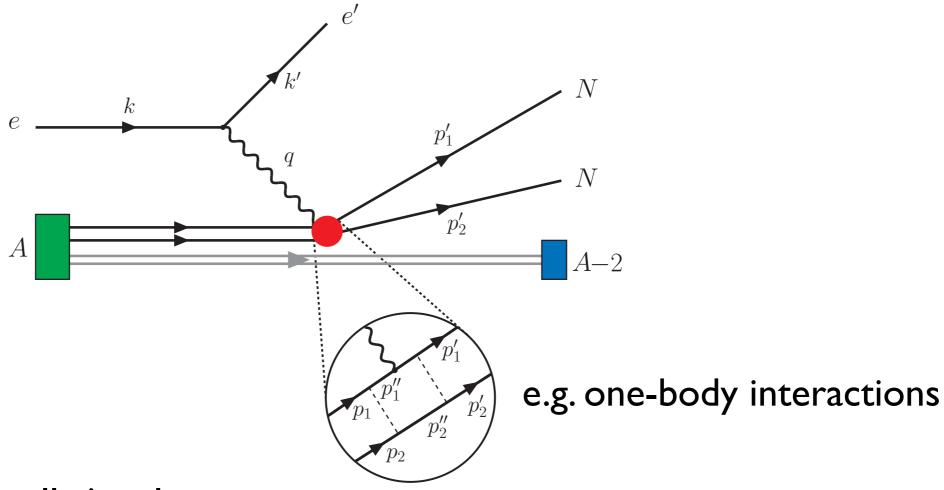
The Similarity Renormalization Group and Deuteron Disintegration

Polarized light ion physics with EIC

Kai Hebeler Ghent, Feb. 6, 2018

with Sushant More, Dick Furnstahl and Sebastian König

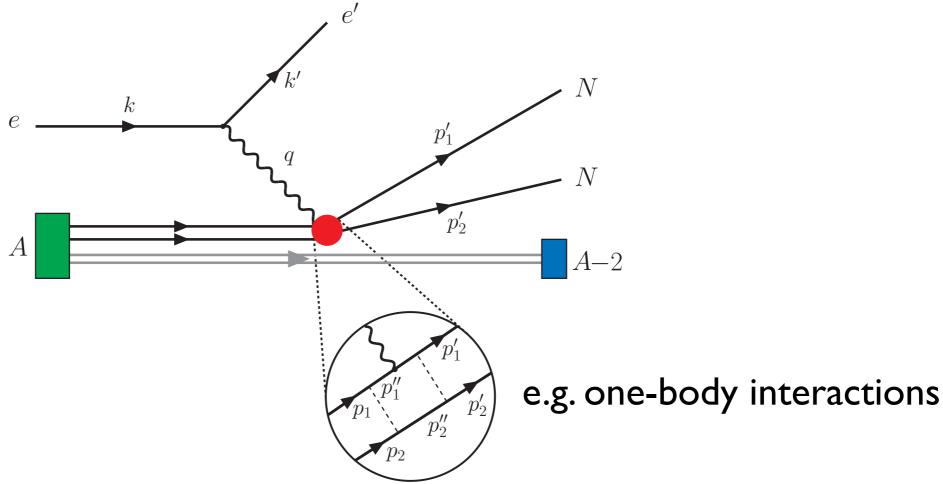
Reaction processes within ab initio frameworks



Calculations generally involve:

- nuclear structure part for description of initial/final state wave functions
- reaction part describes interaction with external probes

Reaction processes within ab initio frameworks



Calculations generally involve:

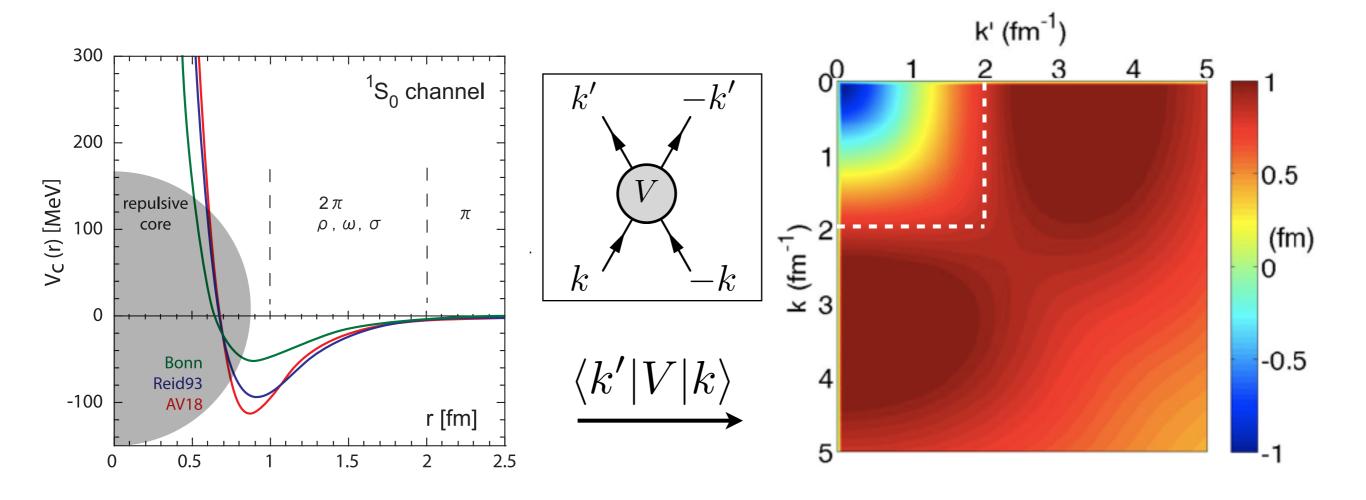
- nuclear structure part for description of initial/final state wave functions
- reaction part describes interaction with external probes

For calculations a factorization of structure and reaction parts is required, consistency between Hamiltonian and currents (see talk by Hermann Krebs):

$$\sigma \sim \langle \psi_F(\lambda) | O(\lambda) | \psi_A(\lambda) \rangle$$

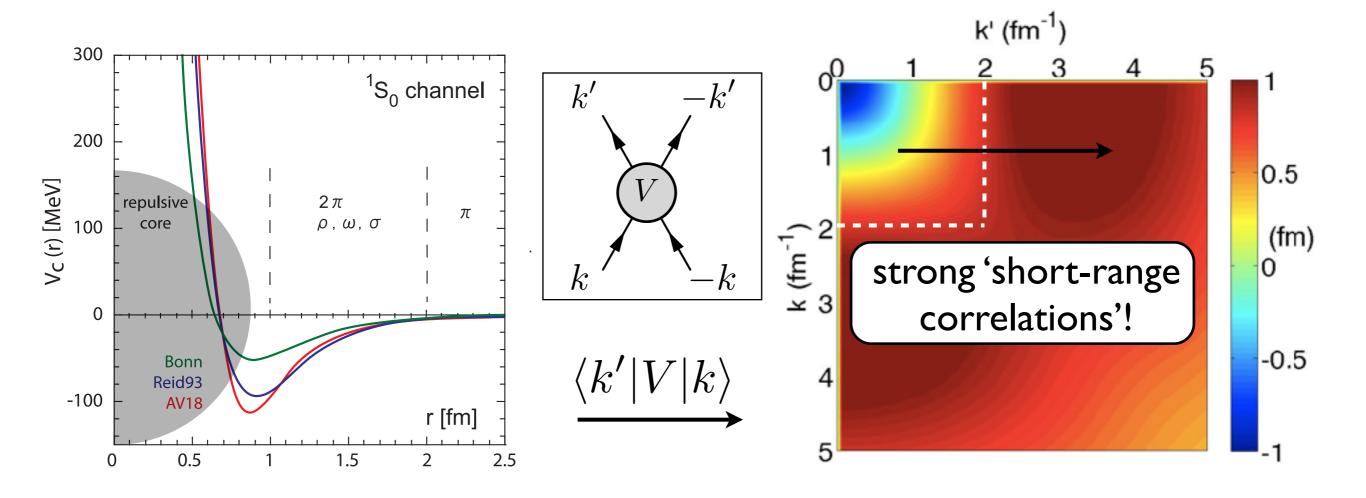
whereas λ is a chosen resolution scale (and scheme)

"Traditional" NN interactions



- constructed to fit scattering data (long-wavelength information)
- long-range part dominated by one pion exchange interaction
- short range part strongly model dependent!
- traditional NN interactions contain strongly repulsive core at small distance
 - strong coupling between low and high-momenta
 - many-body problem hard to solve using basis expansion!

"Traditional" NN interactions



- constructed to fit scattering data (long-wavelength information)
- long-range part dominated by one pion exchange interaction
- short range part strongly model dependent!
- traditional NN interactions contain strongly repulsive core at small distance
 - strong coupling between low and high-momenta
 - many-body problem hard to solve using basis expansion!

Changing the resolution scale

$$\langle \psi_F(\lambda_0) | O(\lambda_0) | \psi_A(\lambda_0) \rangle = \langle \psi_F(\lambda_0) | U^{\dagger} U(\lambda) O(\lambda_0) U^{\dagger} U(\lambda) | \psi_A(\lambda) \rangle$$
$$= \langle \psi_F(\lambda) | O(\lambda) | \psi_A(\lambda) \rangle$$

with

$$|\psi(\lambda)\rangle = U(\lambda) |\psi(\lambda_0)\rangle$$
 $O(\lambda) = U^{\dagger}(\lambda)O(\lambda_0)U(\lambda)$
$$U(\lambda)U^{\dagger}(\lambda) = 1$$

Changing the resolution scale

$$\langle \psi_F(\lambda_0) | O(\lambda_0) | \psi_A(\lambda_0) \rangle = \langle \psi_F(\lambda_0) | U^{\dagger} U(\lambda) O(\lambda_0) U^{\dagger} U(\lambda) | \psi_A(\lambda) \rangle$$
$$= \langle \psi_F(\lambda) | O(\lambda) | \psi_A(\lambda) \rangle$$

with

$$|\psi(\lambda)\rangle = U(\lambda) |\psi(\lambda_0)\rangle$$
 $O(\lambda) = U^{\dagger}(\lambda)O(\lambda_0)U(\lambda)$
$$U(\lambda)U^{\dagger}(\lambda) = 1$$

Convenient to choose resolution scale λ such that

- wave functions include only momentum scales that are constrained by scattering data (reduction of scheme dependence)
- nuclear structure calculations are simplified
- hierarchy of many-body forces is preserved (more later)

• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

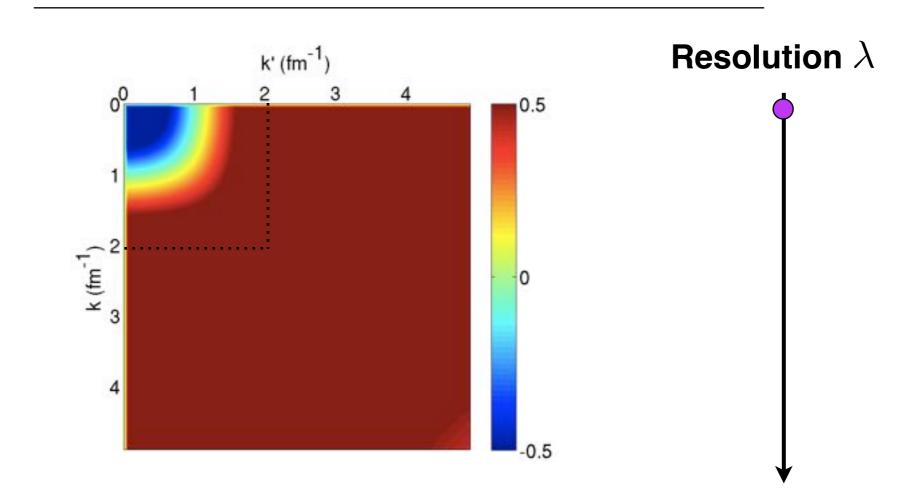
- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

