Ab-initio methods for light nuclei from low to high resolution

James P. Vary Iowa State University, Ames, Iowa, USA

Polarized light ion physics with EIC Ghent, Belgium Feb. 5 – 9, 2018

Meeting Topics include:

\* Neutron spin structure from polarized deep-inelastic scattering on light nuclei (d, 3He)

- \* Nuclear fragmentation and final-state interactions in high-energy processes
- \* Spin-orbit effects and azimuthal asymmetries in scattering on proton and light nuclei
- \* Tensor-polarized deuteron in low- and high-energy processes
- \* Theoretical methods for light nuclear structure: Few-body, Lattice, Light-front
- \* Nuclear structure at variable scales: Effective degrees of freedom, EFT methods
- \* Quarks and gluons in light nuclei: EMC effect, non-nucleonic degrees of freedom
- \* Diffraction and nuclear shadowing in DIS on light nuclei
- \* Polarized light ion beams: Sources, acceleration, polarimetry
- \* Forward detection of spectators and nuclear fragments at EIC

issues in this talk



# **Effective Nucleon Interaction** (Chiral Perturbation Theory)

#### Chiral perturbation theory ( $\chi$ PT) allows for controlled power series expansion



## **No-Core Configuration Interaction calculations**

Barrett, Navrátil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

Given a Hamiltonian operator

$$\hat{\mathbf{H}} = \sum_{i < j} \frac{(\vec{p}_i - \vec{p}_j)^2}{2 \, m \, A} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

solve the eigenvalue problem for wavefunction of A nucleons

$$\mathbf{\hat{H}} \Psi(r_1, \dots, r_A) = \lambda \Psi(r_1, \dots, r_A)$$

- Expand eigenstates in basis states  $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Diagonalize Hamiltonian matrix  $H_{ij} = \langle \Phi_j | \mathbf{\hat{H}} | \Phi_i \rangle$
- No Core Full Configuration (NCFC) All A nucleons treated equally
- Complete basis  $\longrightarrow$  exact result
- In practice
  - truncate basis
  - study behavior of observables as function of truncation

## **Basis expansion** $\Psi(r_1, \ldots, r_A) = \sum a_i \Phi_i(r_1, \ldots, r_A)$

- Many-Body basis states  $\Phi_i(r_1, \ldots, r_A)$  Slater Determinants
- Single-Particle basis states  $\phi_{\alpha}(r_k)$  with  $\alpha = (n, l, s, j, m_j)$
- Radial wavefunctions: Harmonic Oscillator (HO), natural orbitals, Woods-Saxon, Coulomb-Sturmian, Complex Scaled HO, Berggren,...
- *M*-scheme: Many-Body basis states eigenstates of  $\hat{J}_z$

$$\hat{\mathbf{J}}_{\mathbf{z}}|\Phi_i\rangle = M|\Phi_i\rangle = \sum_{k=1}^A m_{ik}|\Phi_i\rangle$$

Nmax truncation: Many-Body basis states satisfy

$$\sum_{\alpha \text{ occ.}}^{A} (2n+l)_{\alpha} \leq N_0 + N_{\max}$$

 $N_{\rm max}$  runs from zero to computational limit.  $(N_{\rm max}, \hbar\Omega)$  fix HO basis

Alternatives:

- Full Configuration Interaction (single-particle basis truncation)
- Importance Truncation
  Roth, PRC79, 064324 (2009)
- No-Core Monte-Carlo Shell Model Abe et al, PRC86, 054301 (2012)
- SU(3) Truncation Dytrych *et al*, PRL111, 252501 (2013)

## Calculation of three-body forces at N<sup>3</sup>LO



#### Goal

Calculate matrix elements of 3NF in a partialwave decomposed form which is suitable for different few- and many-body frameworks

#### Challenge

Due to the large number of matrix elements, the calculation is extremely expensive.

#### Strategy

Develop an efficient code which allows to treat arbitrary local 3N interactions. (Krebs and Hebeler) Initial LENPIC Collaboration results: Chiral NN results for <sup>6</sup>Li by Chiral order Orange: Chiral order uncertainties; Blue/Green: Many-body method uncertainties S. Binder, et al, Phys. Rev. C **93**, 044002 (2016); arXiv:1505.07218





S. Binder, et al., LENPIC Collaboration, in preparation

#### Preliminary LENPIC results with Chiral NN only and R = 1.0 fm, IA for operator S. Binder, et al., LENPIC Collaboration, in preparation



