BLAST Deuteron Tensor Asymmetry Results

Michael Kohl * <kohlm@jlab.org>

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

* Presently supported by DOE DE-SC0013941, NSF HRD-1649909, PHY-1505934 and PHY-1436680

History

- 1989: BLAST first conceived
- 1998: Funding starts
- 2004-2005 Production data

Publications:

- 1. C.B. Crawford *et al.*, PRL 98, 052301 (2007) [GEp/GMp]
- 2. E. Geis *et al.*, PRL 101, 042501 (2008) [GEn/GMn]
- D. Hasell *et al.*, Nucl. Instr. and Methods in Physics Research 603, 247 (2009) [BLAST]
- D. Hasell *et al.*, Annu. Rev. Nucl. Part. Sci. 61, 409 (2011) [Review]
- 5. C. Zhang *et al.*, PRL 107, 0252501 (2011) [T20, T21]
- 6. A. DeGrush *et al.*, PRL 119, 182501 (2017) [QE ep]

11 PhD Theses:

- 1. Vitaly Ziskin (MIT, April 2005)
- 2. Chris Crawford (MIT, May 2005)
- **3**. Aaron Maschinot (MIT, September 2005)
- 4. Peter Karpius (University of NH, Dec. 2005)
- 5. Nikolas Meitanis (MIT, March 2006)
- 6. Chi Zhang (MIT, May 2006)
- 7. Adrian Sindile (University of NH, May 2006)
- 8. Octavian Filoti (University of NH, April 2007)
- 9. Eugene Geis (Arizona State, May 2007)
- 10. Yuan Xiao (MIT, 2009)
- 11. Adam DeGrush (MIT, 2010)

Outline

- Deuteron Properties
 NN interaction
 Deuteron Structure
- The BLAST Experiment: Polarization Observables in Electron-Deuteron Scattering

- Deuteron not a nucleus? \implies Bound NN system NN interaction, T=0 isoscalar, no 3N force
- Charge Radius, size~2 fm(large!)Binding Energy~1.1 MeV/nucleon(small!)Deuteron = Neutron target
- Base system to build nuclei ("H-atom of nuclear physics")
- Spin-triplet S=1 → can be polarized!
- Magnetic Moment µ_d ~0.86 µ_N (< µ_p+µ_n)
 Quadrupole moment ~0.2859 fm² (sizable)

→ Evidence for non-central (tensor) force

Deuteron Degrees of Freedom

NN Interaction Potential

Structure \leftrightarrow **Interaction**

Phenomenological NN potentials: OPE + 2-body + ... $P_D=4-6\% \leftrightarrow$ tensor force

Bound state (**structure**) generated by **interaction** potential minimum

Q_d problem / πNN coupling

Interaction generating Structure

Tensor force generates bound deuteron state

- NN interaction: deuteron only bound state Spin-1 system S = 1; $M_S = 0, \pm 1$ Tensor force $\implies L = 0, 2$ admixture
- Spin observables in elastic scattering and quasielastic electrodisintegration
 - \rightarrow Deuteron form factors G_C , G_Q , G_M
 - → Spin-dependent momentum distributions $\rho_0(p)$, $\rho_{\pm 1}(p)$ probed by vector and tensor asymmetries
- Simultaneous study of Nuclear theory
 Reaction mechanism
 Nucleon properties
- \rightarrow NN potential and tensor force
- \rightarrow FSI, MEC, IC, RC
- $\rightarrow G^{p}_{E/M}, G^{n}_{E/M}$

EM Studies with Polarized Deuterium

- Elastic ed: d(e,e'd)
- Quasielastic ed: d(e,e'p)n

Pion electroprod.: $d(e,e'\pi^+)nn, d(e,e'\pi^-)pp$

BLAST: Longitudinally polarized electron beam Vector and tensor polarized deuterium target Large acceptance detector

 \rightarrow Simultaneous measurements

- Exploit single and double polarization observables to keep systematic errors low
- Exploit internal target in storage ring to provide highly polarized, isotopically pure (background free) target
- Exploit large angular and energy acceptance to provide simultaneous measurement of all reaction channels over complete Q² range
- Exploit field free region at target to allow orientation of target polarization in any direction → Toroid

→ Bates Large Acceptance Spectrometer Toroid

MIT-Bates Linear Accelerator Center

- Beam: Stored (SHR) 850 MeV, 200 mA, P_e = 65%
- Target: Internal (ABS) 6 x 10³¹/(cm²s), P_{H/D} = 80%
- Detector: Bates Large Acceptance Spectrometer Toroid

MIT-Bates South Hall Ring

Monitoring of electron beam polarization

Injection with longitudinal spin at internal target

Siberian snake to restore longitudinal polarization

Atomic Beam Source (ABS)