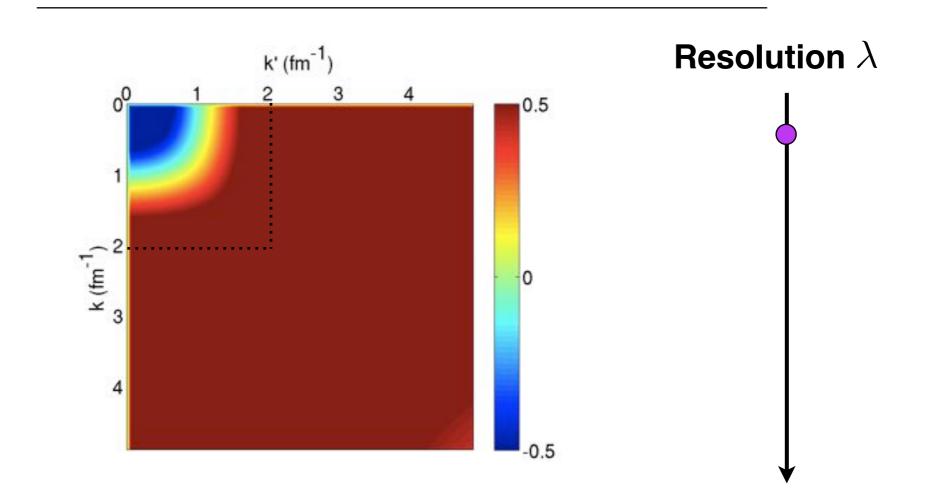


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

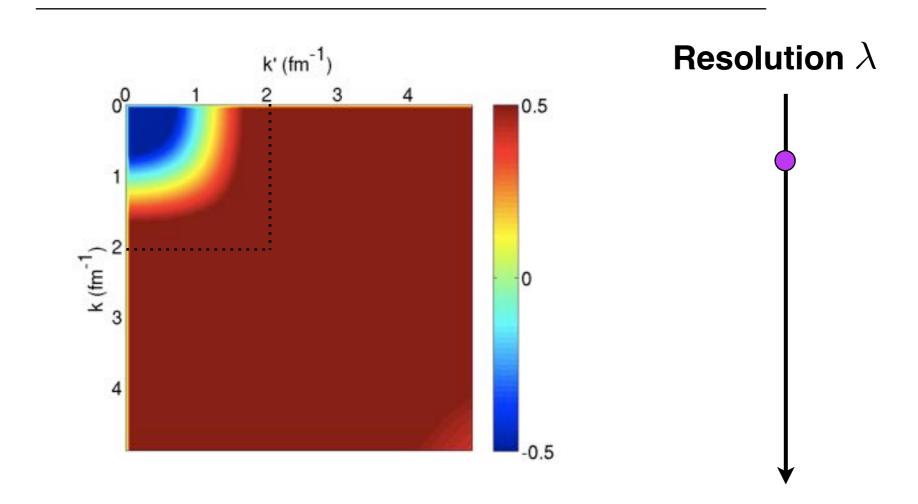


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

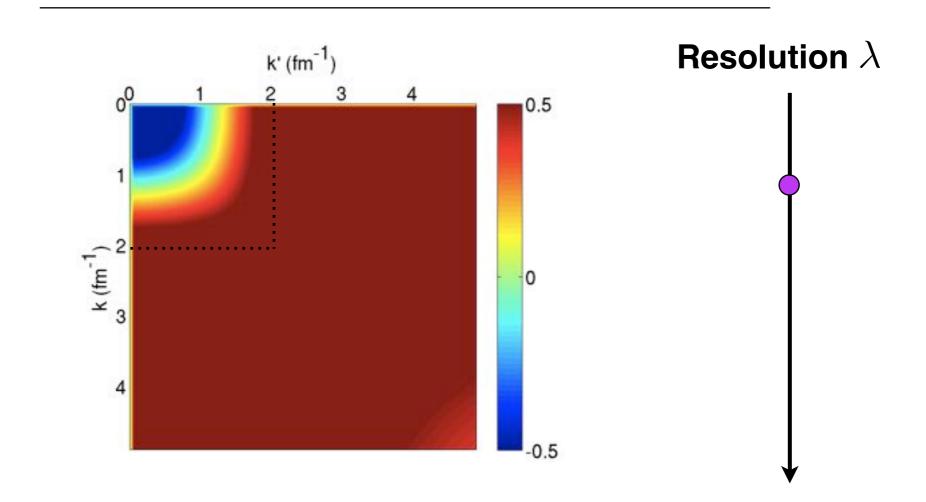


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

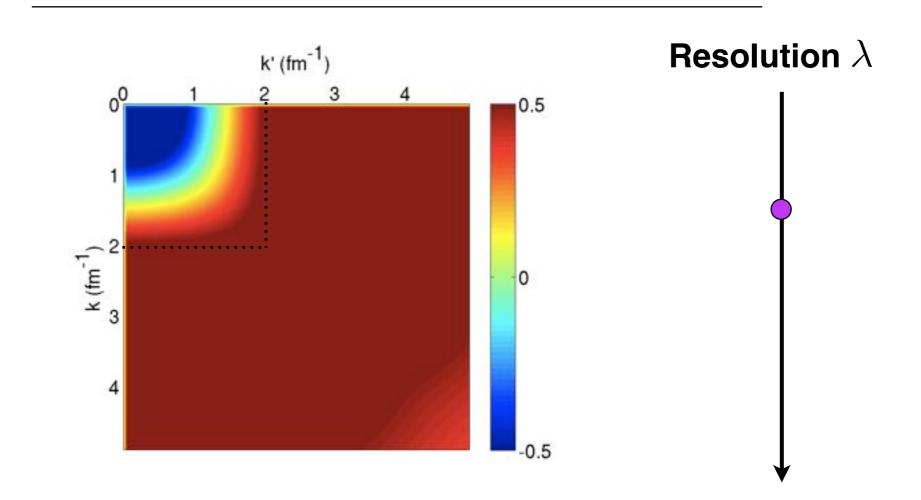


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

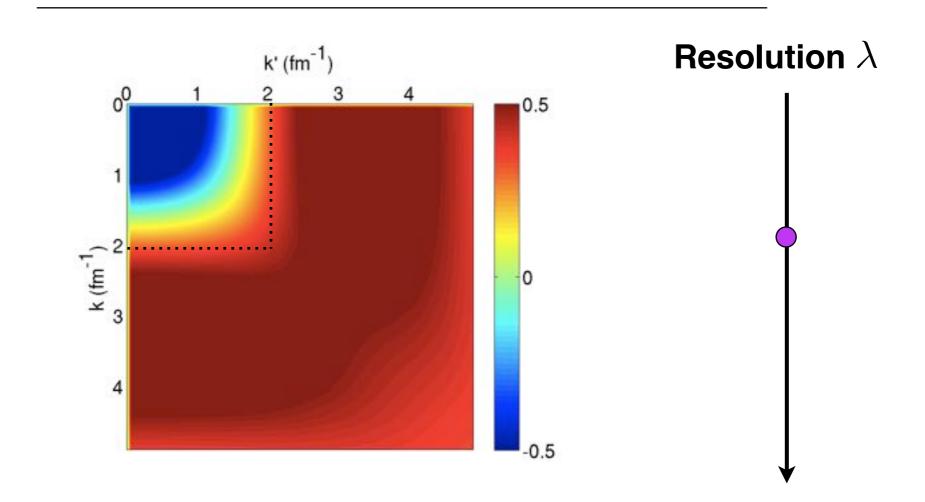


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

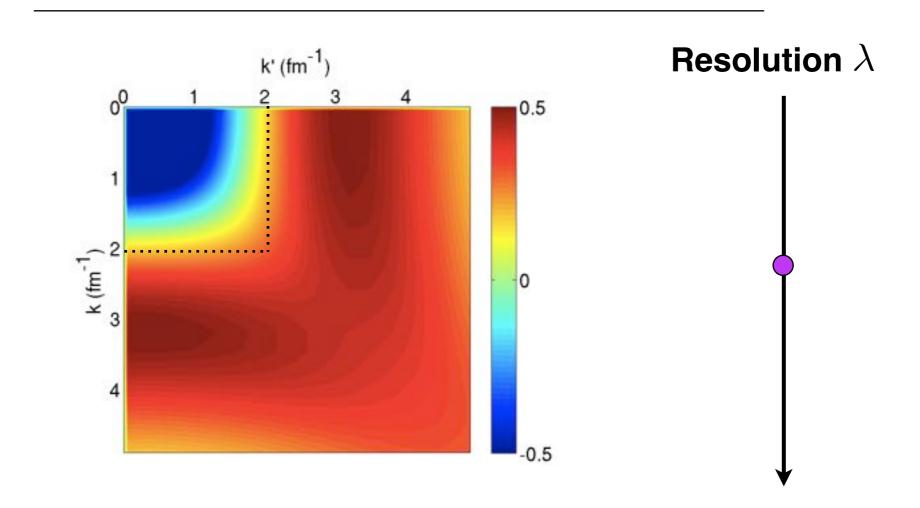


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

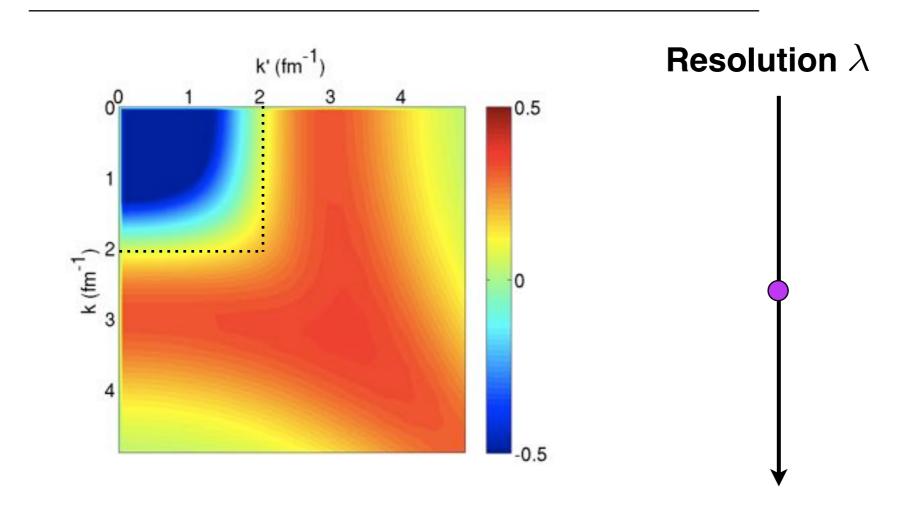


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

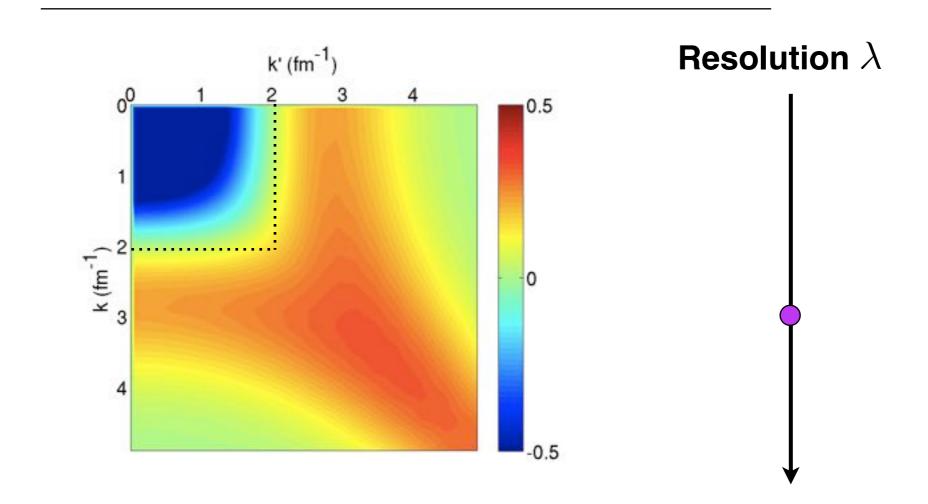


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

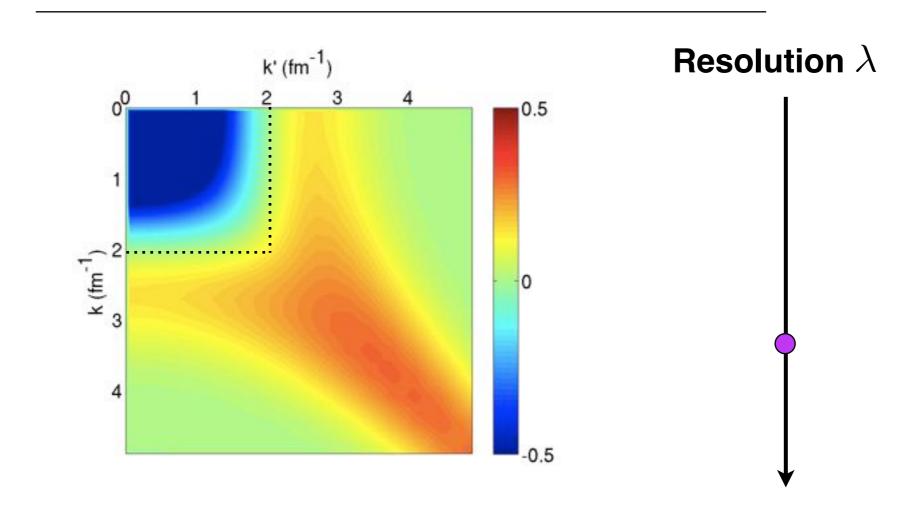


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

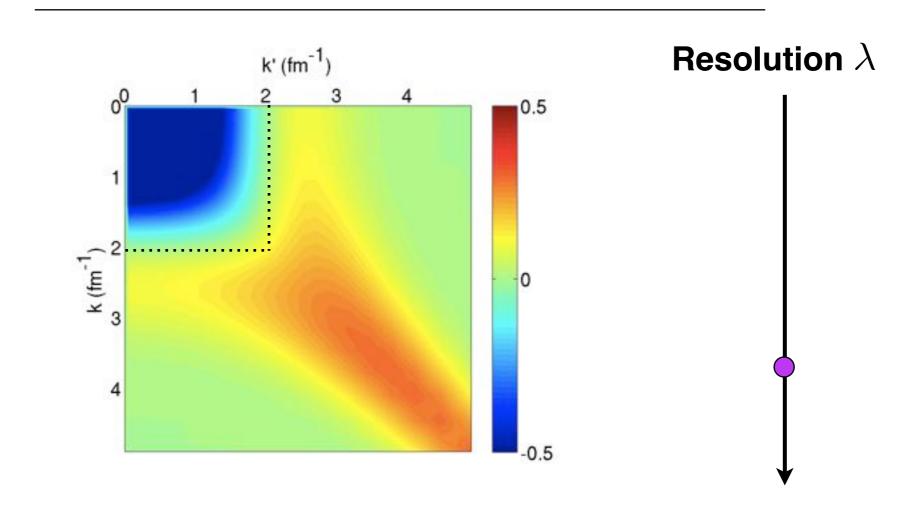


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

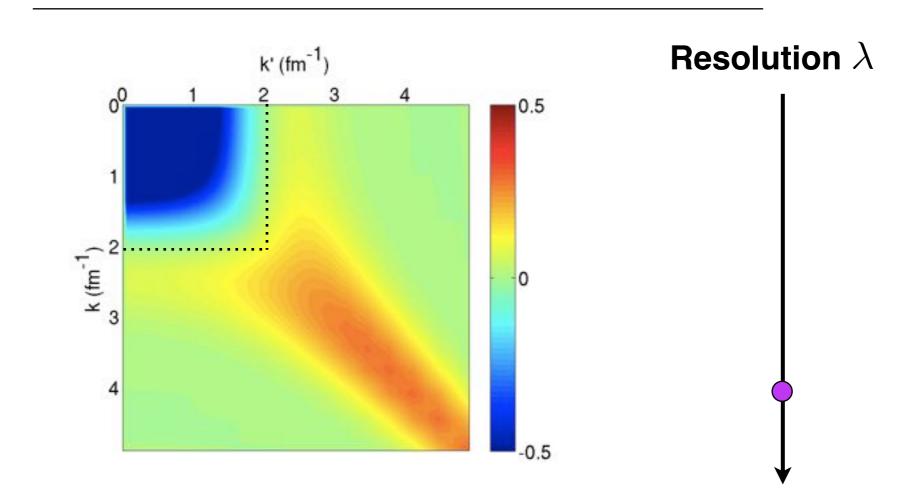


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

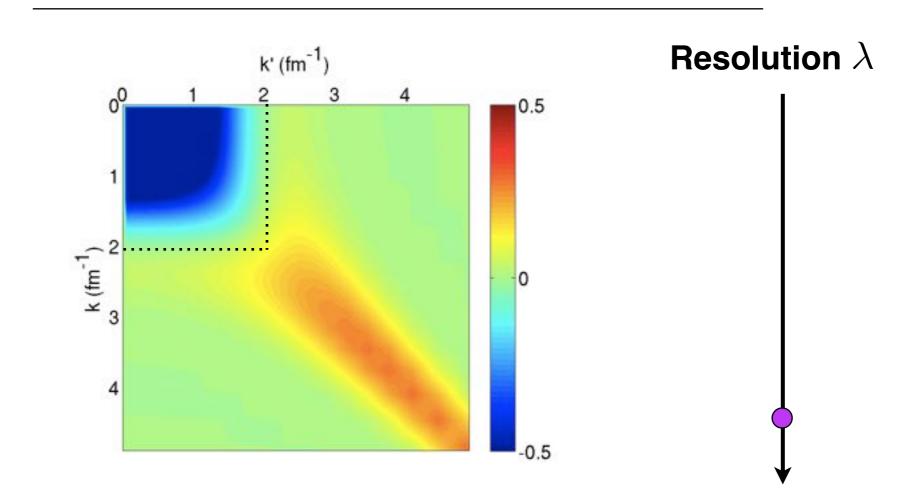


• generate unitary transformation which decouples low- and high momenta:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation

