

Tag Jet Identification

Through the Use of Deep Neural Networks

Anne-Katherine Burns Machine Learning Seminar, Jefferson Lab November 6, 2018

Outline

- I. Physics Introduction
- II. Machine Learning Implementation
 - i. Binary Classification Problem
 - ii. TensorFlow and Tflearn
 - iii. Algorithms and Basic Configuration
 - iv. Results
 - 1. Network Performance
 - 2. ROC Curves
- III. Conclusion and Outlook

I. Introduction: Physics

New particle at m = 2.6 TeV produced in hi-lum LHC by Vector Boson Fusion (**VBF**)

Goals:

Reconstruct the two "tag" quarks (\rightarrow jets) indicating WW scattering

- Improve signal jet efficiency
- **Employ clusters and towers** with and without signal timing cuts
- Apply pile-up suppression techniques: jet area, constituent subtraction, and

III. Introduction to Supervised Machine Learning

- Training computer to recognize patterns in data
 - i.e. a certain p_T distribution over rapidity space of jets and pile-up, respectively
- **Neural Networks**, non-linear data modeling tools, are used to identify statistical structure
 - Modeled after biological neural networks, a connected system
- exis probably an orange an orange color

- Computer learns to recognize patterns through **training data**

TensorFlow and Tflearn

- Google's open source software library for dataflow programming
 - Especially well suited for designing and implementing **DNN**'s
- Most stable for coding in **Python and C**
 - Also provides interfaces for JavaScript, Java, C++, Go,
 and Swift
- **Tflearn** is a deep learning library built on top of TensorFlow
 - Fully **transparent**
 - Speeds up computation
 - Provides functions for training, evaluation, and prediction

Algorithms and Configuration

- Looking at a single object
- Current model: 4-layer neural network
 - Includes one dropout function (prevents overfitting)
 - TfLearn **DNN** function performs training, prediction, etc.

Relevance of Observables

Distinguishability of observables, based on variance

- p_T
- 3. # of constituents
- 4. p_T
- 5. Width

Background mass, GeV

Jets Ordered by Rapidity

- Network built up by rapidity region using one observable at a time by significance,
 Accuracy improved as more observables were added
 - Mass only: **54%** certainty for average signal jet
 - <u>All observables</u>: **100%** certainty for average signal jet

Network Performance

Fine Topo-Towers 0.05 x 0.05

Area-Based Pile-up Suppression

Likelihood that Jet is Signal

Constituent Subtraction

Network Performance

Likelihood that Jet is Signal

Fine Topo-Towers 0.05 x 0.05 Percentage of Background/Signal Jets Predicted Correctly

Selection	Background	Signal	# training pts.	# test pts.
INCL + JAPU	97.01%	74.66%	4,647	8,709
TIME + JAPU	95.00%	78.10%	4,341	6,168
INCL + CSPU	96.02%	76.99%	4,647	8,809
TIME + CSPU	94.28%	79.31%	4,341	6,168

- Cutting at likelihood which maximizes jets identified correctly
- Rapidity Region: y = abs(2.5-3.2)

ROC Curves, ML Algorithm Success

CSSK, $1.5 \le y \le 2.5$

 $CS, 2.5 \le y \le 3.2$

See all ROC curve results <u>here</u>. More information on ROC curves and other analysis techniques <u>here</u>.

Effectiveness of ML on Different Calorimeter Signals with and without Timing Cuts

 $CS + TIME, 3.2 \le y \le 4.5$

 $CS + INCL, 3.2 \le y \le 4.5$

See all ROC curve results <u>here</u>. More information on ROC curves and other analysis techniques <u>here</u>.

IV. Conclusion and Outlook

- This project is a first attempt at using machine learning to classify jets for final state with calorimeter clusters, towers, and fine towers
- In the **future** we plan to:
 - Consider only two jets that form the invariant mass and rapidity gap
 - Continue with machine learning implementation and network improvement
 - Use larger training data sets to improve results
 - Consider more selections such as Area Based Pile-up Suppression, Constituent Subtraction, and Soft Killer
- Why Machine Learning?

Questions?

Thank you!

Backup: Further Introduction

Calorimeter-based pile-up-jet suppression in Run 3 & beyond

Extensions of pile-up jet tagging q/g jet tagging in VBF – signal jets are quark-like, pile-up jets are gluon-like Jet shape analysis using e.g. $m_{\rm jet}$,

Jet-area-based pile-up subtraction

Well established approach in LHC

Run 1 & 2

Transverse momentum density ρ not

well measured in coarse calorimeter readout – requires MC-based residual corrections in particular in forward region ($|\eta| > 2.5$)

Constituent-level pile-up suppression prior to jet reconstruction

Select calorimeter signal based on features indicating pile-up or generally low signal quality - e.g. timing, significance, ...

Applying stochastically motivated methods like SoftKiller, Voronoi Suppression, Constituent Subtraction, ...

