Nuclear Forces and Currents in Chiral Effective Field Theory

Hermann Krebs
Ruhr-Universität-Bochum

Polarized light ion physics with EIC Ghent University, Belgium

February 6, 2018

Outline

- Nuclear forces in chiral EFT
- Introduction to chiral EFT
- Long \& short-range physics
- Role of pion-nucleon scattering
- Selective applications and role of 3NF
- Nuclear current in chiral EFT
- Symmetries for currents
- Nuclear currents up to N3LO

ChPT and low energy QCD

Spontaneous + explicit (by small quark masses) breaking of chiral symmetry in QCD

Existence of light weakly interacting Goldstone bosons

Chiral Perturbation theory (ChPT)
 Expansion in small momenta and masses of Goldstone bosons

Systematic description of QCD by ChPT in low energy sector (low momenta and masses $q, M_{\pi} \ll \Lambda \simeq 1 \mathrm{GeV}$)

From QCD to nuclear physics QCD

 ChPT

NN interaction is strong: resummations/nonperturbative methods needed
. $1 / m_{N}$ - expansion: nonrelativistic problem $\left(\left|\vec{p}_{i}\right| \sim M_{\pi} \ll m_{N}\right) \Rightarrow$ the QM A-body problem

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derived within ChPT }}]|\Psi\rangle=E|\Psi\rangle
$$

- unified description of $\pi \pi$, $\pi \mathrm{N}$ and NN
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei

Chiral Expansion of the Nuclear Forces

N2LO (Q3)

Ordonez, van Kolck '92
$\mathrm{N}^{3} \mathrm{LO}\left(\mathrm{Q}^{4}\right)$

Three-nucleon force
Four-nucleon force

LO (Q Q^{0})	 Weinberg '90		
NLO (Q2)			
$N^{2} L O\left(Q^{3}\right)$	Ordonez, van Kolck '92	van Kolck '94; Epelbaum et al. '02	Epelbaum, Meißner, '12 (review)
$N^{3} L O\left(Q^{4}\right)$		[parameter-free] Bernard, Epelbaum, HK, Meißner,'08, '11	[parameter-free] Epelbaum '06
$N^{4} \mathrm{LO}\left(Q^{5}\right)$	 Entem, Kaiser, Machleidt, Nosyk '15 Epelbaum, HK, Meißner '15	Girlanda, Kievsky, Viviani '11 HK, Gasparyan, Epelbaum '12,'13 (short-range loop contrib. still missing)	still have to be worked out

Long and Short Range Interactions

- Couplings of short-range interactions are fixed from NN - data. In the isospin limit we have:


```
    LO [Q0]: 2 operators (S-waves)
NLO [Q2]: + 7 operators (S-, P-waves and \varepsilon1)
N2LO [Q3]: no new terms
N3LO [Q4]: + 12 operators (S-, P-, D-waves and }\mp@subsup{\varepsilon}{1}{},\mp@subsup{\varepsilon}{2}{}
N4LO [Q5]: no new terms
```

- Long range part of the nuclear forces are predictions (chiral symmetry of QCD) once couplings from single-nucleon subprocess are determined

Pion-Nucleon Scattering

- Effective chiral Lagrangian:

$$
\begin{aligned}
& \mathcal{L}_{\pi}=\mathcal{L}_{\pi}^{(2)}+\mathcal{L}_{\pi}^{(4)}+\ldots \\
& \mathcal{L}_{\pi N}=\underbrace{\bar{N}\left(i \gamma^{\mu} D_{\mu}[\pi]-m+\frac{g_{A}}{2} \gamma^{\mu} \gamma_{5} u_{\mu}[\pi]\right) N}_{\mathcal{L}_{\pi N}^{(1)}}+\underbrace{\sum_{i} c_{i} \bar{N} \hat{O}_{i}^{(2)}[\pi] N}_{\mathcal{L}_{\pi N}^{(2)}}+\underbrace{\sum_{i} d_{i} \bar{N} \hat{O}_{i}^{(3)}[\pi] N}_{i}+\underbrace{\sum_{i} e_{i} \bar{N} \hat{O}_{i}^{(4)}[\pi] N}_{\mathcal{L}_{\pi N}^{(3)}}+\ldots
\end{aligned}
$$

- Pion-nucleon scattering is calculated up to Q^{4} in heavy-baryon ChPT

Fettes, Meißner '00; HK, Gasparyan, Epelbaum '12

Dispersive analysis of $\pi \mathrm{N}$ scattering

- Roy-Steiner equations for $\pi \mathrm{N}$ scattering Hoferichter et al., Phys. Rept. 625 (16) 1