- Isotopically pure H or D atoms (Vector-) polarized H Vector- and tensor-polarized D
- Target thickness / luminosity ρ=6x10¹³ at/cm², L=6x10³¹/(cm²s)
- Operated within BLAST B-field B_{max} = 3.8 kG
- Target polarization 70-80% P_z, P_{zz} from low Q² analysis

Atomic Beam Source (ABS)

15

Separately prepare m₁ = +1/2, -1/2 (hydrogen) and

with sextupoles and RF transitions

 Switch between states every 5 minutes

Atomic Beam Source (ABS)

E/E_{HFS} Ms State M_F M +1/2 +3/2 + 2> +1/2 0 +1/2 -1/2 -+1/2F=3/2 F=1/2 -1/2 -1/2 0 -1/2 +1/2 +1 -1/2 0 2 5 6 3 $x = B/B_{c}$

- Separately prepare m₁ = +½, -½ (hydrogen) and m₁ = +1, 0, -1 (deuterium) with sextupoles and RF transitions
- Switch between states every 5 minutes

Deuterium

ABS transition sequences

Ms

+1/2

+1/2

+1/2

-1/2

-1/2

-1/2

6

 $x = B/B_{c}$

M_F M_I

+1/2 0

-1/2 -

-1/2 0

+1/2 +1

5

Deuterium

17

The BLAST Detector

Left-right symmetricLarge acceptance:

 $0.1 < Q^2/(GeV/c)^2 < 0.8$ $20^\circ < \theta < 80^\circ, -15^\circ < \phi < 15^\circ$

- COILS B_{max} = 3.8 kG
- **DRIFT CHAMBERS** Tracking, PID (charge) $\delta p/p=3\%$, $\delta \theta = 0.5^{\circ}$
- CERENKOV COUNTERS e/π separation
- SCINTILLATORS
 Trigger, ToF, PID (π/p)
- NEUTRON COUNTERS
 Neutron tracking (ToF)

The BLAST Detector

ASU

Neutron Detectors

Bates

Ohio University

e- left
$$\rightarrow \theta^* \approx 90^{\circ}$$

"spin-perpendicular"

Target Spin Orientation

Freedom of in-plane spin angle 32° (2004) / 47° (2005)

e- left → θ* ≈ 90° "spin-perpendicular"

e- right → θ* ≈ 0° "spin-parallel" > 3 MC accumulated charge for Hydrogen and Deuterium 2004/05

• Hydrogen 2004 $\theta_d = 47^\circ$, 290 kC (90 pb⁻¹) $P_z = 82\%$

Deuterium 2004

 θ_d = 32°, 450 kC (**169 pb**⁻¹) P_z = 86%, P_{zz} = 68%

Deuterium 2005

 θ_d = 47°, 550 kC (**150 pb**⁻¹) P_z = 73%, P_{zz} = 56%

Elastic Electron-Deuteron Scattering

- Spin 1 ↔ three elastic form factors G^d_C, G^d_Q, G^d_M
- Quadrupole moment
 M²_dQ_d = G^d_Q(0) = 25.83
- G^d_Q ↔ Tensor force, D-wave

Elastic Electron-Deuteron Scattering

- Spin 1 ↔ three elastic form factors G^d_C, G^d_Q, G^d_M
- Quadrupole moment
 M²_dQ_d = G^d_Q(0) = 25.83
- G^d_Q ↔ Tensor force, D-wave
- Unpolarized elastic cross section

$$\begin{aligned} \sigma_0 &= \sigma_{\text{Mott}} \left(A + B \tan^2 \left(\theta_e / 2 \right) \right) := \sigma_{\text{Mott}} S_0 \\ A(Q^2) &= G_C^{d^{-2}} + \frac{8}{9} \eta^2 G_Q^{d^{-2}} + \frac{2}{3} \eta G_M^{d^{-2}} \\ B(Q^2) &= \frac{4}{3} \eta (1 + \eta) G_M^{d^{-2}}; \quad \eta = Q^2 / (4M_D^2) \end{aligned}$$

A and B

Elastic Electron-Deuteron Scattering

- Spin 1 ↔ three elastic form factors G^d_C, G^d_Q, G^d_M
- Quadrupole moment
 M²_dQ_d = G^d_Q(0) = 25.83
- G^d_Q ↔ Tensor force, D-wave
- Unpolarized elastic cross section

$$\begin{aligned} \sigma_0 &= \sigma_{\text{Mott}} \left(A + B \tan^2 \left(\theta_e / 2 \right) \right) := \sigma_{\text{Mott}} S_0 \\ A(Q^2) &= G_C^{d^{-2}} + \frac{8}{9} \eta^2 G_Q^{d^{-2}} + \frac{2}{3} \eta G_M^{d^{-2}} \\ B(Q^2) &= \frac{4}{3} \eta (1 + \eta) G_M^{d^{-2}}; \quad \eta = Q^2 / (4M_D^2) \end{aligned}$$