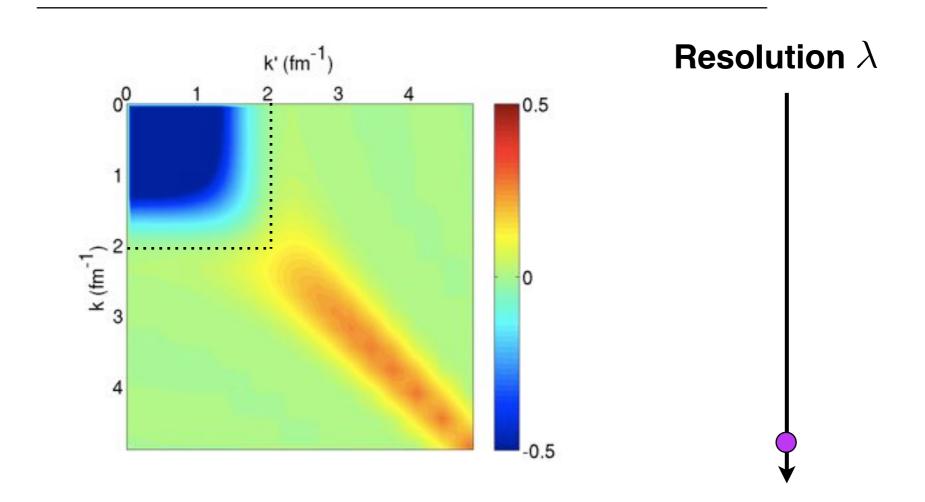


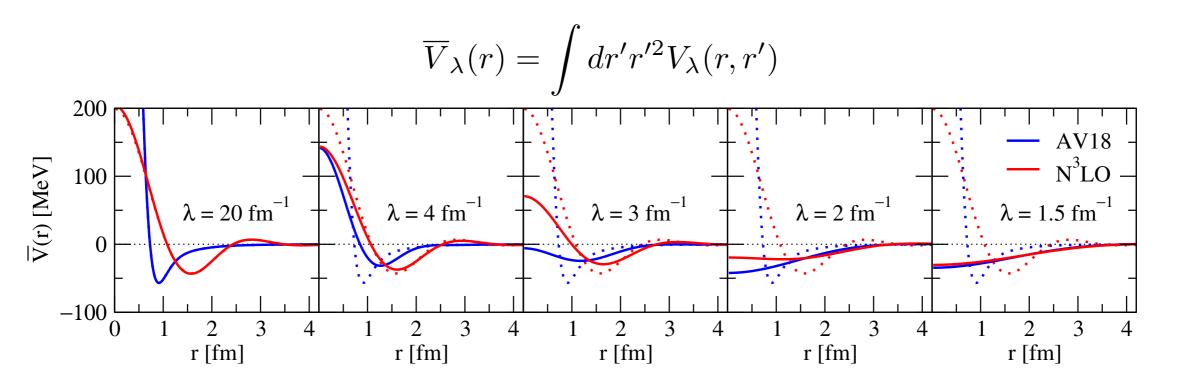
• generate unitary transformation which decouples low- and high momenta:

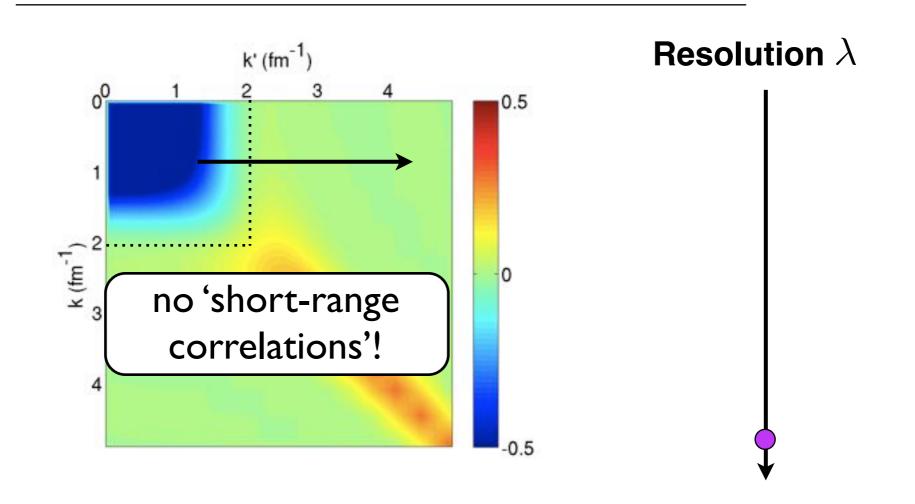
$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$$
 with the resolution parameter λ

$$\left(\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]\right)$$

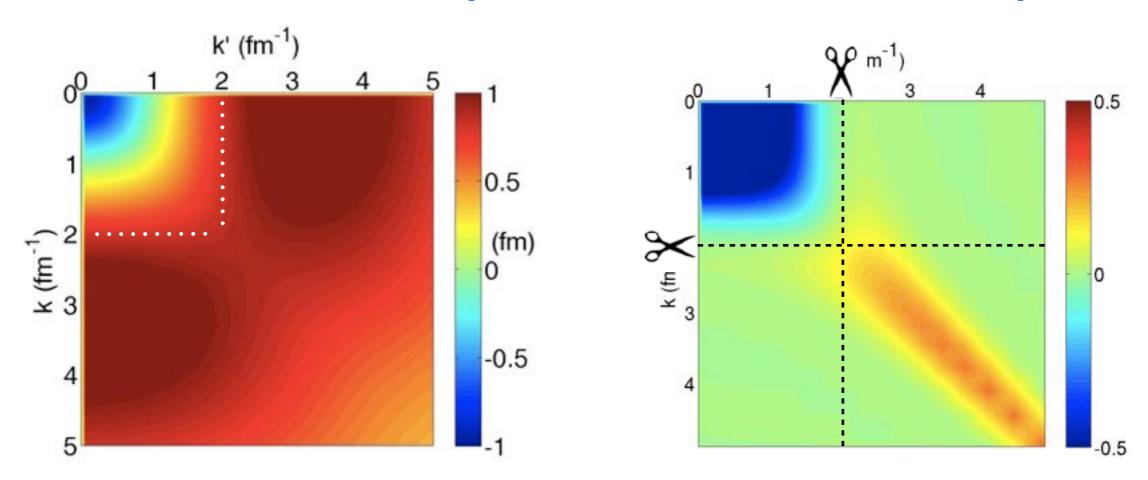
- generator η_{λ} can be chosen and tailored to different applications
- observables are preserved due to unitarity of transformation







Systematic decoupling of high-momentum physics: the Similarity Renormalization Group



- elimination of coupling between low- and high momentum components,
 simplified many-body calculations!
- observables unaffected by resolution change (for exact calculations)
- residual resolution dependences can be used as tool to test calculations

Not the full story:

RG transformations also change three-body (and higher-body) interactions and ALL other operators!

um-4

 $= N^2 LO$

tate energy

LO (500 MeV)

16

12

8 4

-8 =

−12 E

-16-20

-24

-32

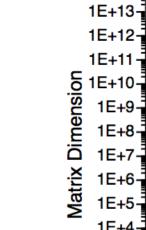
-36^L₂

Exascale

Petascale

Original

Ground-State Energy [MeV]



expt.

