Overview from Nuclear Lattice Effective Field Theory

Serdar Elhatisari

Nuclear Lattice EFT Collaboration HISKP, Universität Bonn

Workshop on Polarized light ion physics with EIC Ghent University, Belgium February 5-9, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nuclear Lattice Effective Field Theory collaboration

Serdar Elhatisari (Bonn) Evgeny Epelbaum (Bochum) Nico Klein (Bonn) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (MSU) Ning Li (MSU) Bing-Nan Lu (MSU) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn/Jülich) Gautam Rupak (MSU) Gianluca Stellin (Bonn)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

- Lattice effective field theory
- Adiabatic projection method: scattering and reactions on the lattice
- Degree of locality of nuclear forces
- Nuclear clusters : probing for alpha clusters
- Pinhole Algorithm: density profiles for nuclei
- Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ab initio nuclear structure and nuclear scattering

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

□ *nuclear scattering* : ... processes relevant for stellar astrophysics

- $\,\vartriangleright\,$ scattering of alpha particles : ${}^{4}\text{He}{+}^{4}\text{He}{\rightarrow}^{4}\text{He}{+}^{4}\text{He}$
- hinspace triple-alpha reaction : ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$
- Dash alpha capture on carbon : ${}^{4} extsf{He} + {}^{12} extsf{C} o {}^{16} extsf{O} + \gamma$

Progress in ab initio nuclear structure and nuclear scattering

Unexpectedly large charge radii of neutron-rich calcium isotopes. Garcia Ruiz *et al.*, Nature Phys. 12, 594 (2016).

Structure of ⁷⁸Ni from first principles computations. Hagen, Jansen, & Papenbrock, PRL 117, 172501 (2016).

A nucleus-dependent valence-space approach to nuclear structure. Stroberg *et al.*, PRL 118, 032502 (2017).

Ab initio many-body calculations of the ${}^{3}H(d, n)^{4}He$ and ${}^{3}He(d, p)^{4}He$ fusion. Navratil & Quaglioni, PRL 108, 042503 (2012).

 3 He(α,γ)⁷Be and 3 H(α,γ)⁷Li astrophysical *S* factors from the no-core shell model with continuum Dohet-Eraly, J. *et al.* PLB **B** 757 (2016) 430-436.

Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012).

Coupling the Lorentz Integral Transform (LIT) and the Coupled Cluster (CC) Methods. Orlandini, G. *et al.*, Few Body Syst. 55, 907-911 (2014).

Nuclear LEFT: ab initio nuclear structure and scattering theory

□ Lattice EFT calculations for A = 3, 4, 6, 12 nuclei, PRL 104 (2010) 142501

- □ Ab initio calculation of the Hoyle state, PRL 106 (2011) 192501
- □ Structure and rotations of the Hoyle state, PRL 109 (2012) 252501
- Viability of Carbon-Based Life as a Function of the Light Quark Mass, PRL 110 (2013) 112502
- □ Radiative capture reactions in lattice effective field theory, PRL 111 (2013) 032502
- □ Ab initio calculation of the Spectrum and Structure of ¹⁶O, PRL 112 (2014) 102501
- □ *Ab initio* alpha-alpha scattering, *Nature* 528, 111-114 (2015).
- Nuclear Binding Near a Quantum Phase Transition, PRL 117, 132501 (2016)
- □ Ab initio calculations of the isotopic dependence of nuclear clustering. PRL 119, 222505 (2017).

Lattice effective field theory

Lattice effective field theory is a powerful numerical method formulated in the framework of chiral effective field theory.

Fig. courtesy of D. Lee

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Chiral EFT for nucleons: nuclear forces

Chiral effective field theory organizes the nuclear interactions as an expansion in powers of momenta and other low energy scales such as the pion mass (Q/Λ_{χ}) .

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; Epelbaum et al. '98,'03,'05,'15; Kaiser '99-'01; Higa et al. '03; ...

Chiral EFT for nucleons: NN scattering phase shifts

୍ରର୍ବ

Lattice Monte Carlo calculations

Transfer matrix operator formalism $\mathbf{M} =: \exp(-H a_t) :$

Microscopic Hamiltonian $H = H_{\text{free}} + V$

$$Z^{(L_t)} = \mathsf{Tr}(\mathbf{M}^{L_t}) = \int Dc \, Dc^* \, \exp[-S(c, c^*)]$$

Creutz, Found. Phys. 30 (2000) 487.

The exact equivalence of several different lattice formulations.