Dirac's forms of relativistic dynamics [Dirac, Rev. Mod. Phys. **21**, 392–1949] Instant form is the well-known form of dynamics starting with  $x^0 = t = 0$  $K^i = M^{0i}$ ,  $J^i = \frac{1}{2} \varepsilon^{ijk} M^{jk}$ ,  $\varepsilon^{ijk} = (+1, -1, 0)$  for (cyclic, anti-cyclic, repeated) indeces Front form defines relativistic dynamics on the light front (LF):  $x^+ = x^0 + x^3 = t + z = 0$ 

$$P^{\pm} \triangleq P^0 \pm P^3$$
,  $\vec{P}^{\perp} \triangleq (P^1, P^2)$ ,  $x^{\pm} \triangleq x^0 \pm x^3$ ,  $\vec{x}^{\perp} \triangleq (x^1, x^2)$ ,  $E^i = M^{+i}$ ,  $E^+ = M^{+-}$ ,  $F^i = M^{-i}$ 



Adapted from talk by Yang Li

#### Discretized Light Cone Quantization Pauli & Brodsky c1985

**Basis Light Front Quantization\*** 

$$\phi(\vec{x}) = \sum_{\alpha} \left[ f_{\alpha}(\vec{x}) a_{\alpha}^{+} + f_{\alpha}^{*}(\vec{x}) a_{\alpha} \right]$$

Operator-valued distribution function

where  $\{a_{\alpha}\}$  satisfy usual (anti-) commutation rules.

Furthermore,  $f_{\alpha}(\vec{x})$  are arbitrary except for conditions:

Orthonormal:  $\int f_{\alpha}(\vec{x}) f_{\alpha'}^{*}(\vec{x}) d^{3}x = \delta_{\alpha\alpha'}$ Complete:  $\sum f_{\alpha}(\vec{x}) f_{\alpha}^{*}(\vec{x}') = \delta^{3}(\vec{x} - \vec{x}')$ 

=> Wide range of choices for  $f_a(\vec{x})$  and our initial choice is

$$f_{\alpha}(\vec{x}) = Ne^{ik^{+}x^{-}}\Psi_{n,m}(\rho,\varphi) = Ne^{ik^{+}x^{-}}f_{n,m}(\rho)\chi_{m}(\varphi)$$

\*J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond, P. Sternberg, E.G. Ng and C. Yang, PRC 81, 035205 (2010). ArXiv:0905:1411

#### **Set of transverse 2D HO modes for n=4**



J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond, P. Sternberg, E.G. Ng and C. Yang, PRC 81, 035205 (2010). ArXiv:0905:1411

Symmetries & Constraints

$$\sum_{i} b_{i} = B$$

$$\sum_{i} e_{i} = Q$$

$$\sum_{i} (m_{i} + s_{i}) = J_{z}$$

$$\sum_{i} k_{i} = K$$
Finite basis regulators
$$\sum_{i} [2n_{i} + |m_{i}| + 1] \leq N_{max}$$
Global Color Singlets (QCD)
Light Front Gauge
Optional - Fock space cutoffs
$$H \rightarrow H + \lambda H_{CM}$$

Effective Yukawa Model in BLFQ Wenyang Qian, et al. in preparation



## LF treatment:

Approximate the contact term by heavy scalar boson exchange + effective one pion exchange

## **Basis Light-Front Quantization(BLFQ) Approach:**

Hamiltonian formalism Relativistic theory Light-front wave functions provides direct access to all physical observables

\* R. Machleidt, D.R. Entem, Phys.Rept.503:1-75 (2011)



#### Light Front (LF) Hamiltonian Defined by its Elementary Vertices in LF Gauge



Light-Front Regularization and Renormalization Schemes

- 1. Regulators in BLFQ ( $\Omega$ , N<sub>max</sub>, K)
- 2. Additional Fock space truncations (if any)
- 3. Counterterms identified/tested\*
- 4. Sector-dependent renormalization\*\*
- 5. SRG & OLS in NCSM\*\*\* adapted to BLFQ (future)

\*D. Chakrabarti, A. Harindranath and J.P. Vary, Phys. Rev. D **69**, 034502 (2004) \*P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D **91**, 105009 (2015)

\*\*V. A. Karmanov, J.-F. Mathiot, and A. V. Smirnov,
Phys. Rev. D 77, 085028 (2008); Phys. Rev. D 86, 085006 (2012)
\*\*Y. Li, V.A. Karmanov, P. Maris and J.P. Vary,
Phys. Letts. B. 748, 278 (2015); arXiv: 1504.05233

```
***B.R. Barrett, P. Navratil and J.P. Vary,
Prog. Part. Nucl. Phys. 69, 131 (2013)
```