18

1E+15

1E+14-

1E+4-

1E+3

1E+2

1E+1

1E+0

Lithium-6

ground-state energy

 $V_{NN} = N^3 LO (500 \text{ MeV})$

 $V_{NNN} = N^2 LO$

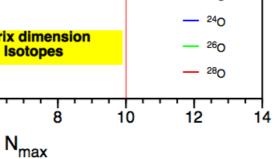
 $\hbar\Omega = 20 \text{ MeV}$

expt.

16

8 10 12 Matrix Size [N_{max}]





¹⁰Bogner et al., PPNP 65, 95 (2010) $\lambda = 1.5 \text{ fm}^{-1}$ -32Matrix Size [N_{max}] $\boldsymbol{N}_{\text{max}}$ 1E+16 ~D^{1.3} No-Core Hamiltonian Number non-zero matrix elements 1E+13-1E+11-1E+3-1E-3-1E **NN Interaction** Petascale ~ 200Tbytes for matrix + index arrays ¹⁰B ¹²C ¹⁴C ¹⁶O ²⁷AI fitted 1E+7 Fit = D + D(1 + 12/(14+LnD))

1E+6

1E+5

Original

Ground-State Energy [MeV]

-20

Lithium-6

ground-state energy

Softened with SRG

 $\lambda = 2.0 \text{ fm}^{-1}$

 $V_{NN} = N^3 LO (500 \text{ MeV})$

 $V_{NNN} = N^2 LO$

 $\hbar\Omega = 20 \text{ MeV}$

1E+7 1E+8 1E+9 1E+10 1E+11 1E+

Matrix Dimension (D)

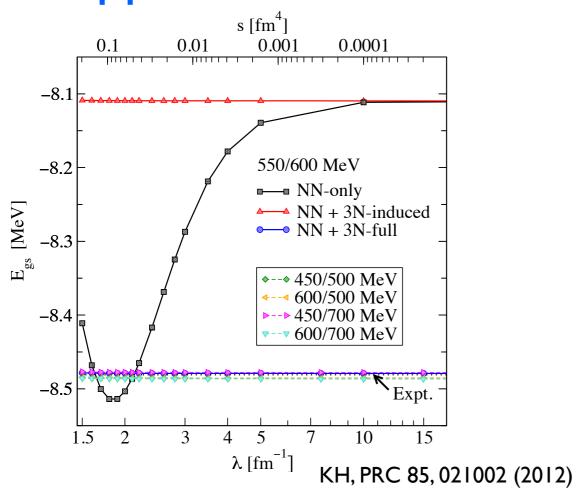
Barrett, Navratil, Vary, PPNP 69, 131 (2013)

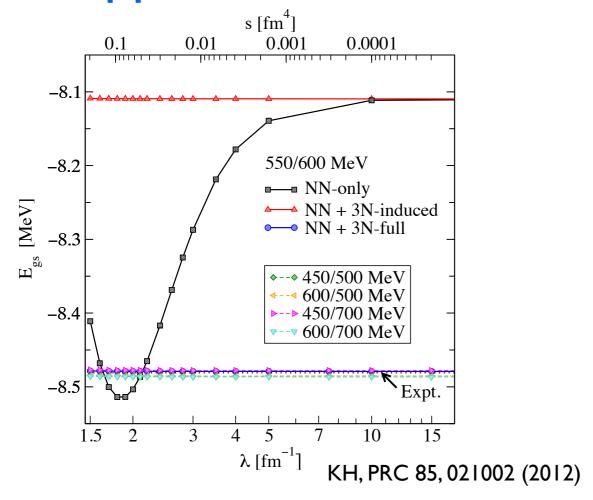
Basis size and matrix dimensions

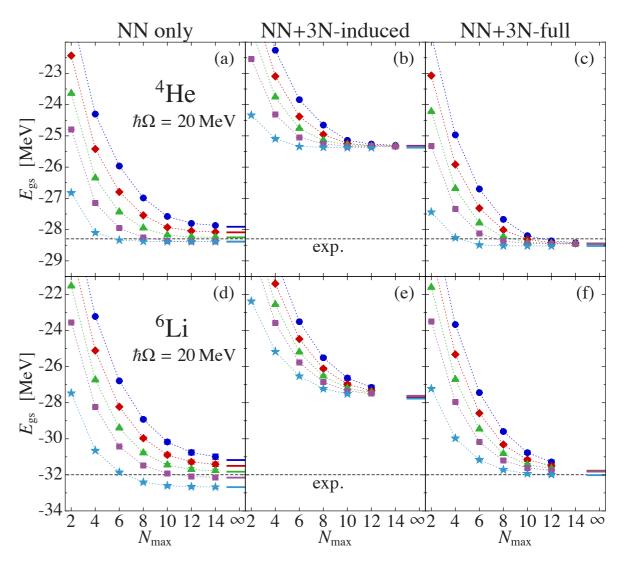
 10^{9}

 10^{8}

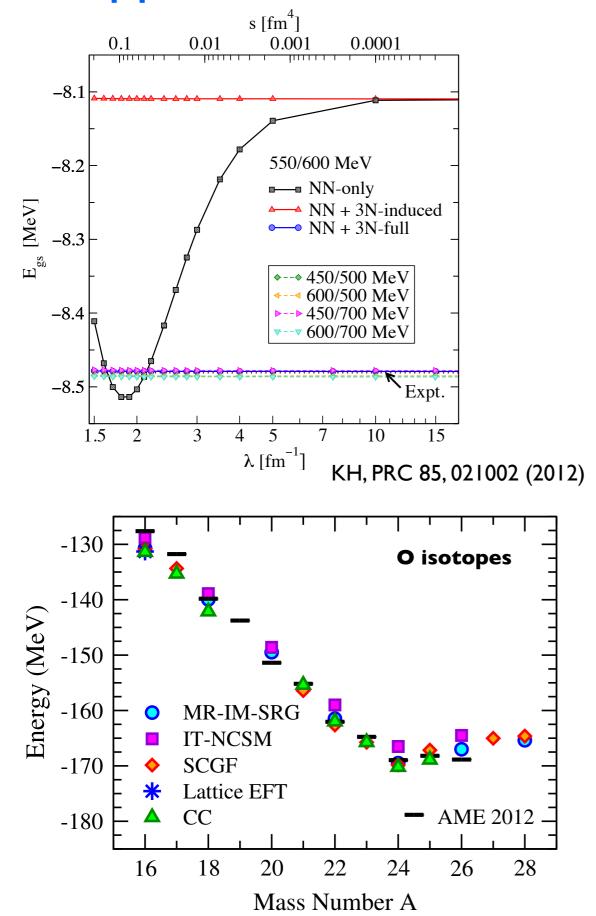
Matrix dimension 10^4

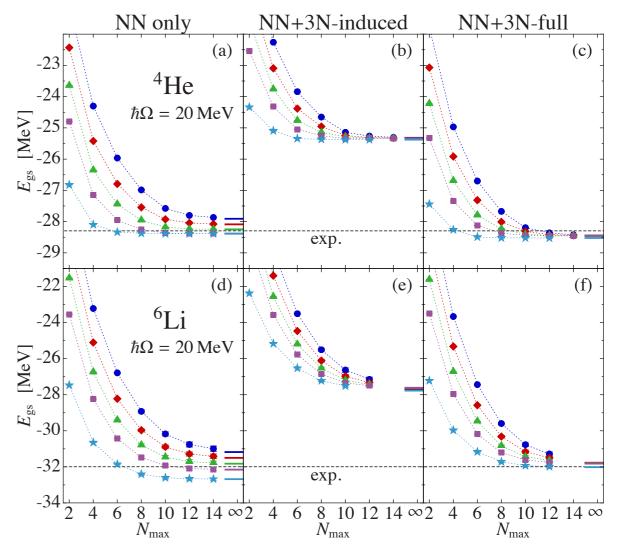






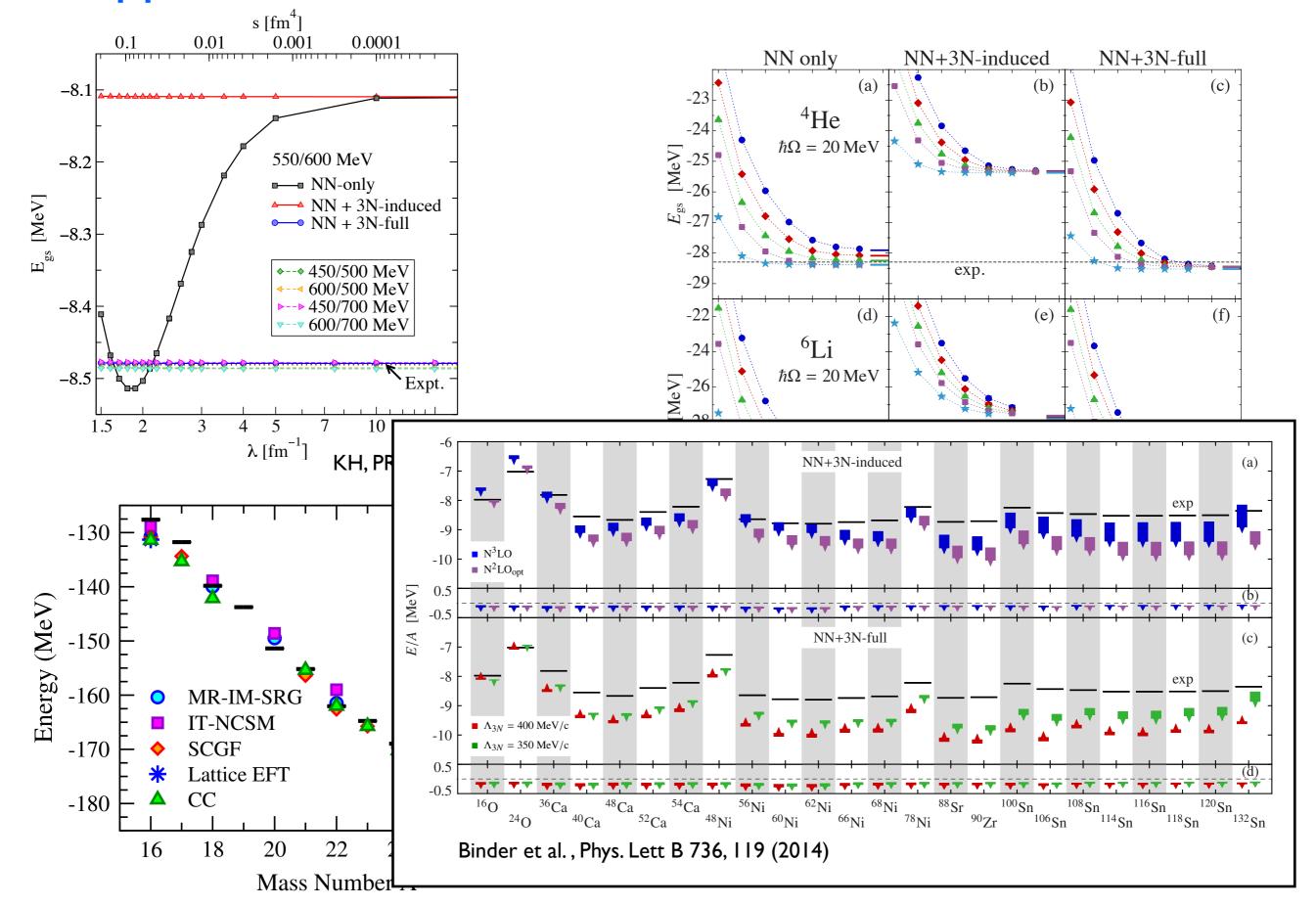
Roth et al. PRL 107, 072501 (2011)