Lee, PRC 78:024001, (2008); Prog.Part.Nucl.Phys., 63:117-154 (2009)

$$e^{-E_0 a_t} = \lim_{L_t \to \infty} Z^{(L_t+1)} / Z^{(L_t)}$$

These amplitudes are computed with the Hybrid Monte Carlo methods.

Phys. Lett. B195, 216-222 (1987), Phys. Rev. D35, 2531-2542 (1987).

Lattice Monte Carlo calculations

Nuclear forces posses approximate SU(4) symmetry. $H_{SU(4)}$ acts as an approximate and inexpensive low energy filter at few first/last time steps. Significant suppression of sign oscillations. Chen, Lee, Schäfer, PRL 93 (2004) 242302

$$|\psi_I(\tau')
angle = [\mathbf{M}_{\mathsf{SU}(4)}]^{L'_t} |\psi_I
angle \qquad \mathbf{M}_{\mathsf{SU}(4)} = : e^{-a_t H_{\mathsf{SU}(4)}} : \qquad \tau' = L'_t a_t$$

For time steps in midsection, the full H_{LO} Hamiltonian is used.

$$|\psi_I(\tau)\rangle = [\mathbf{M}_{\mathsf{LO}}]^{L_t} |\psi_I(\tau')\rangle \qquad \mathbf{M}_{\mathsf{LO}} =: e^{-a_t H_{\mathsf{LO}}} : \qquad \tau = L_t a_t$$

The ground state energy at LO can be extracted from

$$e^{-E_{\mathsf{LO}} a_t} = \lim_{L_t \to \infty} \frac{Z_{\mathsf{LO}}^{(L_t+1)}}{Z_{\mathsf{LO}}^{(L_t)}} = \lim_{L_t \to \infty} \frac{\langle \psi_I(\tau/2) | \mathbf{M}_{\mathsf{LO}} | \psi_I(\tau/2) \rangle}{\langle \psi_I(\tau/2) | \psi_I(\tau/2) \rangle}$$

(日) (日) (日) (日) (日) (日) (日)

Higher order calculations (perturbative)

 $ho = NLO, NNLO, \cdots$

$$\mathbf{M}_{\mathsf{ho}} =: e^{-a_t(H_{\mathsf{LO}}+V_{\mathsf{ho}})}:$$

where the potential V_{ho} is treated perturbatively.

The higher order correction to the ground state energy can be extracted from

$$e^{-\Delta E_{\mathsf{ho}} a_t} = \frac{Z_{\mathsf{ho}}^{(L_t+1)}}{Z_{\mathsf{LO}}^{(L_t+1)}} = \frac{\langle \psi_I(\tau/2) | \mathbf{M}_{\mathsf{ho}} | \psi_I(\tau/2) \rangle}{\langle \psi_I(\tau/2) | \mathbf{M}_{\mathsf{LO}} | \psi_I(\tau/2) \rangle}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\text{Compute observable } \mathcal{O}$

The observable \mathcal{O} at LO

$$\left\langle \boldsymbol{\mathcal{O}} \right\rangle_{0,\mathsf{LO}} = \lim_{L_t o \infty} rac{\left\langle \psi_I | [\mathbf{M}_{\mathsf{LO}}]^{L_t} \, \boldsymbol{\mathcal{O}} \left[\mathbf{M}_{\mathsf{LO}}
ight]^{L_t} | \psi_I
ight
angle}{\left\langle \psi_I | [\mathbf{M}_{\mathsf{LO}}]^{2L_t+1} | \psi_I
ight
angle}$$

The observable \mathcal{O} at (NLO, NNLO, \cdots)

$$\langle \mathcal{O}
angle_{0,\mathsf{ho}} = \lim_{L_t o \infty} rac{\langle \psi_I | [\mathbf{M}_{\mathsf{LO}}]^{L_t - 1} \, \mathbf{M}_{\mathsf{ho}} \, \mathcal{O} \, [\mathbf{M}_{\mathsf{LO}}]^{L_t} | \psi_I
angle}{\langle \psi_I | [\mathbf{M}_{\mathsf{LO}}]^{L_t} \, \mathbf{M}_{\mathsf{ho}} \, [\mathbf{M}_{\mathsf{LO}}]^{L_t} | \psi_I
angle}$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Lattice EFT: (Euclidean time) projection Monte Carlo

 $e^{-H\tau}$ $\tau = L_t a_t$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- evolve nucleons forward in Euclidean time
- $\hfill\square$ allow them to interact

