal jet 7

- Distinguishability of observables, based on 
variance 
1. Mass
2. pT
3. # of constituents
4. pT

D

5. Width



Network Performance 
Fine Topo-Towers 0.05 x 0.05
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Area-Based Pile-up Suppression Constituent Subtraction



Fine Topo-Towers 0.05 x 0.05
Percentage of Background/Signal Jets Predicted Correctly 

- Cutting at likelihood which maximizes jets identified correctly
- Rapidity Region: y = abs(2.5-3.2)
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Selection Background Signal # training pts. # test pts.

INCL + JAPU 97.01% 74.66% 4,647 8,709

TIME + JAPU 95.00% 78.10% 4,341 6,168

INCL + CSPU 96.02% 76.99% 4,647 8,809

TIME + CSPU 94.28% 79.31% 4,341 6,168



ROC Curves, ML Algorithm Success 
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CS, 2.5 ≤ y ≤ 3.2

See all ROC curve results here.
More information on ROC curves and other analysis techniques here. 

CSSK, 1.5 ≤ y ≤ 2.5

https://twiki.cern.ch/twiki/bin/view/AtlasSandboxProtected/CaloTowerPerf2018MLROCTruth
https://indico.cern.ch/event/648004/contributions/3032015/attachments/1697313/2732377/20180803-FIP-QCHS-AV-final-v003.pdf


Effectiveness of ML on Different Calorimeter 
Signals with and without Timing Cuts 
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See all ROC curve results here.
More information on ROC curves and other analysis techniques here. 

CS + TIME, 3.2 ≤ y ≤ 4.5 CS + INCL, 3.2 ≤ y ≤ 4.5

https://twiki.cern.ch/twiki/bin/view/AtlasSandboxProtected/CaloTowerPerf2018MLROCTruth
https://indico.cern.ch/event/648004/contributions/3032015/attachments/1697313/2732377/20180803-FIP-QCHS-AV-final-v003.pdf


IV. Conclusion and Outlook

- This project is a first attempt at using machine learning to classify jets for final 
state with calorimeter clusters, towers, and fine towers

- In the future we plan to:  
- Consider only two jets that form the invariant mass and rapidity gap

- Continue with machine learning implementation and network improvement 

- Use larger training data sets to improve results

- Consider more selections such as Area Based Pile-up Suppression, Constituent 

Subtraction, and Soft Killer 

- Why Machine Learning?
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Questions?
Thank you!
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Backup: Further 
Introduction
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𝝆(𝜼) Measurement
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Introduction: ρ Distribution
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Backup: Event Selection, Jet 
Reconstruction, and Jet Shapes
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Event Selection

22



Event Efficiencies 

Takeaways:

- Number of events 
saved after each 
selection with and 
without timing cuts 

- - Constituent 
subtraction with soft 
killer may remove too 
many events to be 
useful (?)
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Jet Rapidity Distribution without Timing Cuts

- Note: the effectiveness of the area based suppression is reduced for towers, 
mostly in the central region 
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TOPO-CLUSTERS TOPO-TOWERS



Jet Rapidity Distribution with Timing Cuts

Note: Asymmetry in topotower plot, likely due to timing of signals 
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TOPO-CLUSTERS TOPO-TOWERS



Jet Reconstruction Efficiency 
Area Based Suppression

Note: higher efficiency (c.f. matched jets) for towers w/o timing cut; reduced 
efficiency for 0.1 x 0.1 towers with timing cut 
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INCLUSIVE TIMING CUT



Jet Reconstruction Efficiency
Constituent Subtraction

Note: similar efficiency for all calorimeter signals w/o timing cut; reduced 
efficiency for 0.1 x 0.1 towers with timing cut 
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INCLUSIVE TIMING CUT



Jet Reconstruction Efficiency
Constituent Subtraction + Soft Killer 

Note: topo-cluster less affected by timing cuts; constituent subtraction + soft killer  
likely too strong for towers → look at jet shapes & ML-based approaches
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INCLUSIVE TIMING CUT



Jet Shapes 
(pT

D, topo-cluster) 
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INCLUSIVE TIMING CUT



Jet Shapes 
(pT

D, topo-tower 0.1 x 0.1) 
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INCLUSIVE TIMING CUT



Jet Shapes 
(pT

D, topo-tower 0.05 x 0.05) 
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INCLUSIVE TIMING CUT



Jet Shapes 
(width, topo-cluster) 
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INCLUSIVE TIMING CUT



Jet Shapes 
(width, topo-tower 0.1 x 0.1) 
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INCLUSIVE TIMING CUT