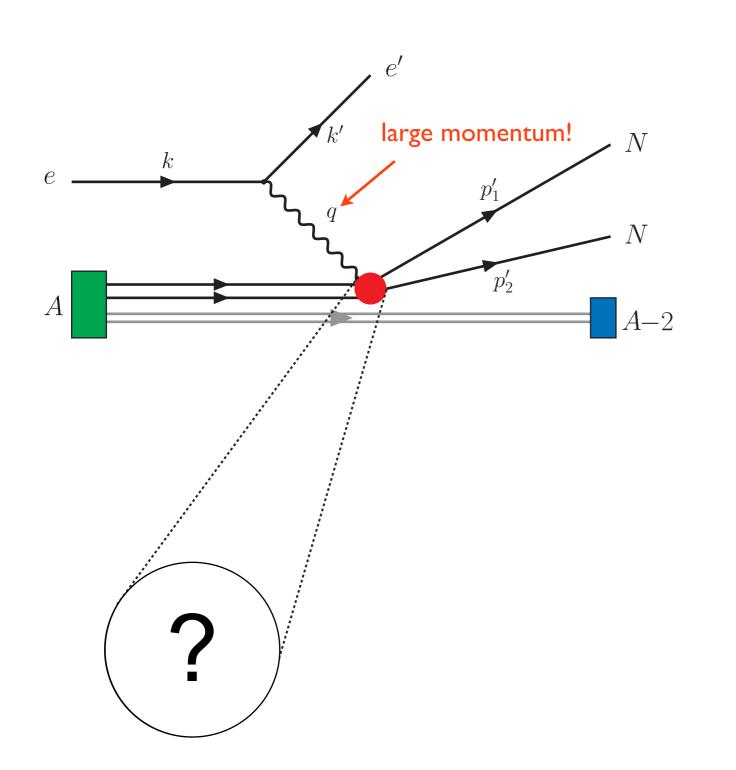


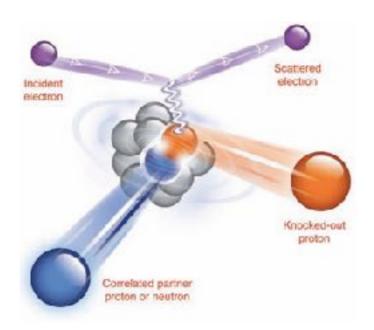
Roth et al. PRL 107, 072501 (2011)

KH et al., Ann. Rev. Nucl. Part. Sci. 165, 457 (2015)



Application to deep-inelastic knock-out reactions

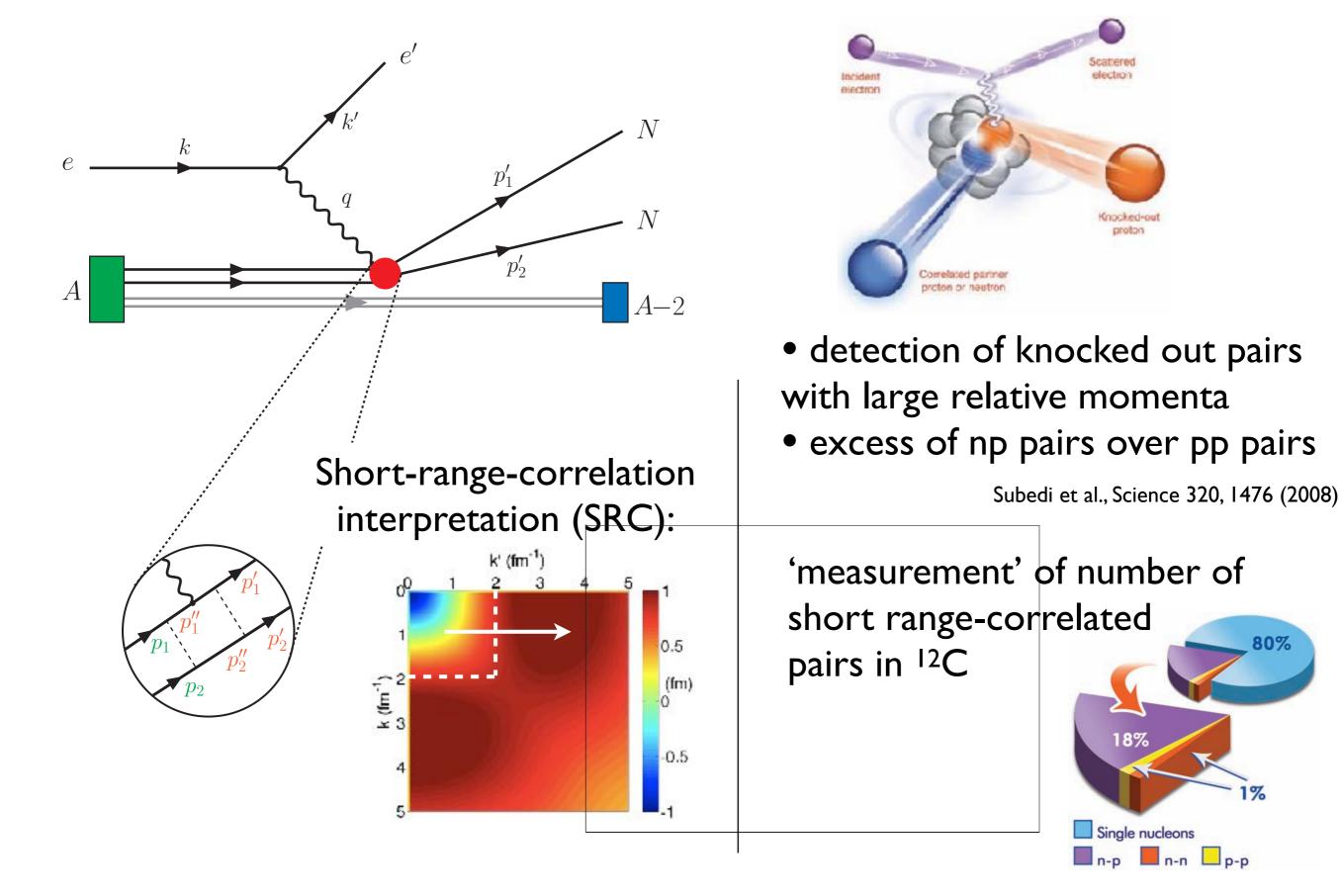




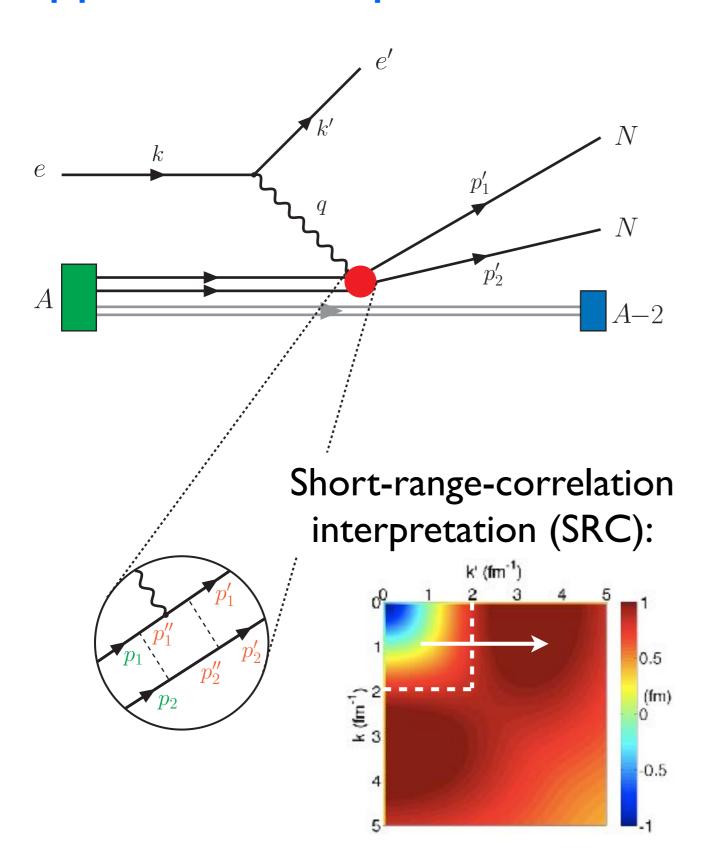
- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

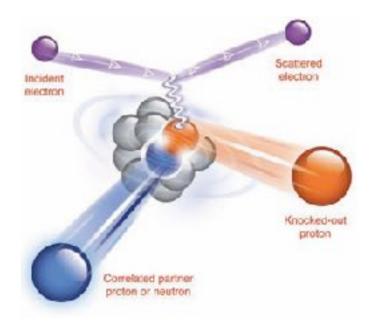
Subedi et al., Science 320, 1476 (2008)

Application: deep-inelastic knock-out reactions



Application: deep-inelastic knock-out reactions



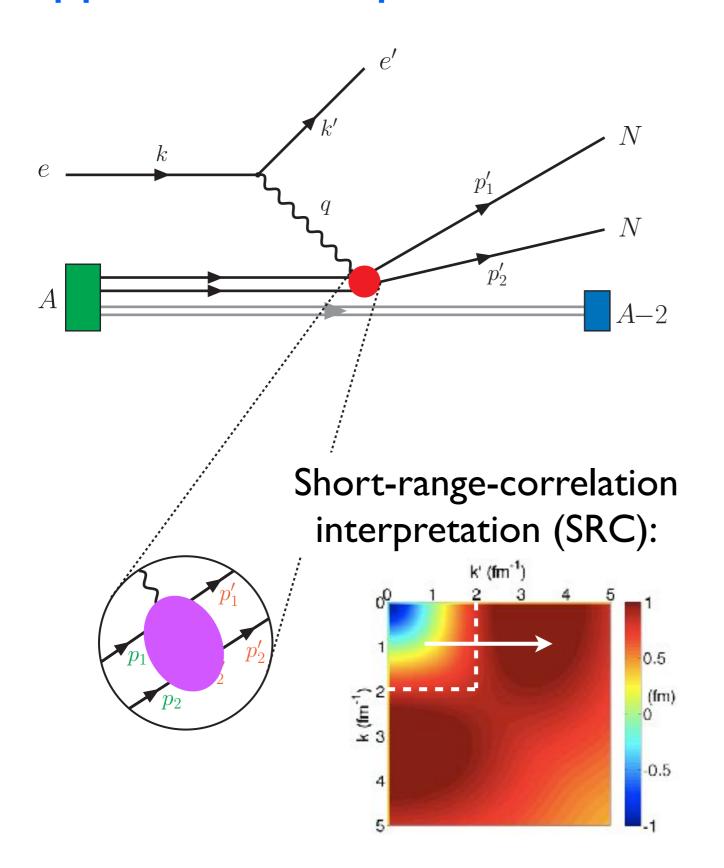


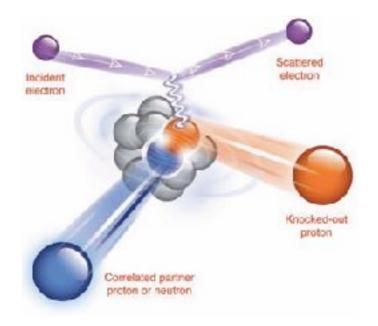
- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

Subedi et al., Science 320, 1476 (2008)

Explanation in terms of low-momentum interactions?