Challenges

Topo-cluster in coarse readout

Deplete (η, φ) space of four-momenta – cell signal collection feature of cluster algorithms

Single topo-cluster catchment area not well defined – e.g. Voronoi in coarse readout can be very large, ρ measurement biased due to few clusters outside of jets/low cluster multiplicity inside of jets ...

Can generate single cluster jets – loss of structural flow information, reduced efficiency of e.g. pile-up jet tagging

Mitigation approaches

Structural flow measures

Transition of jet substructure observables → corresponding topo-cluster moments with similar sensitivity to transverse momentum flow

Topo-cluster p_T^D , $m_{\text{iet}} \to m_{\text{cluster}}$, jet width \to cluster width, ...

Improved cluster area determination

Using e.g. lateral topo-cluster extension moments for area measurement

CaloTowers helpful?

Non-projective cells in FCal

Different sensitivity of tower signal to transverse momentum flow – complex (geometrical) cell energy sharing between towers

Projective readout

Not much gain expected if tower bin boundaries line up with cell boundaries – simple equal-weight cell energy sharing (TBC) March 23, 2018

16

Topo-clusters

Standard calorimeter signal definition employs noise suppression and local calibration Full details in Eur.Phys.J. C77 (2017) 490

Calorimeter towers

Two (η, φ) grids

 $\Delta \eta \times \Delta \varphi = 0.1 \times 0.1 \text{ (standard/coarse)}$

 $\Delta \eta \times \Delta \varphi = 0.05 \times 0.05$ (fine)

Cell signals collected using geometrical

weights according to cell/tower area overlap

in (η, φ) space

Fixed catchment area in (η, φ)

Only cells with E > 0 considered

Two signal collection strategies

Inclusive – collect all calorimeter cells Topo-towers – collect only cells from topo-clusters (noise suppression!)

Calibrations

EM for inclusive and topo-towers LCW for topo-towers and topo-clusters (calibrations applied in topo-cluster context, no dedicated topo-tower calibration)

Details

See Twiki at https://twiki.cern.ch/twiki/bin/viewauth/AtlasSandboxProtected/CaloTowerPerformance

$\varrho(\eta)$ Measurement

Standard reference

Jet-based median in central detector region $|\eta| < 2$

Anti- k_t R = 0.4 jets from topo-clusters on EM ($\rho_{\text{ref}}^{\text{EM}}$) or LCW ($\rho_{\text{ref}}^{\text{LCW}}$) scale

FastJet implementation using jets with $p_{\mathrm{T,jet}}^{\mathrm{EM(LCW)}} \geq 0$

No η dependence (expected from particle flow in minbias)

Variations for performance evaluation

Use sliding η windows to collect signals

Overlapping windows with nominal width $\Delta \eta_{\mathrm{window}} = 0.8$ centered at a given η_{window} – same detector signal contributes to several windows

Slide window in small steps $\Delta \eta_{\text{step}} = 0.1$

Adjust left/right window boundary at detector edges

 $\eta_{
m window} - \Delta \eta_{
m window}/2 \ge -4.9$ and $\eta_{
m window} + \Delta \eta_{
m window}/2 \le 4.9$ – asymmetric windows near detector edges

Calculate median ρ in each window

Use $\rho = p_T/A$ for each topo-cluster/tower in the window

Tower areas A well defined by tower grid, Voronoi area used for topo-cluster

Median ρ from catchment area or signal area

Catchment area approach includes areas void of signal $(p_T = 0)$ window in median (FastJet-like)

Signal area approach provides median of signal densities excluding void areas

Introduction: ρ Distribution

Sliding window ρ collector

Window size $\Delta \eta_{\text{window}} = 0.8$ Step size $\Delta \eta_{\text{step}} = 0.1$

 $\eta_{\rm min} < \eta_{\rm window} < \eta_{\rm max}$

 $\eta_{\min} = -4.9$

 $\eta_{\rm max} = 4.9$

 ρ in η window k is $\rho_k = \text{median}\{\rho_i\}_k$

Backup: Event Selection, Jet Reconstruction, and Jet Shapes

Event Selection

h_cutflow

Event Efficiencies

Jet Rapidity Distribution without Timing Cuts

- Note: the effectiveness of the area based suppression is reduced for towers, mostly in the central region

Jet Rapidity Distribution with Timing Cuts

Note: Asymmetry in topotower plot, likely due to timing of signals

Jet Reconstruction Efficiency

Area Based Suppression

Note: higher efficiency (c.f. matched jets) for towers w/o timing cut; reduced efficiency for 0.1 x 0.1 towers with timing cut

Jet Reconstruction Efficiency

Constituent Subtraction

Note: similar efficiency for all calorimeter signals w/o timing cut; reduced efficiency for 0.1 x 0.1 towers with timing cut