Jet Shapes 
(width, topo-tower 0.05 x 0.05) 
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INCLUSIVE TIMING CUT



Signal Likelihood in Jet Shapes 
(pT

D, topo-cluster) 
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RATIO #SIGNAL JETS/#ALL JETS TIMING CUT



Signal Likelihood in Jet Shapes 
(pT

D, topo-tower 0.1 x 0.1) 
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RATIO #SIGNAL JETS/#ALL JETS TIMING CUT



Signal Likelihood in Jet Shapes 
(pT

D, topo-tower 0.05 x 0.05) 
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RATIO #SIGNAL JETS/#ALL JETS TIMING CUT



Signal Likelihood in Jet Shapes 
(width, topo-cluster) 
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RATIO #SIGNAL JETS/#ALL JETS TIMING CUT



 Signal Likelihood in Jet Shapes 
(width, topo-tower 0.1 x 0.1) 
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RATIO #SIGNAL JETS/#ALL JETS TIMING CUT



Signal Likelihood in Jet Shapes 
(width, topo-tower 0.05 x 0.05) 
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RATIO #SIGNAL JETS/#ALL JETS TIMING CUT



Backup: Machine Learning
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Current Neural Network

net = tflearn.input_data(shape=[None, 5])

net = tflearn.fully_connected(net, 32)

dropout1 = tflearn.dropout(net, 0.8)

net = tflearn.fully_connected(dropout1, 2, activation='softmax')

net = tflearn.regression(net)
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Network Performance 
Topo-Clusters
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Area-Based Pile-up Suppression Constituent Subtraction



Topo-Clusters 
Percentage of Background/Signal Jets Predicted Correctly 

- Cutting at likelihood which maximizes jets identified correctly
- Rapidity Region: y = abs(2.5-3.2)
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Selection Background Signal # training pts. # test pts.

INCL + JAPU 90.31% 79.90% 4,183 4,880

TIME + JAPU 92.13% 79.27% 4,093 4,839

INCL + CSPU 89.16% 82.37% 4,527 8,269

TIME + CSPU 71.46% 87.30% 607 7,104



Network Performance 
Topo-Towers 0.1 x 0.1
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Area-Based Pile-up Suppression Constituent Subtraction



Topo-Towers 0.1 x 0.1
Percentage of Background/Signal Jets Predicted Correctly 

- Cutting at likelihood which maximizes jets identified correctly
- Rapidity Region: y = abs(2.5-3.2)
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Selection Background Signal # training pts. # test pts.

INCL + JAPU 92.07% 71.74% 4,663 8,699

TIME + JAPU 81.88% 77.69% 3,661 4,635

INCL + CSPU 88.88% 76.50% 4,665 8,856

TIME + CSPU 84.09% 75.80% 3,659 4,651



Efficiency Plot
Topo-Clusters 
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Area-Based Pile-up Suppression Constituent Subtraction
 

Note: See full Topo-Cluster results here. 

https://docs.google.com/document/d/1HTpnCdBWwdrSZJzk_99xoWArrSucCLqLrqm7k4i3qW4/edit?usp=sharing


Efficiency Plot
Topo-Towers 0.1 x 0.1 
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Area-Based Pile-up Suppression Constituent Subtraction
 

Note: See full Topo-Tower results here. 

https://docs.google.com/document/d/1UK_gC-hU0yEYeykeUk4fWHMxLH4Y8NLIiAazSnWvsy4/edit?usp=sharing


Efficiency Plot
Fine Topo-Towers 0.05 x 0.05
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Area-Based Pile-up Suppression Constituent Subtraction
 

Note: See full Fine Topo-Tower results here. 

https://docs.google.com/document/d/12iFQIuowHB1S9THorbQFW0vAnROpBfB1zdj6Zn6UTlA/edit?usp=sharing


Results for Different Observable Configurations
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Configuration Likelihood that Average Signal 
Jet is a Signal Jet

Likelihood that Average 
Background is Background  

Accuracy

Mass 54.3% 81.7% 79.0%

Mass, pT 98.6% 82.5% 81.9%

Mass, pT, #of 
constituents

100% 100% 81.9%

Mass, pT, #of 
constituents, pT

D
100% 98.5% 84.9%

Mass, pT, #of 
constituents, pT

D, 
width

100% 99.0% 79.2%



Plots: -4.9 < y < -3.2
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Plots: -3.2 < y < -2.5
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Plots: -2.5 < y < 0
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Plots: 0 < y < 2.5
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Plots: 2.5 < y < 3.2
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Plots: 3.2 < y < 4.9
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