Application: deep-inelastic knock-out reactions





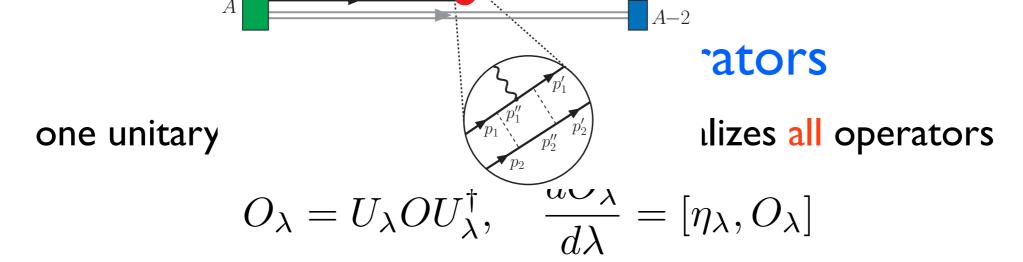
- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

Subedi et al., Science 320, 1476 (2008)

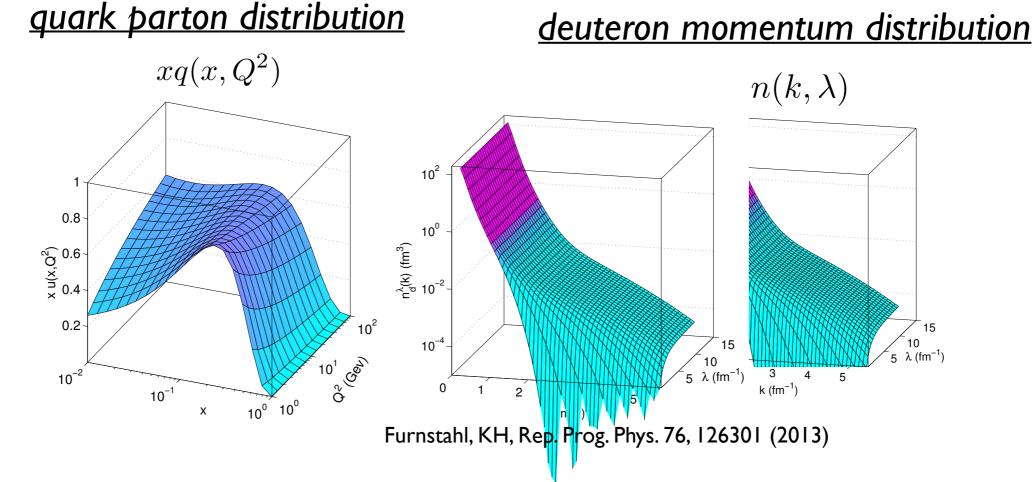
Explanation in terms of low-momentum interactions?

Vertex depends on the resolution!

One-body current and SRC changes to two-body current and simple wave function.



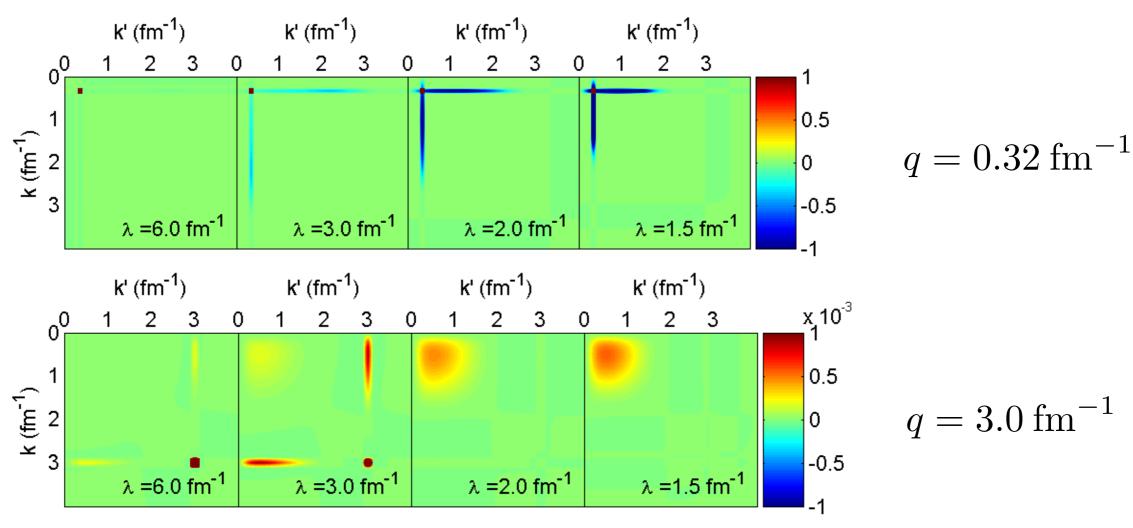
 \Rightarrow quantities like momentum distributions are generally scale dependent:



- applies generally to all quantities like spectroscopic factors, short-range corr.,...
- consistency requires consistent RG evolution of reaction and structure parts
- key for all momenta involving high-momentum components

Evolved density operator in the deuteron

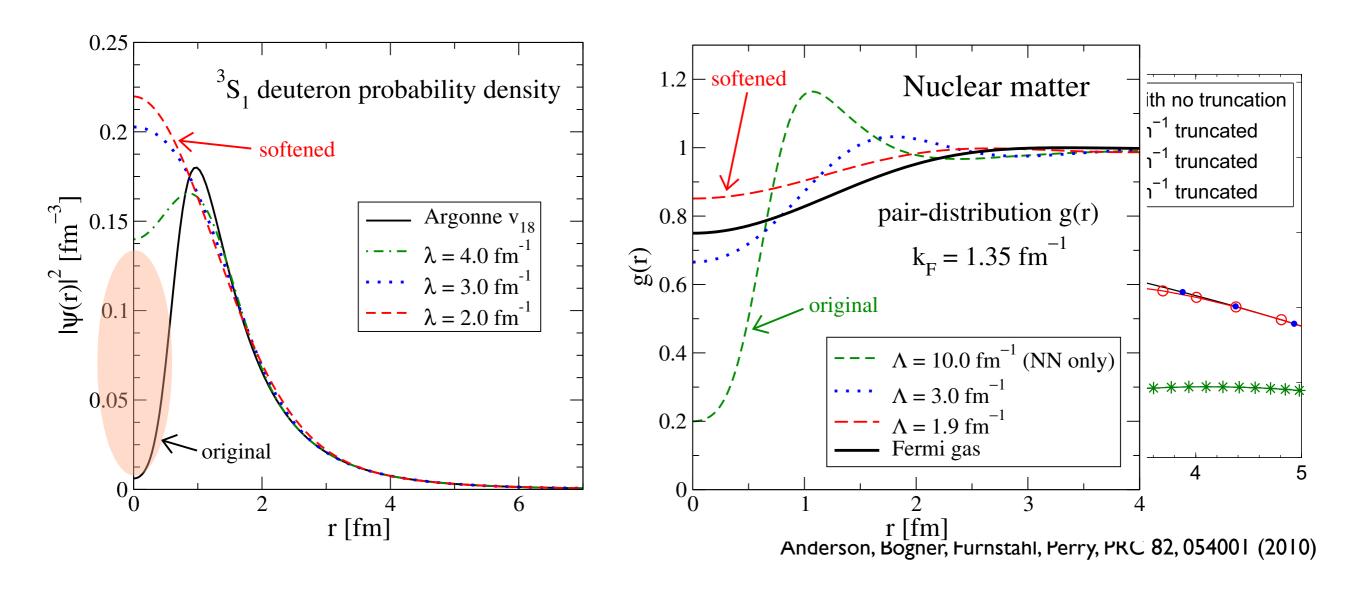
investigate
$$\left\langle \psi_D(\lambda) | U(\lambda) a_q^\dagger a_q U^\dagger(\lambda) | \psi_D(\lambda) \right\rangle$$



Anderson, Bogner, Furnstahl, Perry, PRC 82, 054001 (2010)

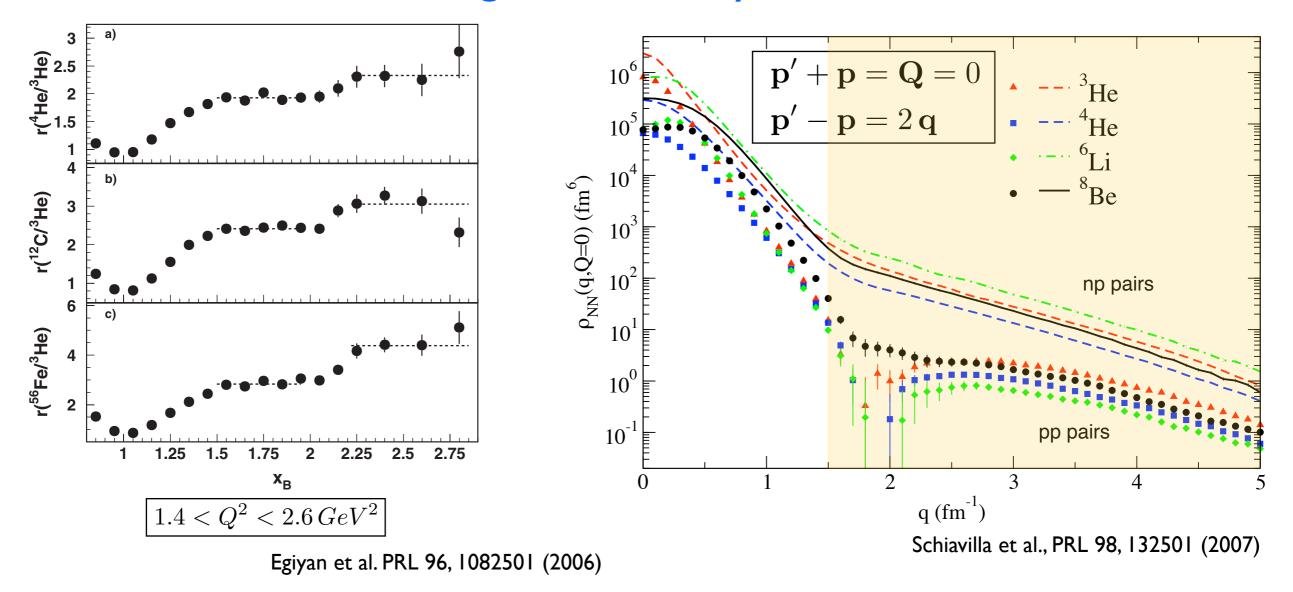
- for low-momentum operators RG evolution provides only small corrections
- for high-momentum operators induced two-body contributions at small momenta completely dominate contribution at small resolution scales

Evolved density operator in the deuteron



- short-distance correlations in wave function are resolution dependent!
- perfect invariance of momentum distribution function with consistently evolved density operator
- $U_{\lambda}(k,q)$ factorizes for $k < \lambda$ and $q \gg \lambda$: $U_{\lambda}(k,q) \approx K_{\lambda}(k)Q_{\lambda}(q)$

Scaling in nuclear systems



scaling behavior of momentum distribution function:

$$\rho_{\rm NN}(q,Q=0) \approx C_A \times \rho_{\rm NN,Deuteron}(q,Q=0)$$
 at large q

- dominance of np pairs over pp pairs
- "hard" (high resolution) interaction used
- dominance explained by short-range tensor forces

Nuclear scaling at low resolution

key:
$$U_{\lambda}(k,q) \approx K(k)Q(q)$$
 for $k < \lambda$ and $q \gg \lambda$

That leads to:

$$\langle \psi_{\lambda} | O_{\lambda} | \psi_{\lambda} \rangle = \int_{0}^{\lambda} dk \, dk' \int_{0}^{\infty} dq \, dq' \psi^{\dagger}(k) U_{\lambda}(k, q) O(q, q') U_{\lambda}(q', k') \cdot \psi_{\lambda}(k')$$