## Light-Front Schrödinger equation for quark – antiquark systems

$$V = \kappa^{2} \zeta_{\perp}^{2} - \frac{\kappa^{4}}{4m_{q}^{2}} \partial_{x} (x(1-x)\partial_{x}) - \frac{C_{F}4\pi\alpha_{s}(Q^{2})}{Q^{2}} \overline{u}_{s}(k)\gamma^{\mu}u_{s}'(k')\overline{v_{s'}}(\overline{k}')\gamma^{v}v_{\overline{s}}(\overline{k})d_{\mu\nu}$$

$$Krautgartner-Pauli-Wolz one-gluon exchange with running coupling$$

- ► Implement quark masses with longitudinal degree of freedom: identical to LFH in both chiral limit and NR limit; X(x) ~ x<sup>a</sup>(1 − x)<sup>b</sup>
- Introduce short-distance physics with spinor structure [cf. Głazek '17]
- Self-energy and dynamical chiral symmetry breaking to be implemented
- Basis light-front quantization

[Vary et al, PRC 2010]

## Spectroscopy

#### [Li, Maris & Vary, PRD '17; Tang, Li, Maris & Vary, in preparation]





Energy Physics 2015, 14 (2015). C. Hughes et al., Phys. Rev. D 92, 094501 (2015).

## Anji Yu, et al., in preparation Baryons $\begin{array}{ccc} (1-\xi)(1-x) & \vec{k}_{\perp} \equiv \vec{k}_{1\perp} = \frac{x_1 \vec{p}_{2\perp} - x_2 \vec{p}_{1\perp}}{x_1 + x_2} & \vec{b}_{\perp} \equiv \vec{b}_{1\perp} = \vec{r}_{2\perp} - \vec{r}_{1\perp} \\ \hline \vec{b}_{\perp} & 1-x \\ \hline \vec{r}_{\perp} & \xi(1-x) & \vec{p}_{\perp} \equiv \vec{k}_{2\perp} = \vec{p}_{3\perp} - x_3 \vec{P}_{\perp} & \vec{r}_{\perp} \equiv \vec{b}_{2\perp} = \frac{\vec{r}_{3\perp} - \vec{R}_{\perp}}{1-x_3} \end{array}$ $P^+$ $egin{array}{ccc} \overline{x} & ec{P}_{ot} = \sum^3 ec{p}_{aot} & ec{R}_{ot} = \sum^3 x_a ec{r}_{aot} \end{array}$ **Effective Hamiltonian** Kinetic energy Harmonic oscillator confining potential $H_{\rm eff} = \frac{\vec{p}_{\perp}^2 + m_3^2}{x} + \frac{1}{1-x} \left[ \vec{p}_{\perp}^2 + \frac{\vec{k}_{\perp}^2 + m_2^2}{\xi} + \frac{\vec{k}_{\perp}^2 + m_1^2}{1-\xi} \right] + \kappa^4 x (1-x) \vec{r}_{\perp}^2 + \kappa^4 (1-x) \xi (1-\xi) \vec{b}_{\perp}^2$ $-\frac{\kappa^4}{(m_1+m_2+m_3)^2} \left[\partial_x \left(x(1-x)\partial_x\right) + \frac{1}{1-x}\partial_\xi \left(\xi(1-\xi)\partial_\xi\right)\right] + \text{const.}$

Longitudinal confining potential

Mass eig

Jenvalue  

$$\begin{bmatrix} M_{\rm L}^2 = (m_1 + m_2)^2 + \frac{m_1 + m_2}{m_1 + m_2 + m_3} \kappa^2 (2{\rm L} + 1) + \frac{\kappa^4}{(m_1 + m_2 + m_3)^2} {\rm L}({\rm L} + 1) \end{bmatrix}$$

$$E_{{\rm n}_1,{\rm m}_1,{\rm n}_2,{\rm m}_2,{\rm L},{\rm I}} = (m_3 + M_{\rm L})^2 + 2\kappa^2 (2{\rm n}_1 + |{\rm m}_1| + 2{\rm n}_2 + |{\rm m}_2| + 2)$$

$$+ \frac{M_{\rm L} + m_3}{m_1 + m_2 + m_3} \kappa^2 (2{\rm I} + 1) + \frac{\kappa^4}{(m_1 + m_2 + m_3)^2} {\rm I}({\rm I} + 1) + \text{const.}$$

