Nuclear Forces and Currents in Chiral Effective Field Theory

Hermann Krebs

Ruhr-Universität-Bochum

Polarized light ion physics with EIC Ghent University, Belgium February 6, 2018

Outline

Nuclear forces in chiral EFT

- Introduction to chiral EFT
- Long & short-range physics
- Role of pion-nucleon scattering
- Selective applications and role of 3NF

- Nuclear current in chiral EFT
 - Symmetries for currents
 - Nuclear currents up to N³LO

ChPT and low energy QCD

From QCD to nuclear physics

NN interaction is strong: resummations/nonperturbative methods needed

● $1/m_N$ - expansion: nonrelativistic problem ($|\vec{p_i}| \sim M_\pi \ll m_N$) ⇒ the QM A-body problem

$$\left[\left(\sum_{i=1}^{A}\frac{-\vec{\nabla}_{i}^{2}}{2m_{N}}+\mathcal{O}(m_{N}^{-3})\right)+\underbrace{V_{2N}+V_{3N}+V_{4N}+\ldots}_{\textit{derived within ChPT}}\right]|\Psi\rangle=E|\Psi\rangle \quad \text{Weinberg '91}$$

- unified description of $\pi\pi$, πN and NN
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei

Chiral Expansion of the Nuclear Forces

Long and Short Range Interactions

Couplings of short-range interactions are fixed from NN - data. In the isospin limit we have:

LO [Q⁰]: 2 operators (S-waves) NLO [Q²]: + 7 operators (S-, P-waves and ε_1) N²LO [Q³]: no new terms N³LO [Q⁴]: + 12 operators (S-, P-, D-waves and ε_1 , ε_2) N⁴LO [Q⁵]: no new terms

Long range part of the nuclear forces are predictions (chiral symmetry of QCD) once couplings from single-nucleon subprocess are determined

Pion-Nucleon Scattering

Effective chiral Lagrangian:

Pion-nucleon scattering is calculated up to Q⁴ in heavy-baryon ChPT

Fettes, Meißner '00; HK, Gasparyan, Epelbaum '12

Dispersive analysis of πN scattering

Roy-Steiner equations for πN scattering Hoferichter et al., Phys. Rept. 625 (16) 1

> Partial Wave Decomposition of Hyperbolic dispersion relations $\pi N \rightarrow \pi N \& \pi \pi \rightarrow \overline{N}N$ channels

Input:

S- and P-waves above $s_m = (1.38 \text{ GeV})^2$ Higher partial waves for all *s* Inelasticities for $s < s_m$ and scattering lengths

Output:

S- and P-waves with error bands, σ -term, Subthreshold coefficients $\bar{X} = \sum_{m,n} x_{mn} \nu^{2m+k} t^n$, $X = \{A^{\pm}, B^{\pm}\}$

- c_i , d_i , e_i are fixed from subthreshold coefficients (within Mandelstam triangle where one expects best convergence of chiral expansion)
- Subthreshold point is closer to kinematical region of NN force than the physical region of πN scattering

NN Data Used in the Fits

Reinert, HK, Epelbaum '17

- From 1950 on around 3000 proton-proton + 5000 neutron-proton scattering data below 350 MeV have been measured
- Not all of these data are compatible. Rejections are required to get a reasonable fit
- Granada 2013 base used: *Navarro Perez et al.* '13 rejection by 3σ -criterion
 - 31% of np + 11% of pp data have been rejected

Resulting data base consists of 2697 np + 2158 pp data for E_{lab} =0-300 MeV

Chiral Expansion of np Phase Shifts

Reinert, HK, Epelbaum '17

Good convergence of chiral expansion & excellent agreement with NPWA data

Chiral potential match in precision phenomenological potentials (CD Bonn, Av18,...) with around 40% less parameter