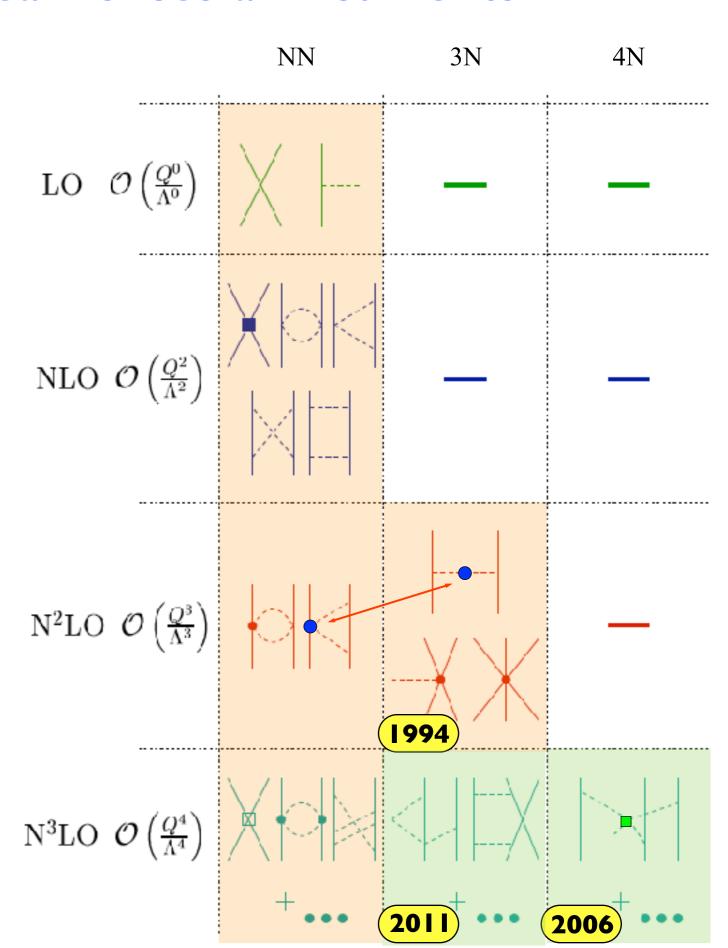
$$\approx \int_{0}^{\lambda} dk \, dk' \, \psi_{\lambda}^{\dagger}(k) \left[\int_{0}^{\lambda} dq \, dq' K(k) K(q) O(q, q') K(q') K(k') + \mathbf{I}_{QOQ} K(k) K(k') \right] \psi_{\lambda}(k')$$

with the **universal** quantity:

$$I_{QOQ} = \int_{\lambda}^{\infty} dq \, dq' Q(q) O(q, q') Q(q')$$

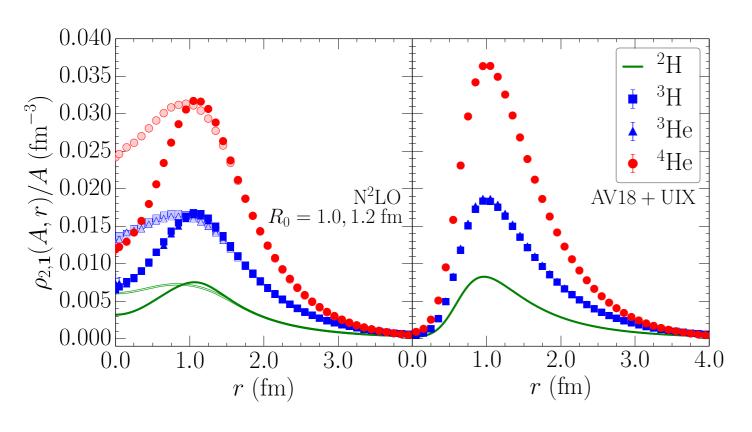
Chiral EFT for nuclear forces and currents

- choose relevant degrees of freedom: here nucleons and pions
- operators constrained by symmetries of QCD
- short-range physics captured in few short-range couplings
- separation of scales: Q $<< \Lambda_b$, breakdown scale $\Lambda_b \sim 500$ MeV
- power-counting: expand in powers Q/Λ_b
- systematic: work to desired accuracy, obtain error estimates



Nuclear scaling within chiral EFT

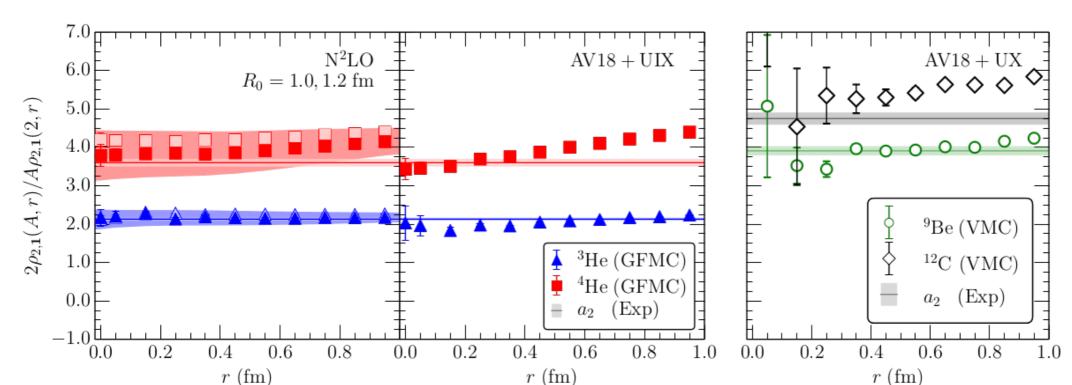
$$P \gg \Lambda_b \gg m_\pi \Rightarrow F_2^A(x, Q^2) \sim g_2(A, \Lambda) f_2(x, Q^2, \Lambda)$$



two-body distribution functions scheme and scale dependent!

Chen, Detmold, PLB 625, 165 (2005)

Chen, Detmold, Lynn, Schwenk, PRL 119, 262502 (2017)

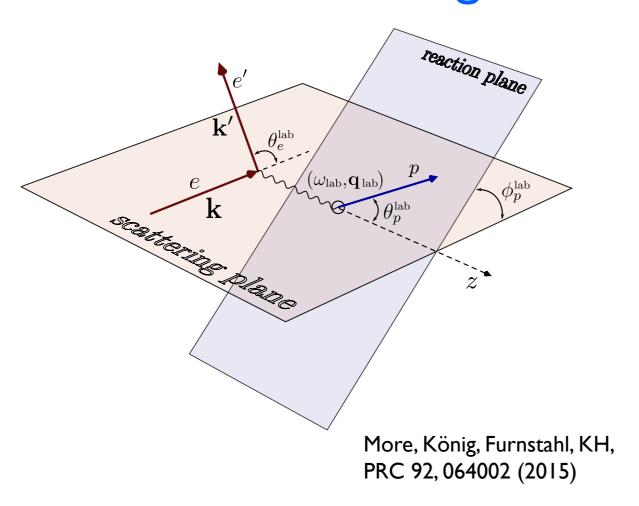


...ratios are not!

SRC Correlation Factors

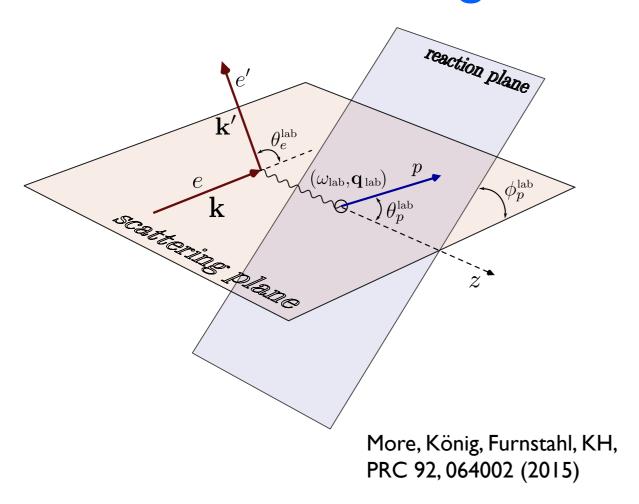
Detailed comparison of experiment and theory

	$N^2LO(R_0 = 1.0 - 1.2 \text{ fm})$	AV18+UIX	Exp
³ H ³ He ⁴ He	2.1(2) - 2.3(3) 2.1(2) - 2.1(3) 3.8(7) - 4.2(8)	2.0(4) 2.0(4) 3.4(3)	2.13(4) 3.60(10)



decomposition of differential cross section:

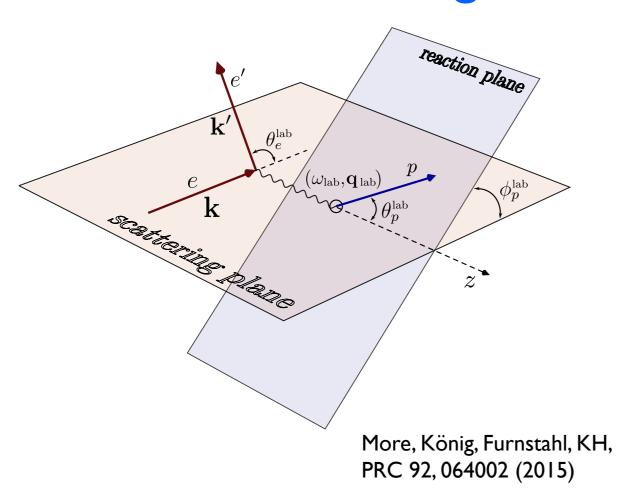
$$\frac{d^3\sigma}{dk'^{\rm lab}d\Omega_e^{\rm lab}} \sim v_L f_L + v_T f_T + v_{TT} f_{TT} \cos 2\phi_p^{\rm lab} + v_{LT} f_{LT} \cos \phi_p^{\rm lab}$$



decomposition of differential cross section:

$$\frac{d^3\sigma}{dk'^{\rm lab}d\Omega_p^{\rm lab}} \sim v_L f_L + v_T f_T + v_{TT} f_{TT} \cos 2\phi_p^{\rm lab} + v_{LT} f_{LT} \cos \phi_p^{\rm lab}$$

kinematic factors

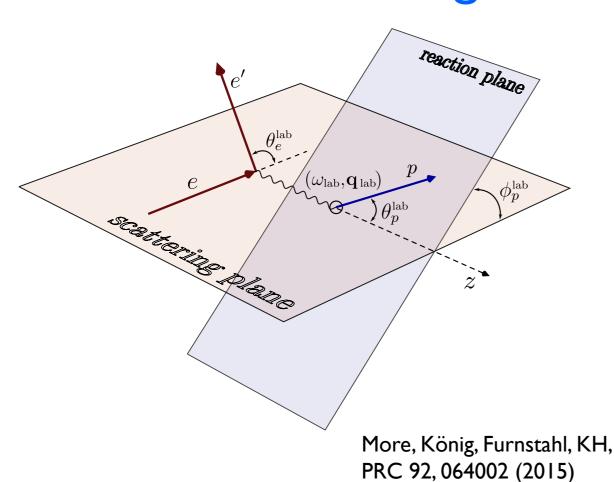


decomposition of differential cross section:

$$\frac{d^3\sigma}{dk'^{\rm lab}d\Omega_{e}^{\rm lab}} \sim v_L f_L + v_T f_T + v_{TT} f_{TT} \cos 2\phi_p^{\rm lab} + v_{LT} f_{LT} \cos \phi_p^{\rm lab}$$

kinematic factors

structure functions: observables (cross sections up to kinematical factors)



consider initial one-body current:

$$\langle \mathbf{k}_1 \, T_1 | \, J_0(\mathbf{q}) \, | \, \mathbf{k}_2 \, T = 0 \rangle$$

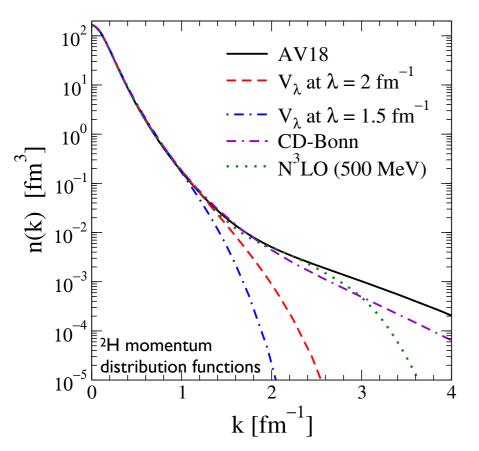
$$= \frac{1}{2} \left(G_E^p + (-1)^{T_1} G_E^n \right) \delta(\mathbf{k}_1 - \mathbf{k}_2 - \mathbf{q}/2)$$

$$+ \frac{1}{2} \left((-1)^{T_1} G_E^p + G_E^n \right) \delta(\mathbf{k}_1 - \mathbf{k}_2 + \mathbf{q}/2)$$

$$\langle \psi_f | J_0 | \psi_i \rangle = \underbrace{\langle \phi | J_0 | \psi_i \rangle}_{\text{IA}} + \underbrace{\langle \phi | t^{\dagger} G_0^{\dagger} J_0 | \psi_i \rangle}_{\text{FSI}}$$