Auxiliary field Monte Carlo

Use a Gaussian integral identity

$$\exp\left[-\frac{C}{2}\left(N^{\dagger}N\right)^{2}\right] = \sqrt{\frac{1}{2\pi}}\int ds \,\exp\left[-\frac{s^{2}}{2} + \sqrt{C}s\,\left(N^{\dagger}N\right)\right]$$

s is an auxiliary field coupled to particle density. Each nucleon evolves as if a single particle in a fluctuating background of pion fields and auxiliary fields.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Scattering and reactions on the lattice

The first part

use Euclidean time projection to construct an *ab initio* low-energy cluster Hamiltonian, called the adiabatic Hamiltonian.

The second part

compute the two-cluster scattering phase shifts or reaction amplitudes using the adiabatic Hamiltonian.

Rupak, Lee., PRL 111 (2013) 032502. Pine, Lee, Rupak, EPJA 49 (2013) 151. SE, Lee, PRC 90, 064001 (2014). Rokash, Pine, SE, Lee, Epelbaum, Krebs, PRC 92,054612 (2015) SE, Lee, Meißner, Rupak, EPJA 52: 174 (2016)

200

The method constructs a low energy effective theory for the clusters.

Use initial states parameterized by the relative spatial separation between clusters, and project them in Euclidean time.

$$ert ec R
angle = \sum_{ec r} ert ec r + ec R
angle_1 \otimes ert ec r
angle_2$$

$$|ec{R}
angle_{ au}=e^{-H\, au}\;|ec{R}
angle \quad$$
 dressed cluster state

The adiabatic projection in Euclidean time gives a systematically improvable description of the low-lying scattering cluster states.

In the limit of large Euclidean projection time the description becomes exact.

 $ert ec{R}
angle_{ au} = e^{-H \, au} \, ec{R}
angle$ dressed cluster state (not orthogonal)

Hamiltonian matrixNorm matrix $[H_{\tau}]_{\vec{R},\vec{R}'} = \tau \langle \vec{R} | H | \vec{R}' \rangle_{\tau}$ $[N_{\tau}]_{\vec{R},\vec{R}'} = \tau \langle \vec{R} | \vec{R}' \rangle_{\tau}$

$$[H^a_{\tau}]_{\vec{R},\vec{R}'} = \sum_{\vec{R}'',\vec{R}'''} \left[N^{-1/2}_{\tau} \right]_{\vec{R}\vec{R}''} [H_{\tau}]_{\vec{R}''\vec{R}'''} \left[N^{-1/2}_{\tau} \right]_{\vec{R}'''\vec{R}'}$$

The structure of the adiabatic Hamiltonian, $[H^a_{\tau}]_{\vec{R},\vec{R}'}$, is similar to the Hamiltonian matrix used in calculations of ab initio no-core shell model/resonating group method (NCSM/RGM) for nuclear scattering and reactions.

Navratil, Quaglioni, PRC 83, 044609 (2011). Navratil, Roth, Quaglioni, PLB 704, 379 (2011). Navratil, Quaglioni, PRL 108, 042503 (2012).

 $[\mathcal{M}] (MeV^{-2})$ 20 70 100 50 n-d (EFT -15 p-ctreakur p-d (EFT $\delta_0 \ (degrees)$ -30 10 0 $\delta = 0.4$ $\delta = 0$ ٠ 10-5 -45 80 $(e^{60})_{\phi} (e^{60})_{\phi}$ Quartet-S -60 = 0.6 $\delta = 0.4$ -75 $\delta = 0$ $\delta = 0.6$ 20 $\delta = 0.4$ $\delta = 0$ ٠ 9<mark>0</mark> -90 20 50 100 p (MeV) A 20 40 60 80 100 120 140 $p \; (MeV)$ Rupak, Lee., PRL 111 (2013) 032502.

The radiative capture process $p(n, \gamma)d$.

N-d scattering.

SE, Lee, Meißner, Rupak. EPJ 52:174 (2016).

A D > A P > A D > A D > э.

Alpha-alpha scattering

イロト 不得 トイヨト イヨト

э.