Uncertainty Estimate

Epelbaum, HK, Meißner '15

Uncertainties in the experimental data

Uncertainties in the estimation of πN LECs

Oncertainties in the determination of contact interaction LECs

Uncertainties of the fits due to the choice of E_{max}

Systematic uncertainty due to truncation of the chiral expansion at a given order Estimate the uncertainty via expected size of higher-order corrections For a N⁴LO prediction of an observable $X^{N^{4}LO}$ we get an uncertainty $\Delta X^{N^{4}LO}(p) = \max \left(Q \times |X^{N^{3}LO}(p) - X^{N^{4}LO}(p)|, Q^{2} \times |X^{N^{2}LO}(p) - X^{N^{3}LO}(p)|, Q^{3} \times |X^{NLO}(p) - X^{N^{2}LO}(p)|, Q^{4} \times |X^{LO}(p) - X^{NLO}(p)|, Q^{6} \times |X^{LO}(p)| \right)$ with chiral expansion parameter $Q = \max \left(\frac{p}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}} \right)$

For σ_{tot} errors \rightarrow 68% degree-of-belief intervals(Bayesian analysis): Furnstahl et al. '15

Uncertainty Quantification

Reinert, HK, Epelbaum '17

Effective range, deuteron properties and phase-shift with quantified uncertainty

Example: deuteron asymptotic normalization

≚ 0

 $\simeq 0$

 $\simeq 0$

 $\begin{bmatrix} b \\ \mu \end{bmatrix}$

 $A_{S} = \frac{0.8847^{(+3)}_{\text{Me}}(3)(5)(1)}{1000} \text{fm}^{-1/2}_{\text{MeV}}$ $\Lambda = 500 \text{ MeV}$ $\Lambda = 550 \text{ MeV}$ $A_S \; ({\rm fm}^{-1/2})$ $0.8849^{(+3)}_{(-3)}(1)(7)(0)$ $0.8851_{(-3)}^{(+3)}(3)(8)(1)$ $\begin{array}{c} 0.8847 (-3) \\ \eta \equiv (-3) \\ \hline (-3)$ **Example: deuteron asymptotic** $0.0255^{(+1)}(1)(3)(2)$ $0.0255^{(+1)}(1)(4)(1)$ $0.0257^{(+1)}(1)(5)(1)$ $0.0258^{(+1)}(1)(5)(1)$ $0.0258^{(+1)}(1)(5)(1)$ $= 0.8781(44) \text{ fm}^{-1/2}$ A_{s}^{ex} Our determination: truncation error **πN LECs** 0.5 s-state -0.8846 (0) LFGs variation of Emax statistical ennocation errorvariation of E_{max} 0.4 u(r) [fm^{-1/2}] $= 0.8847^{(+3)}_{(-3)}$ 0.3 \overline{A}_{S} 0.884 $\overline{(3)}$ (3) (3) (3) (1) $\overline{(1)}$ $\overline{(1)}$ (2) (2) (3) $\sim A_S e^{-\gamma \eta}$ 0.2 0.1 50249(1)0 Exp: $A_0.87$ **5 6 (4)** d-state 0.15 Borbe Boebe ely eggl. '85 RollpaningKKnusepn'90 [fm^{-1/2}] $A_{\text{sxp}}^{\text{exp}} = 0.8781(44) \text{ fm}^{-1}$ $\left(rac{3}{\gamma r}+rac{3}{(\gamma r)^2}
ight)$ $\sim A_D e^{-\gamma \eta}$ 0.1 Nijmelijengewaller forstare, educated by 35 $A_{\rm S}^{\rm exp} = 0.8846(9) \, {\rm fm}^{-1/2}$ $A_{S} = 4.0.8845(8) \text{ fm}^{-1/2}, \eta \eta \equiv 0.0256(4)$ (لَـَٰٰ 0.05 $p,\,r_\mu,\,l_\mu$ Grange $A_{S} = 0.8845(8) \text{ fm}^{-1/2}, \eta = 0.0256(4)$ 0 2 8 10 6 0 4 $A_{S} = A_{0} \cdot 882.9649 (\text{fm} - 1.872, ... 278 \pm 0.0949(1))$ r [fm] **4.3**...**2.8** MeV m_d $,\,p,\,r_{\mu},\,l_{\mu}$ $\pmb{\eta}^{\mathbf{exp}}$ = 0.0256(4)