$$= \langle \psi_f | U^{\dagger} U J_0 U^{\dagger} U | \psi_i \rangle$$

$$= \langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle$$



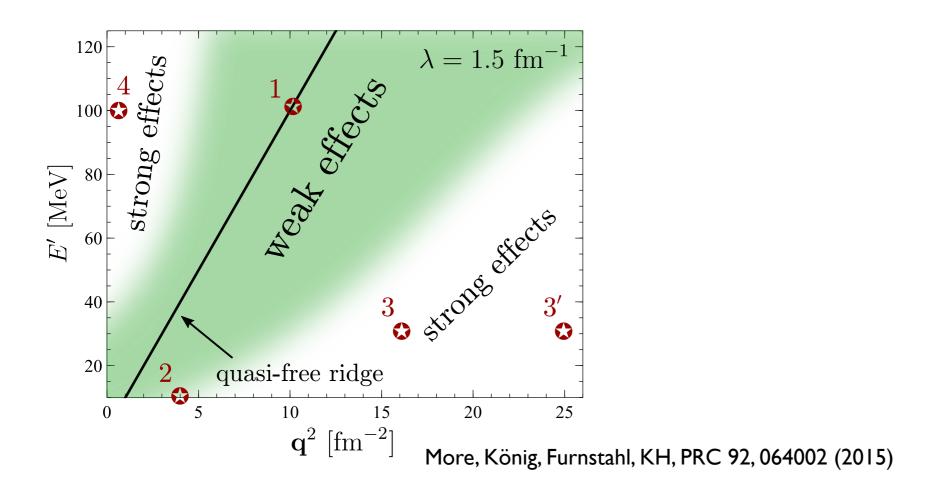
study longitudinal structure function

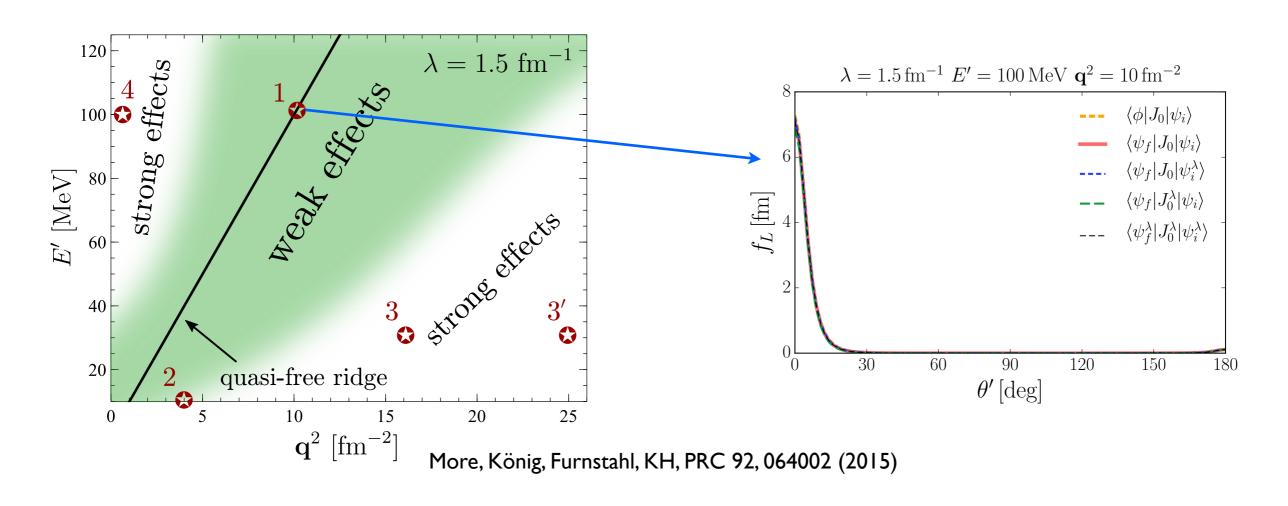
$$f_L(E', \mathbf{q}'^2; \cos \theta') \sim \left| \left\langle \psi_v^{\lambda} \right| J_0^{\lambda} \left| \psi_i^{\lambda} \right\rangle \right|^2$$

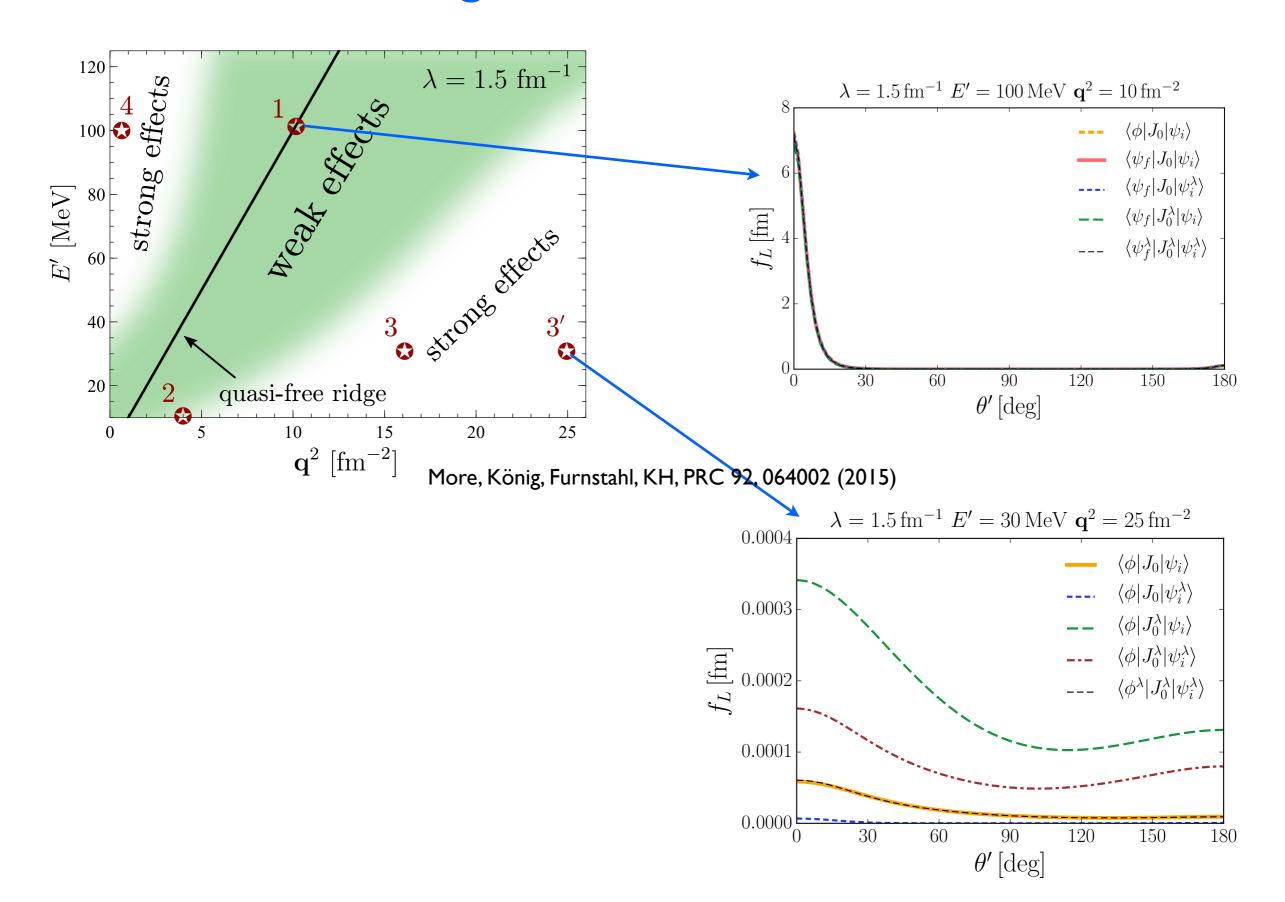
 E^\prime : energy of outgoing nucleons (in CM frame)

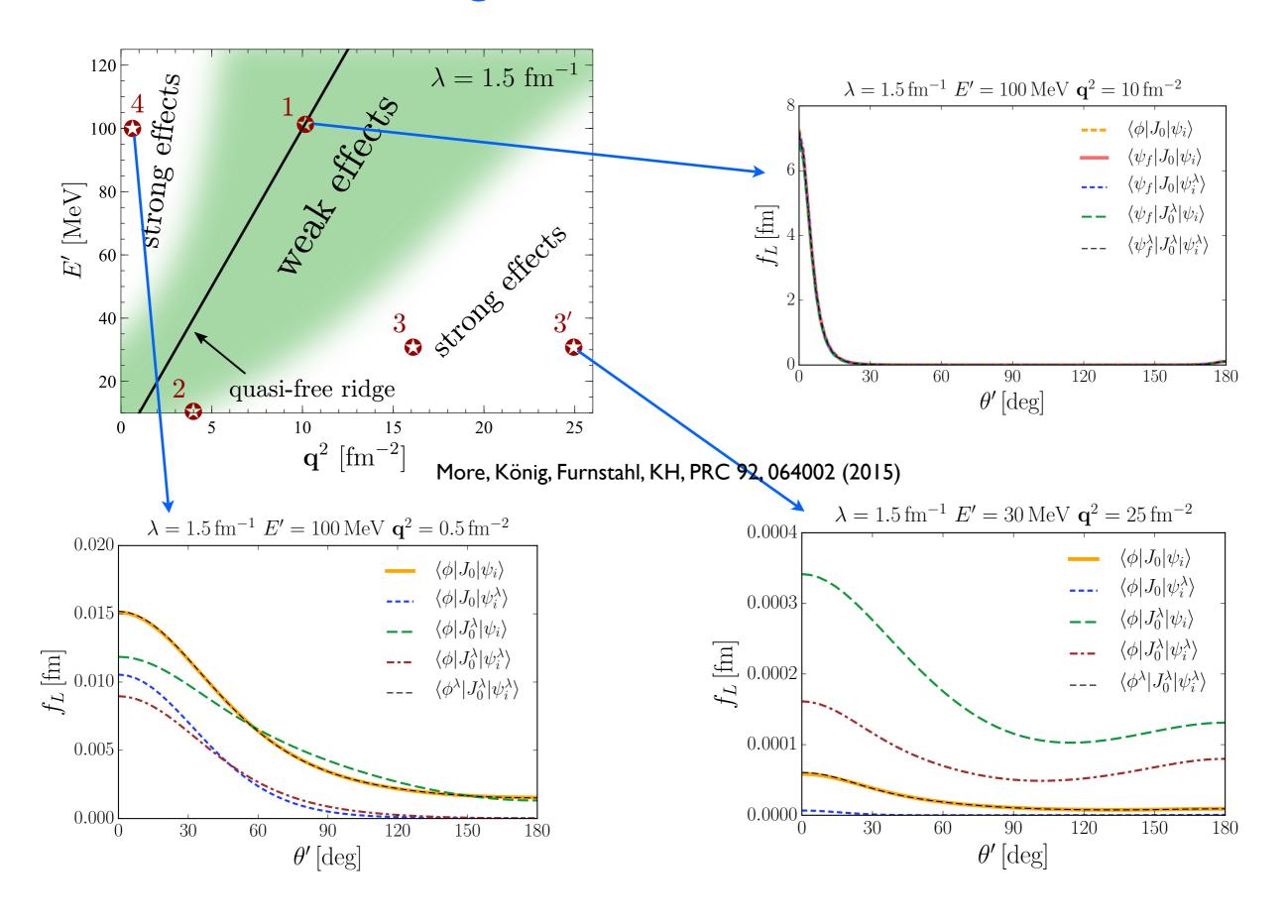
q': momentum transfer (in CM frame)

 θ' : angle of outgoing nucleons (CM frame)









Summary

- for ab-initio studies of reactions it is crucial to treat structure and reaction part consistently and simultaneously
- theoretical interpretation sensitively depends on the resolution scale
- resolution scale change shifts contributions between structure and reaction
- deep inelastic cross sections usually explained in terms of short-range correlations, scheme dependent, observables can also be explained by separation of scales and factorization
- studied deuteron disintegration based on RG evolved interactions and currents
 - * found perfect RG invariance of longitudinal structure function
 - + impact of RG evolution strongly depends on kinematics

Summary

- for ab-initio studies of reactions it is crucial to treat structure and reaction part consistently and simultaneously
- theoretical interpretation sensitively depends on the resolution scale
- resolution scale change shifts contributions between structure and reaction
- deep inelastic cross sections usually explained in terms of short-range correlations, scheme dependent, observables can also be explained by separation of scales and factorization
- studied deuteron disintegration based on RG evolved interactions and currents
 - + found perfect RG invariance of longitudinal structure function
 - impact of RG evolution strongly depends on kinematics

Thank you!