**Eigenfunction** 

$$\Phi_{\mathtt{n}_1 \mathtt{m}_1 \mathtt{n}_2 \mathtt{m}_2 \mathtt{L1}}(ec{p}_{\perp}, x, ec{k}_{\perp}, \xi) = \phi_{\mathtt{n}_1 \mathtt{m}_1}(ec{q}_{1\perp}) \chi_{\mathtt{L}}^{(A,B)}(\xi) \phi_{\mathtt{n}_2 \mathtt{m}_2}(ec{q}_{2\perp}) \chi_{1}^{(lpha_{\mathtt{L}},eta)}(x). 
onumber \ A = 2m_1(m_1 + m_2 + m_3)/\kappa^2, B = 2m_2(m_1 + m_2 + m_3)/\kappa^2, \ lpha_{\mathtt{L}} = 2M_L(m_1 + m_2 + m_3)/\kappa^2, eta = 2m_3(m_1 + m_2 + m_3)/\kappa^2 \quad ec{q}_{1\perp} \equiv rac{ec{k}_{\perp}}{\sqrt{(1 - x)\xi(1 - \xi)}} \quad ec{q}_{2\perp} \equiv rac{ec{p}_{\perp}}{\sqrt{x(1 - x)}}$$



Brodsky, S. J., de Téramond, G. F., Dosch, H. G., & Erlich, J., "Light-front holographic QCD and emerging confinement", *Physics Reports*, 584, 1 (2015)



# Measuring VM LFWF

Diffractive VM production  $\sigma_{\rm tot} \sim \Psi_{photon} \circledast \sigma_{\rm dipole} \circledast \Psi_{VM}$ □Photon LFWF can be calculated from first principles. **Dipole cross section can be** $\gamma^*$ 20000 obtained by measuring the inclusive DIS cross section. Provide measurements of VM A. Mueller, '90 N. Nikolaev, '91 LFWF and gluon distribution. K. Golec-Biernat et al., '99

# Confront existing data

• In agreement with HERA, RHIC and LHC data.



Chen, Li, Maris, Tuchin and Vary, PLB 769, 477, 2017

# Prediction for future experiment

## Guangyao Chen, et al., in preparation

## Electron Ion Collider--high luminosity, wide kinematic range.

# Enable precision measurement of VM LFWF,

especially the higher excited states.  $y^*_{p \rightarrow \Psi(2s)p}$ 



Chen, Li, Maris, Tuchin and Vary, PLB 769, 477, 2017

Looking ahead: under what conditions do we require a quark-based description of nuclear structure? "Quark Percolation in Cold and Hot Nuclei"



## Sketch: hierarchy of strong interaction scales

| Effective Field<br>Theory | Scale                                                                                         | Range of Q                                                    | Phenomena                                                                                                    |
|---------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Pionless                  | Chiral symmetry<br>breaking<br>~Λ <sub>QCD</sub> ~ m <sub>N</sub>                             | Q < m <sub>π</sub> ~ k <sub>F</sub><br>Q ~ 0.2 k <sub>F</sub> | Scattering lengths<br>Stellar burning<br>Halo nuclei<br>Clustering,                                          |
| Pionfull, Deltafull       | Chiral symmetry<br>breaking<br>~ Λ <sub>QCD</sub> ~ m <sub>N</sub>                            | Q < m <sub>N</sub><br>Q ~ m <sub>π</sub>                      | Low Energy Nuclear<br>Structure & Reactions<br><sup>14</sup> C anomalous lifetime<br>Tetraneutron,           |
| Quark Clusters            | Chiral symmetry<br>crossover transition<br>$\sim (1 - 4) \Lambda_{QCD}$<br>$\sim (1 - 4) m_N$ | Q < (1 - 4) m <sub>N</sub><br>Q ~ m <sub>N</sub>              | X > 1 staircase<br>EMC effect<br>Quark percolation<br>Color conducting drops<br>Deconfining fluctuations,    |
| QCD                       | Chiral symmetry restoration                                                                   | Q < m <sub>Planck</sub>                                       | Asymptotic freedom<br>pQCD domain<br>sQCD-Quark-Gluon Plasma<br>Color glass condensate<br>Hadron tomography, |

#### **Conclusions and Outlook**

- Chiral EFT is making rapid progress for nuclear structure at low Q
- BLFQ/tBLFQ are practical approaches to light-front QFT
- Provide a pathway to understand nuclei at high resolution
- Next goal: two-baryon systems with effective LF Hamiltonians from chiral EFT to quark-gluon systems
- Next goal: mesons and baryons with one dynamical gluon
- Future: EFT at the quark-percolation scale