Role of the 3NFs

NN-force from Epelbaum, HK, Meißner '15

Total cross section for Nd scattering: without 3NF

(N

Role of the 3NFs for A > 3

NN-force from Epelbaum, HK, Meißner '15

Selected observables for ⁴He & ⁶Li

LENPIC collaboration, Binder et al. '15

Clear evidence of missing 3NFs at higher energy

- Results for ⁴He are obtained by solving Faddeev-Yakubovski eq. and No-Core Shell Model (NCSM) which agree within estimated uncertainties
- Results for ⁶Li are obtained by NCSM with Similarity Renormalization Group(SRG) evolution (induced 3NF's are taken into account).

Summary

Chiral Nucleon-Nucleon Force

- Chiral nuclear NN forces are calculated up to N⁴LO
- Phase-shifts, deuteron properties, ... with uncertainty quantification
- Chiral NN force match in precision phenomenological potentials (CD Bonn, Av18,...) with around 40% less parameter
- Clear evidence for missing 3NF for A > 2

Nuclear currents in chiral EFT

Electroweak probes on nucleons and nuclei can be described by current formalism

Chiral EFT Hamiltonian depends on external sources

MuSun experiment at PSI

Main goal: measure the doublet capture rate Λ_d in $\mu^2 + d \rightarrow v_\mu + n + n$ with the accuracy of ~ 1.5%

The resulting axial exchange current can be used to make precision calculations for

Itriton half life, fT_{1/2} = 1129.6 ± 3.0 s, and the muon capture rate on ³He, $\Lambda_0 = 1496 \pm 4 \text{ s}^{-1} \rightarrow \text{precision tests of the theory}$

weak reactions of astrophysical interest such as e.g. the pp chain of the solar burning:

L_{1,A} governs the leading 3NF

$$p + p \rightarrow d + e^{+} + v_{e}$$

$$p + p + e^{-} \rightarrow d + v_{e}$$

$$p + {}^{3}He \rightarrow {}^{4}He + e^{+} + v_{e}$$

$${}^{7}Be + e^{-} \rightarrow {}^{7}Li + v_{e}$$

$${}^{8}B \rightarrow {}^{8}Be^{*} + e^{+} + v_{e}$$

Historical remarks

Meson-exchange theory, Skyrme model, phenomenology, ... Brown, Adam, Mosconi, Ricci, Truhlik, Nakamura, Sato, Ando, Kubodera, Riska, Sauer, Friar, Gari, ...

First derivation within chiral EFT to leading 1-loop order using TOPT

Park, Min, Rho Phys. Rept. 233 (1993) 341; NPA 596 (1996) 515; Park et al., Phys. Rev. C67 (2003) 055206

- only for the threshold kinematics
- pion-pole diagrams ignored
- box-type diagrams neglected
- renormalization incomplete
- Leading one-loop expressions using TOPT for general kinematics (still incomplete, e.g. no 1/m corrections)

Pastore, Girlanda, Schiavilla, Goity, Viviani, Wiringa; PRC78 (2008) 064002; PRC80 (2009) 034004; PRC84 (2011) 024001 Cector current

Baroni, Girlanda, Pastore, Schiavilla, Viviani; PRC93 (2016) 015501, Erratum: PRC 93 (2016) 049902

Complete derivation to leading one-loop order using the method of UT

Kölling, Epelbaum, HK, Meißner; PRC80 (2009) 045502; PRC84 (2011) 054008

HK, Epelbaum, Meißner, Ann. Phys. 378 (2017) 317 🔶 Axial vector current

Vector currents in chiral EFT

Chiral expansion of the electromagnetic current and charge operators

Pastore, Schiavilla et al. (TOPT), Kölling, Epelbaum, HK, Meißner (UT)

Axial vector operators in chiral EFT

Chiral expansion of the axial vector current and charge operators

Baroni et al. (TOPT), HK, Epelbaum, Meißner (UT)

Nuclear Currents Forthcoming review HK, EPJA

- Vector & axial-vector currents are calculated up to N³LO
- Numerical implementation require symmetry-respecting regularization (work in progress)