Afzal, Ahmad, Ali, Rev. Mod. Phys. 41, 247 (1969) Higa, Hammer, van Kolck, Nucl.Phys. A809, 171 (2008) SE, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, *Nature* 528, 111-114 (2015)

Interaction A

■ Nonlocal short-range interactions V(r, r')

- One-pion exchange interaction
 - (+ Coulomb interaction)

Interaction B

- **E** Local short-range interactions $V(r,r') = U(r)\delta(r-r')$
 - Nonlocal short-range interactions V(r, r')
 - One-pion exchange interaction
 - (+ Coulomb interaction)

Introducing the nonlocal short-range interactions reduce the Monte Carlo sign oscillation significantly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interaction B Interaction A Local short-range interactions $V(r, r') = U(r)\delta(r - r')$ **\blacksquare** Nonlocal short-range interactions V(r, r')■ Nonlocal short-range interactions V(r, r')One-pion exchange interaction ■ (+ Coulomb interaction) One-pion exchange interaction ■ (+ Coulomb interaction) ${}^{1}S_{0}$ ${}^{3}S_{1}$ ${}^{1}P_{1}$ ${}^{3}P_{0}$ ē 75 Continuum LO Lattice LO-A Lattice LO-B ${}^{3}P_{2}$ $^{1}D_{2}$ ${}^{3}D_{1}$ ${}^{3}P_{1}$ δ or ε (deg) 100 150 150 ${}^{3}D_{2}$ ${}^{3}D_{3}$ ε_1 ε_2 150 150 100 150 50 prms (MeV)

Nucleus	A (LO)	B (LO)	A (LO + Coulomb)	B (LO + Coulomb)	Experiment
³ Н	-7.82(5)	-7.78(12)	-7.82(5)	-7.78(12)	-8.482
³ He	-7.82(5)	-7.78(12)	-7.08(5)	-7.09(12)	-7.718
⁴ He	-29.36(4)	-29.19(6)	-28.62(4)	-28.45(6)	-28.296

Nucleus	A (LO)	B (LO)	A (LO + Coulomb)	B (LO + Coulomb)	Experiment
⁸ Be	-58.61(14)	-59.73(6)	-56.51(14)	-57.29(7)	-56.591
¹² C	-88.2(3)	-95.0(5)	-84.0(3)	-89.9(5)	-92.162
¹⁶ O	-117.5(6)	-135.4(7)	-110.5(6)	-126.0(7)	-127.619
²⁰ Ne	-148(1)	-178(1)	-137(1)	-164(1)	-160.645

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähder Lee, Rupak, PRL 17, 132501 (2016). 🔿

Interaction A

Nonlocal short-range interactions V(r, r')

One-pion exchange interaction

(+ Coulomb interaction)

Interaction B

- $\blacksquare \text{ Local short-range interactions } V(r,r') = U(r)\delta(r-r')$
 - $\blacksquare \text{ Nonlocal short-range interactions } V(r,r')$
 - One-pion exchange interaction
 - (+ Coulomb interaction)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Tight-binding approximation 40 20 Forbidde (MeV) Loca -20 -40 -60 -80 Exchange terr -100 Nonloca 2 2.5 3 3.5 5 5.5 Δ 45 6

The alpha-alpha interaction is sensitive to the degree of locality of the interaction.

r (fm)

Nuclear binding near a quantum phase transition

Nucleus	A (LO)	B (LO)	A (LO + Coulomb)	B (LO + Coulomb)	Experiment
⁴ He	-29.36(4)	-29.19(6)	-28.62(4)	-28.45(6)	-28.296
⁸ Be	-58.61(14)	-59.73(6)	-56.51(14)	-57.29(7)	-56.591
¹² C	-88.2(3)	-95.0(5)	-84.0(3)	-89.9(5)	-92.162
¹⁶ O	-117.5(6)	-135.4(7)	-110.5(6)	-126.0(7)	-127.619
²⁰ Ne	-148(1)	-178(1)	-137(1)	-164(1)	-160.645

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Nuclear binding near a quantum phase transition

Nucleus	A (LO)	B (LO)	A (LO + Coulomb)	B (LO + Coulomb)	Experiment
⁴ He	-29.36(4)	-29.19(6)	-28.62(4)	-28.45(6)	-28.296
⁸ Be	-58.61(14)	-59.73(6)	-56.51(14)	-57.29(7)	-56.591
¹² C	-88.2(3)	-95.0(5)	-84.0(3)	-89.9(5)	-92.162
¹⁶ O	-117.5(6)	-135.4(7)	-110.5(6)	-126.0(7)	-127.619
²⁰ Ne	-148(1)	-178(1)	-137(1)	-164(1)	-160.645

 $V = (1 - \lambda)V_A + \lambda V_B$

Ground state energies at LO

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Nuclear clusters: probing for alpha clusters

 $ho(ec{n})$: the total nucleon density operator on the lattice site $ec{n}$.