Polarized cross section

$$egin{aligned} \sigma &= oldsymbol{\sigma}_0 \left(1 + P_{zz} oldsymbol{A}_d^T + h P_z oldsymbol{A}_{ed}^V
ight) \ oldsymbol{A}_d^T &= rac{1}{\sqrt{2}} \left[\left(rac{3}{2} \cos^2 heta_d - rac{1}{2}
ight) oldsymbol{T}_{20} - \sqrt{rac{3}{2}} \sin 2 heta_d \cos \phi_d oldsymbol{T}_{21} + \sqrt{rac{3}{2}} \sin^2 heta_d \cos 2 \phi_d oldsymbol{T}_{22}
ight] \end{aligned}$$

Tensor-pol. Elastic ed Scattering

Tensor asymmetry and tensor analyzing powers

$$\begin{split} \boldsymbol{A}_{d}^{T} &= \frac{3}{2} \left(\cos^{2} \theta_{d} - 1 \right) \boldsymbol{T}_{20} - \sqrt{\frac{3}{2}} \sin 2\theta_{d} \cos \phi_{d} \boldsymbol{T}_{21} + \sqrt{\frac{3}{2}} \sin^{2} \theta_{d} \cos 2\phi_{d} \boldsymbol{T}_{22} \right. \\ \boldsymbol{T}_{20}(\boldsymbol{Q}^{2}, \theta_{e}) &= \frac{1}{\sqrt{2}S_{0}} \left[\frac{8}{3} \eta \, \boldsymbol{G}_{C}^{d} \boldsymbol{G}_{Q}^{d} + \frac{8}{9} \eta^{2} \boldsymbol{G}_{Q}^{d^{2}} + \frac{1}{3} \eta \left(1 + 2 \left(1 + \eta \right) \tan^{2} \frac{\theta_{e}}{2} \right) \boldsymbol{G}_{M}^{d^{-2}} \right] \\ \boldsymbol{T}_{21}(\boldsymbol{Q}^{2}, \theta_{e}) &= \frac{1}{\sqrt{3}S_{0}} 2\eta \sqrt{\eta + \eta^{2} \sin^{2} \frac{\theta_{e}}{2}} \sec \frac{\theta_{e}}{2} \, \boldsymbol{G}_{M}^{d} \boldsymbol{G}_{Q}^{d} \\ \boldsymbol{T}_{22}(\boldsymbol{Q}^{2}, \theta_{e}) &= -\frac{1}{2\sqrt{3}S_{0}} \eta \, \boldsymbol{G}_{M}^{d^{-2}} \end{split}$$

T₂₀ dominant, T₂₁ significant, T₂₂ small

Global fit analysis to determine G^d_C, G^d_Q and G^d_M from world data + BLAST

Tensor analyzing power T₂₀

Tensor analyzing powers T₂₀, T₂₁

$$egin{split} T_{20}(Q^2, heta_e) &= rac{1}{\sqrt{2}S_0} \left[rac{8}{3} \eta \, G_C^d G_Q^d + rac{8}{9} \eta^2 G_Q^{d^{-2}} + rac{1}{3} \eta \left(1 + 2 \, (1+\eta) an^2 rac{ heta_e}{2}
ight) G_M^{d^{-2}}
ight] \ T_{21}(Q^2, heta_e) &= -rac{1}{\sqrt{3}S_0} 2 \eta \sqrt{\eta + \eta^2 \sin^2 rac{ heta_e}{2}} \sec rac{ heta_e}{2} G_M^d G_Q^d \end{split}$$

*Ph.D. work of C. Zhang (MIT)

C. Zhang, M.K. et al., PRL107, 0252501 (2011)

Reduced Tensor Analyzing Power T_{20R}*

 G_{c} and G_{Q}

Deuteron Electrodisintegration

- Quasielastic breakup e + d → e' + p + n
- **D**(e,e'p), PWIA: $\vec{p}_m = \vec{q} - \vec{p}_p = -\vec{p}_{p,l}$

$$\frac{\sigma}{\sigma_0} = (1 + P_{zz} A_d^T + h P_z A_{ed}^V)$$

Beam-vector asymmetry (PWIA): $A_{ed}^{V}(p,n) = \frac{a\cos\theta^* + b\left(G_E^{p,n}/G_M^{p,n}\right)\sin\theta^*\cos\phi^*}{1 + c\left(G_E^{p,n}/G_M^{p,n}\right)^2}$

Nucleon spins parallel $\rightarrow A_{ed}^V(p_{miss})$ changes sign

Deuteron Electrodisintegration

Quasielastic Tensor Asymmetry

A. DeGrush, A. Maschinot et al., PRL 119, 182501 (2017)

*Ph.D. work of A. Maschinot and A. DeGrush (MIT)