Partial Wave Decomposition of Hyperbolic dispersion relations $\pi \mathrm{N} \rightarrow \pi \mathrm{N} \& \pi \pi \rightarrow \overline{\mathrm{~N}} N$ channels

Input:

S- and P-waves above $s_{\mathrm{m}}=(1.38 \mathrm{GeV})^{2}$ Higher partial waves for all s Inelasticities for $s<s_{m}$ and scattering lengths

Output:

S - and P -waves with error bands, σ-term, Subthreshold coefficients $\bar{X}=\sum_{m, n} x_{m n} \nu^{2 m+k} t^{n}, \quad X=\left\{A^{ \pm}, B^{ \pm}\right\}$

- c_{i}, d_{i}, e_{i} are fixed from subthreshold coefficients (within Mandelstam triangle where one expects best convergence of chiral expansion)
- Subthreshold point is closer to kinematical region of NN force than the physical region of $\pi \mathrm{N}$ scattering

NN Data Used in the Fits

- From 1950 on around 3000 proton-proton + 5000 neutron-proton scattering data below 350 MeV have been measured
- Not all of these data are compatible. Rejections are required to get a reasonable fit
- Granada 2013 base used: Navarro Perez et al. '13 rejection by 3σ-criterion $\Rightarrow 31 \%$ of $n p+11 \%$ of $p p$ data have been rejected

Resulting data base consists of $2697 \mathrm{np}+2158 \mathrm{pp}$ data for $\mathrm{E}_{\text {lab }}=0-300 \mathrm{MeV}$

Chiral Expansion of np Phase Shifts

Reinert, HK, Epelbaum '17

- Good convergence of chiral expansion \& excellent agreement with NPWA data
- Chiral potential match in precision phenomenological potentials (CD Bonn, Av18,...) with around 40% less parameter

Uncertainty Estimate

Epelbaum, HK, Meißner '15

- Uncertainties in the experimental data
- Uncertainties in the estimation of $\pi \mathrm{N}$ LECs

Uncertainties in the determination of contact interaction LECs

- Uncertainties of the fits due to the choice of $E_{\text {max }}$
- Systematic uncertainty due to truncation of the chiral expansion at a given order Estimate the uncertainty via expected size of higher-order corrections

For a $\mathrm{N}^{4} \mathrm{LO}$ prediction of an observable $X^{\mathrm{N}^{4} \mathrm{LO}}$ we get an uncertainty

$$
\begin{aligned}
\Delta X^{\mathrm{N}^{4} \mathrm{LO}}(p)= & \max \left(Q \times\left|X^{\mathrm{N}^{3} \mathrm{LO}}(p)-X^{\mathrm{N}^{4} \mathrm{LO}}(p)\right|, Q^{2} \times\left|X^{\mathrm{N}^{2} \mathrm{LO}}(p)-X^{\mathrm{N}^{3} \mathrm{LO}}(p)\right|,\right. \\
& \left.Q^{3} \times\left|X^{\mathrm{NLO}}(p)-X^{\mathrm{N}^{2} \mathrm{LO}}(p)\right|, Q^{4} \times\left|X^{\mathrm{LO}}(p)-X^{\mathrm{NLO}}(p)\right|, Q^{6} \times\left|X^{\mathrm{LO}}(p)\right|\right)
\end{aligned}
$$

with chiral expansion parameter $\quad Q=\max \left(\frac{p}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}}\right)$
For $\sigma_{\text {tot }}$ errors \rightarrow 68\% degree-of-belief intervals(Bayesian analysis): Furnstahl et al. '15

Uncertainty Quantification

Reinert, HK, Epelbaum '17
Effective range, deuteron properties and phase-shift with quantified uncertainty
Example: deuteron asymptotic normalization

Role of the 3NFs

Total cross section for Nd scattering: without 3NF

- Significant discrepancy between experiment and theory
- The discrepancy at 10 MeV is much lower than at other energies

Cross section at low energy is governed by S-wave spin-doublet and spin-quartet Nd scattering lengths:
${ }^{4} a \gg{ }^{2} a$ (one order of magnitude) and ${ }^{4} a$ is much less sensitive to 3NF (Pauli principle)

LENPIC: Low Energy Nuclear Physics International Collaboration
universitätbonn aig in inchische DARMSTADT MGITLON
NIVESIT
N KRAKOW universitätbonn Kyutech

Role of the 3NFs for $\mathrm{A}>3$

NN-force from Epelbaum, HK, Meißner '15
Selected observables for ${ }^{4} \mathrm{He} \&{ }^{6} \mathrm{Li}$
LENPIC collaboration, Binder et al. '15

Clear evidence of missing 3NFs at higher energy

- Results for ${ }^{4} \mathrm{He}$ are obtained by solving Faddeev-Yakubovski eq. and No-Core Shell Model (NCSM) which agree within estimated uncertainties
- Results for ${ }^{6} \mathrm{Li}$ are obtained by NCSM with Similarity Renormalization Group(SRG) evolution (induced 3NF's are taken into account).