Jet Reconstruction Efficiency

Constituent Subtraction + Soft Killer

Note: topo-cluster less affected by timing cuts; constituent subtraction + soft killer likely too strong for towers → look at jet shapes & ML-based approaches

 $(p_T^D, topo-tower 0.1 \times 0.1)$

 $(p_T^D, topo-tower 0.05 \times 0.05)$

(width, topo-cluster)

(width, topo-tower 0.1 x 0.1)

(width, topo-tower 0.05 x 0.05)

Signal Likelihood in Jet Shapes

(p_T^D, topo-cluster)

Signal Likelihood in Jet Shapes

 $(p_T^D, topo-tower 0.1 \times 0.1)$

 $(p_T^D, topo-tower 0.05 \times 0.05)$

(width, topo-cluster)

(width, topo-tower 0.1 x 0.1)

(width, topo-tower 0.05×0.05)

Backup: Machine Learning

Current Neural Network

```
net = tflearn.input_data(shape=[None, 5])
net = tflearn.fully_connected(net, 32)
dropout1 = tflearn.dropout(net, 0.8)
net = tflearn.fully_connected(dropout1, 2, activation='softmax')
net = tflearn.regression(net)
```

Network Performance

Topo-Clusters

Area-Based Pile-up Suppression

Network Performace INCL + JAPU, y = abs(2.5 - 3.2) 2500 Signal Jets Background Jets

Likelihood that Jets are Signal

Constituent Subtraction

Network Performance

Likelihood that Jet is Signal

Topo-Clusters Percentage of Background/Signal Jets Predicted Correctly

Selection	Background	Signal	# training pts.	# test pts.
INCL + JAPU	90.31%	79.90%	4,183	4,880
TIME + JAPU	92.13%	79.27%	4,093	4,839
INCL + CSPU	89.16%	82.37%	4,527	8,269
TIME + CSPU	71.46%	87.30%	607	7,104

- Cutting at likelihood which maximizes jets identified correctly
- Rapidity Region: y = abs(2.5-3.2)

Network Performance

Topo-Towers 0.1 x 0.1

Area-Based Pile-up Suppression

Network Performance, INCL + JAPU, y = abs(2.5 - 3.2)

Likelihood that Jet is Signal

Constituent Subtraction

Network Performance, INCL + CSPU, y = abs(2.5 - 3.2)

Likelihood that Jet is Signal

Topo-Towers 0.1 x 0.1 Percentage of Background/Signal Jets Predicted Correctly

Selection	Background	Signal	# training pts.	# test pts.
INCL + JAPU	92.07%	71.74%	4,663	8,699
TIME + JAPU	81.88%	77.69%	3,661	4,635
INCL + CSPU	88.88%	76.50%	4,665	8,856
TIME + CSPU	84.09%	75.80%	3,659	4,651

- Cutting at likelihood which maximizes jets identified correctly
- Rapidity Region: y = abs(2.5-3.2)

Efficiency Plot

Topo-Clusters

0.8

0.6

Area-Based Pile-up Suppression

Efficiency Plot INCL + JAPU, y = abs(2.5 - 3.2) 1 0.75 0.5 0.25

0.4

Signal Efficiency

Constituent Subtraction

INCL + CSPU, y = abs(2.5 - 3.2)

Note: See full Topo-Cluster results <u>here</u>.

0.2

Efficiency Plot

Topo-Towers 0.1 x 0.1

Area-Based Pile-up Suppression

Efficiency Plot, INCL + JAPU, y = abs(2.5 - 3.2)

Constituent Subtraction

Efficiency Curve, INCL + CSPU, y = abs(2.5 - 3.2)

Efficiency Plot

Fine Topo-Towers 0.05 x 0.05

Area-Based Pile-up Suppression

Efficiency Plot

INCL + JAPU, y = abs(2.5 - 3.2)

Constituent Subtraction

Efficiency Plot

INCL + CSPU, y = abs(2.5 - 3.2)

Note: See full Fine Topo-Tower results <u>here</u>.

Results for Different Observable Configurations

Configuration	Likelihood that Average Signal Jet is a Signal Jet	Likelihood that Average Background is Background	Accuracy
Mass	54.3%	81.7%	79.0%
Mass, p _T	98.6%	82.5%	81.9%
Mass, p _T , #of constituents	100%	100%	81.9%
Mass, p _T , #of constituents, p _T ^D	100%	98.5%	84.9%
$\begin{array}{c} \text{Mass, p}_{\text{T}}, \text{\#of} \\ \text{constituents, p}_{\text{T}}^{\text{D}}, \\ \text{width} \end{array}$	100%	99.0%	79.2%

Plots: -4.9 < y < -3.2

Plots: -3.2 < y < -2.5

Plots: -2.5 < y < 0

Plots: 0 < y < 2.5

Plots: 2.5 < y < 3.2

Plots: 3.2 < y < 4.9