Extraction of Gⁿ_E

boxst

36

E. Geis, M.K., V. Ziskin et al., PRL 101, 042501 (2008)

$$A_{ed}^{V} = \frac{a G_{M}^{n} c \cos \theta^{*} + b G_{E}^{n} G_{M}^{n} \sin \theta^{*} \cos \varphi}{c G_{E}^{n} c G_{E}^{n} + G_{M}^{n} c G_{E}^{n}}$$

- Quasielastic ²H(e,eⁿ)
- Full Montecarlo simulation of the BLAST experiment
- Deuteron electrodisintegration by H. Arenhövel
- Accounted for FSI,MEC,RC,IC
- Spin-perpendicular beam-target vector asymmetry A^V_{ed} shows high sensitivity to Gⁿ_E
- Compare measured A^V_{ed} with BLASTMC, vary Gⁿ_E

*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)

How well is the FSI effect known?

BIXST

E. Geis, M.K., V. Ziskin et al., PRL 101, 042501 (2008)

- Quasielastic ²H(e,e'n)
- Full Montecarlo simulation of the BLAST experiment
- Deuteron electrodisintegration by H. Arenhövel
- Accounted for FSI,MEC,RC,IC
- Spin-perpendicular beam-target vector asymmetry A^V_{ed} shows high sensitivity to Gⁿ_E

Use tensor asymmetry to control FSI

*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)

Neutron Electric Form Factor Gⁿ_E

*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)

D(e,e'π[±])nn,pp Beam-Vector Asym.

39

Pion Electroproduction from Deuterium

R.J. Loucks, V.R. Pandharipande, R. Schiavilla, PRC49 (1994) 342

Strong FSI effect to explain quenching of ~80% in ratio of d(e,e' π^+)nn / p(e,e' π^+)n observed at Saclay

R. Gilman et al., PRL64 (1989) 622

Large tensor asymmetry (<0) predicted for scattering into quasibound singlet 2N state

Two-nucleon term scheme:

D(e,e'π[±]**)nn,pp Tensor Asymmetries**

*Analysis by A. Shinozaki (MIT)

Summary

• BLAST WAS A GREAT SUCCESS!!!

• First class single and double polarization data on H and D in elastic, quasielastic and Delta region

Produced 11 Ph.D.'s and 3 Junior Faculty in the US

• BLAST detector re-used for OLYMPUS @ DESY

T. Akdogan^f, R. Alarcon^a, J. Althouse^c, H. Arenhövel^e, W. Bertozzi^f, E. Booth^b, T.
Botto^f, H.J. Bulten^k, J. Calarcoⁱ, B. Clasie^f, C. Crawford^f, C. D'Andrea^c, A. Degrush^f, K.
Dow^f, D. Dutta^d, M. Farkhondeh^f, R. Fatemi^f, O. Filotiⁱ, W. Franklin^f, H. Gao^d, E. Geis^a,
S. Gilad^f, A. Goodhue^c, W. Haeberli^j, D. Hasell^f, W. Hersmanⁱ, M. Holtropⁱ, E. Ilhoff^f, P. Karpiusⁱ, J. Kelsey^f, M. Kohl^f, H. Kolster^f, S. Krause^f, T. Leeⁱ, A. Maschinot^f, J. Matthews^f, K. McIlhany^h, N. Meitanis^f, R. Milner^f, A. Mosser^h, J. Pavel^c, H.R.
Poolman^k, R. Prince^a, J. Rapaport^g, R. Redwine^f, J. Seely^f, A. Shinozaki^f, A. Sindileⁱ, S. Širca^f, T. Smith^c, S. Sobczynski^f, B. Tonguc^a, C. Tschalaer^f, E. Tsentalovich^f, W. Turchinetz^f, J.F.J. van den Brand^k, J. van der Laan^f, T. Wise^j, Y. Xiao^f, W. Xu^d, C. Zhang^f, V. Ziskin^f, T. Zwart^f

^a Arizona State University, Tempe, AZ 85287

 ^b Boston University, Boston, MA 02215
 ^c Dartmouth College, Hanover, NH 03755
 ^d Duke University, Durham, NC 27708-0305
 ^e Johannes Gutenberg-Universität, 55099 Mainz, Germany

 ^f Massachusetts Institute of Technology, Cambridge, MA 02139

 and Bates Linear Accelerator Center, Middleton, MA 01949
 ^g Ohio University, Athens, OH 45701
 ^h United States Naval Academy, Annapolis, MD 21402
 ⁱ University of New Hampshire, Durham, NH 03824
 ^j University of Wisconsin, Madison, WI 53706

^k Vrije Universitaet and NIKHEF, Amsterdam, The Netherlands

42

Backup