Summary

Chiral Nucleon-Nucleon Force

- Chiral nuclear NN forces are calculated up to N4LO
- Phase-shifts, deuteron properties, ... with uncertainty quantification
- Chiral NN force match in precision phenomenological potentials (CD Bonn, Av18,...) with around 40% less parameter
- Clear evidence for missing 3NF for $\mathrm{A}>2$

Nuclear currents in chiral EFT

Electroweak probes on nucleons and nuclei can be described by current formalism

Chiral EFT Hamiltonian depends on external sources

Siegert theorem + N4LO

Skibinski et al. PRC93 (2016) no. 6, 064002
Generate longitudinal component of NN current by continuity equation $\left[H_{\text {strong }}, \boldsymbol{\rho}\right]=\vec{k} \cdot \vec{J} \leftarrow$ regularized longitudinal current (Siegert theorem)

Deuteron photo-disintegration

$$
\gamma+d \rightarrow p+n
$$

- consistent regularization via cont. eq.
o improvement by $1 \mathrm{~N}+$ Siegert
- implementation of transverse part \& exchange currents work in progress

Nucleon-deuteron radiative capture: $p(n)+d \rightarrow{ }^{3} \mathrm{H}\left({ }^{3} \mathrm{He}\right)+\gamma$

MuSun experiment at PSI

Main goal: measure the doublet capture rate Λ_{d} in $\mu^{-}+d \rightarrow v_{\mu}+n+n \quad$ with the accuracy of $\sim 1.5 \%$

This will strongly constrain the short-range axial current

The resulting axial exchange current can be used to make precision calculations for

- triton half life, $\mathrm{fT}_{1 / 2}=1129.6 \pm 3.0 \mathrm{~s}$, and the muon capture rate on ${ }^{3} \mathrm{He}$, $\Lambda_{0}=1496 \pm 4 \mathrm{~s}^{-1} \rightarrow$ precision tests of the theory
- weak reactions of astrophysical interest such as e.g. the pp chain of the solar burning:

$$
\begin{aligned}
p+p & \rightarrow d+e^{+}+v_{e} \\
p+p+e^{-} & \rightarrow d+v_{e} \\
p+{ }^{3} \mathbf{H e} & \rightarrow{ }^{4} \mathbf{H e}+\boldsymbol{e}^{+}+v_{e} \\
{ }^{7} \boldsymbol{B e}+\boldsymbol{e}^{-} & \rightarrow{ }^{7} \boldsymbol{L i}+\boldsymbol{v}_{e} \\
{ }^{8} \boldsymbol{B} & \rightarrow{ }^{8} \boldsymbol{B} \boldsymbol{e}^{*}+\boldsymbol{e}^{+}+v_{e}
\end{aligned}
$$

Historical remarks

- Meson-exchange theory, Skyrme model, phenomenology, ...

Brown, Adam, Mosconi, Ricci, Truhlik, Nakamura, Sato, Ando, Kubodera, Riska, Sauer, Friar, Gari, ...

- First derivation within chiral EFT to leading 1-loop order using TOPT

Park, Min, Rho Phys. Rept. 233 (1993) 341; NPA 596 (1996) 515;
Park et al., Phys. Rev. C67 (2003) 055206

- only for the threshold kinematics
- pion-pole diagrams ignored
- box-type diagrams neglected
- renormalization incomplete
. Leading one-loop expressions using TOPT for general kinematics (still incomplete, e.g. no 1/m corrections)

Pastore, Girlanda, Schiavilla, Goity, Viviani, Wiringa; PRC78 (2008) 064002; PRC80 (2009) 034004; PRC84 (2011) 024001
\leftarrow Vector current
Baroni, Girlanda, Pastore, Schiavilla, Viviani;
\longleftarrow Axial vector current PRC93 (2016) 015501, Erratum: PRC 93 (2016) 049902

Complete derivation to leading one-loop order using the method of UT
Källing, Epelbaum, HK, Meißner;
PRC80 (2009) 045502; PRC84 (2011) 054008
\leftarrow Vector current
HK, Epelbaum, Meißner, Ann. Phys. 378 (2017) $317 \longleftarrow$ Axial vector current

Vector currents in chiral EFT

Chiral expansion of the electromagnetic current and charge operators

Axial vector operators in chiral EFT

Chiral expansion of the axial vector current and charge operators

Summary

Nuclear Currents Forthcoming review HK, EPJA

- Vector \& axial-vector currents are calculated up to N3LO
- Numerical implementation require symmetry-respecting regularization (work in progress)