 $\rho_4 = \sum_{\vec{n}} : \rho^4(\vec{n})/4!: \;$ is defined to construct a probe for alpha clusters .

Similarly ρ_3 is to construct a second probe for alpha clusters only in nuclei with even *Z* and even *N* where ³H and ³He clusters are not energetically favorable.

$$\rho_3 = \sum_{\vec{n}} : \rho^3(\vec{n})/3!:$$

 ρ_3 and ρ_4 depend on the short-distance regulator, the lattice spacing *a*. However the regularization-scale dependence of ρ_3 and ρ_4 does not depend on the nucleus being considered.

Therefore, by defining $\rho_{3,\alpha}$ and $\rho_{4,\alpha}$ as the corresponding values for the alpha particle, we consider the ratios $\rho_3/\rho_{3,\alpha}$ and $\rho_4/\rho_{4,\alpha}$ that are free from short-distance divergences and are model-independent quantities up to contributions from higher-dimensional operators in an operator product expansion.

Nuclear clusters: probing for alpha clusters

 $\begin{array}{ll} \Delta_{\alpha}^{\rho_{3}}/N_{\alpha} & \mbox{the }\rho_{3}\mbox{-entanglement of the alpha clusters}\,,\\ \mbox{where} & \Delta_{\alpha}^{\rho_{3}}=\rho_{3}/\rho_{3,\alpha}-N_{\alpha}\,. \end{array}$

Nucleus	^{4,6,8} He	^{8,10,12,14} Be	^{12,14,16,18,20,22} C	^{16,18,20,22,24,26,28} O
$\Delta^{\rho_3}_{\alpha}/N_{\alpha}$	0.0 - 0.03	0.20 - 0.35	0.25 - 0.50	0.50 - 0.75
			4	

200

-

Nuclear clusters: probing for alpha clusters

Our results show that the transition from cluster-like states in light systems to nuclear liquid-like states in heavier systems should not be viewed as a simple suppression of multi-nucleon short-distance correlations, but rather an increasing entanglement of the nucleons involved in the multi-nucleon correlations.

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

・ コット (雪) (小田) (コット 日)

Density profiles for nuclei: pinhole algoritm

The simulations with auxiliary-field Monte Carlo methods involve quantum states that are superposition of many different center-of-mass positions. Therefore, the density distrubitions of the nucleons cannot be computed directly.

Consider a screen placed at the middle time step having pinholes with spin and isospin labels that allow nucleons with the corresponding spin and isospin to pass.

Density profiles for nuclei: pinhole algoritm

This opaque screen corresponds to the insertion of the normal-ordered A-body density operator,

$$\rho_{i_1,j_1,\ldots,i_A,j_A}(\vec{n}_1,\ldots,\vec{n}_A) =: \rho_{i_1,j_1}(\vec{n}_1)\ldots\rho_{i_A,j_A}(\vec{n}_A):$$

where $\rho_{i,j}(\vec{n}) = a_{i,j}^{\dagger}(\vec{n})a_{i,j}(\vec{n})$ is the density operator for nucleon with spin *i* and isospin *j*. We performe Monte Carlo sampling of the amplitude,

$$A_{i_1,j_1,\ldots,i_A,j_A}(\vec{n}_1,\ldots,\vec{n}_A,L_t) = \langle \psi_I(\tau) | \rho_{i_1,j_1,\ldots,i_A,j_A}(\vec{n}_1,\ldots,\vec{n}_A) | \psi_I(\tau) \rangle$$

Pinhole algoritm: proton and neutron densities

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

(a)

Pinhole algoritm: ¹²C and ¹⁴C electric form factor

The magnitude of the ¹²C electric form factor

The magnitude of the ¹⁴C electric form factor

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Pinhole algoritm: measure of alpha cluster geometry

Consider the triangular shape formed by the three spin-up protons.

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

Scattering and reaction processes involving alpha particle are in reach of *ab initio* methods and this has opened the door towards using experimental data from collisions of heavier nuclei as input to improve *ab initio* nuclear structure theory.

Understanding of the connection between the degree of locality of nuclear forces and nuclear structure has led to a more efficient set of lattice chiral EFT interactions (to be proven by the higher order corrections).

The pinhole algorithm has been developed for the auxiliary-field Monte Carlo methods for the calculation of arbitrary density correlations with respect to the center of mass.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

