Polarized Light Ions in eRHIC

Polarized Light lons in EIC Workshop

February 5-9, 2018 Vadim Ptitsyn Brookhaven National Laboratory

Office of

eRHIC: Electron Ion Collider at BNL Add an electron accelerator to the existing \$2.5B RHIC including existing RHIC tunnel, detector buildings and cryo facility 70% polarized protons Luminosity: 41 - 275 GeV $10^{33} - 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ Light ions (d, Si, Cu) 80% polarized electrons: 4 (**e**-Heavy ions (Au, U) 5 – 18 GeV 41 – 110 GeV/u Pol. light ions (He-3) 41 - 184 GeV/u Deuterons (?) Center-of-mass energy range: 30 – 140 GeV • Full electron polarization at all energies Full proton and He-3 polarization with six Siberian snakes Any polarization direction in electron-hadron collisions: protons electrons Electron Ion Collider – eRHIC

pCDR eRHIC Design Concept

- Added electron storage ring (5-18 GeV)
 - Up to 2.5 A electron current.
 - 10 MW maximum RF power (administrative limit)
- Flat proton beam formed by cooling
- On-energy polarized electron injector (RCS is a cost-effective injector option)
- Polarized electron source and 400 MeV injector linac: 10nC, 1 Hz

Alternative approach based on electron ERL accelerator has been thoroughly explored in the past. Technological risks were recognized and are being addressed by R&D. This approach is presently considered as a cost-effective alternative.

eRHIC, polarized protons

- RHIC: only polarized proton collider in the world. Up to 65% at 100 GeV, up to 57% at 255 GeV.
- eRHIC will take favor of existing hardware in RHIC and in the injector chain to accelerate polarized protons (up to 275 GeV) and He-3 (up to 184 GeV/u).

Spin resonances

Depolarizing resonance condition:

Number of spin rotations per turn = Number of spin kicks per turn Spin resonance strength ε = spin rotation per turn / 2π

Imperfection resonance (magnet errors and misalignments):

 $v_{sp} = n$

Intrinsic resonance (Vertical focusing fields):

 $v_{sp} = Pn \pm Q_y$

P: Superperiodicity [RHIC:3] Q_v: Betatron tune [RHIC:29.68] $\epsilon_k = \frac{1}{2\pi} \int [(1+G\gamma)\Delta B_x] e^{iK\theta} ds.$

<u>Weak resonances</u>: some depolarization <u>Strong resonances</u>: partial or complete spin flip

Technologies for spin resonance crossing

Non-adiabatic ($\epsilon^2/\alpha \ll$ 1)	\leftrightarrow	Adiabatic ($\epsilon^2/\alpha >> 1$)
$P_f/P_i = 1$		$P_{f}/P_{i} = -1$
Imperfection Resonances:		
Correction Dipoles (ε small) (RHIC Booster)		Enhanced oribt excursion (ε large) (RHIC Booster)
		Partial Snake (ϵ large) (AGS, IUCF)
Intrinsic Resonances:		
Pulsed Quadrupoles (α large) (ZGS,AGS	5)	RF Dipole (ϵ large) (AGS past)
Lattice modifications (ϵ small)		Strong Partial Snake (ε large) (AGS present

Ultimate tool:

Full Siberian Snakes in RHIC (2 per ring) prevent first-order spin resonance conditions. Weak depolarization still possible due to high-order spin resonances.

Siberian Snakes

- AGS Siberian Snakes: variable twist helical dipoles, 1.5 T (RT) and 3 T (SC), 2.6 m long
- RHIC Siberian Snakes: 4 SC helical dipoles, 4 T, each 2.4 m long and full 360° twist

Polarized ³He⁺² in RHC and eRHC

0.4

- RHIC Siberian snakes and spin rotators can be used for the spin control, with less orbit excursions than with protons.
- More spin resonances. Larger resonance strength.

He-3 spin resonances (10 mm*mrad)

He-3 polarization preservation simulations

- For successful acceleration of He-3 the number of Snakes has to be increased from present 2 to 6.
- This increase of the Snake number is included in the baseline eRHIC design.
- It will eliminate also weak polarization experienced by RHIC polarized protons.

Polarized He-3 source

- Developed by BNL-MIT collaboration
- He-3 is polarized using Metastability Exchange Optical Pumping (MEOP) mechanism
- Ionized in the ionization cell using electron beam (up to 10A)
- High magnetic field (5T solenoid)
- The source will be realized as an extension of existing EBIS ion source

Electron Ion Collider – eRHIC

Requirements for RHIC polarized He-3 source:

- Intensity ~ 2.10¹¹ 3He⁺⁺ ions in 10 us pulse ~4.0 mA
- Maximum polarization > 80%
- Compatibility with the operational EBIS for heavy ion physics

Polarized He-3 development facility at BNL

Initial test have been done in MIT. Presently extensive tests are ongoing in the BNL:

- Testing the propagation of a 6 Amp electron beam through the narrow drift tube and the constrictions and ion extraction from residual gas.
- Test with external ion injection using the high-speed pulsed valve design
- Tests of MEOP in high field, using OPPIS solenoid
- Testing gas-purification system
- Tests of NMR polarimeter

RHIC Hadron Polarimetry

Polarized hydrogen Jet Polarimeter (HJet):

Source of absolute polarization (normalization of other polarimeters) Slow (low rates \Rightarrow needs looong time to get precise measurements)

Proton-Carbon Polarimeter (pC) @ RHIC and AGS

Very fast and high precision \Rightarrow main polarization monitoring tool Measures polarization profile (polarization is higher in beam center) and lifetime Needs to be normalized to HJet

Local Polarimeters (at PHENIX and STAR IRs)

Defines spin direction in experimental area

All of these systems are necessary for the proton beam polarization measurements and monitoring

Proton-Carbon Coulomb-Nuclear Interference Polarimeter

- \blacktriangleright A_N \approx 0.015, originates from anomalous magnetic moment of proton
- \blacktriangleright At high energy A_N is independent of beam energy
- Negligible emittance growth per polarization measurement
- Due to radiation cooling carbon target survives beam heating
- Measures polarization and beam profile

Polarized H-Jet Polarimeter

16

Left-right asymmetry in elastic scattering due to spin-orbit interaction:

interaction between (electric or strong) field of one proton and magnetic moment associated with the spin of the other proton

Beam and target are both protons

He-3 polarimetry

- Additional background source: He-3 break up on the polarimeter target.
 - What is the level of background due to He-3 beam breakup?
 - What is the analyzing power of the events coming from He-3 beam breakup?
- Optimization of polarimeter chamber, RF shielding to reduce interference from the beam induced fields
- Absolute polarimetry: would H-jet + He-3 beam work as absolute polarimeter?

Considerably simplify switching between polarized proton and polarized 3He runs

- eRHIC (EIC) common challenge for pol. protons and He-3 polarimeter:
 - much shorter bunch distance than in RHIC
- Studies are ongoing

pC: eRHIC with 660 and 1320 bunches

E.Aschenauer and A. Poblaguev

- increased bunch number smears signal "bananas" together at low $E_{kin} \rightarrow$ lose data with high statistics high analyzing power
- No background included and no smearing in horizontal due detector energy resolution and energy loss in target
 - \rightarrow smearing need to increase lower cut on $E_{kin} \rightarrow$ lose data with high statistics high analyzing power
 - \rightarrow collision related background smears from bunch-50 to bunch-49 and lower \rightarrow impact on measuring bunch polarisation \rightarrow especially bad for + - transitions

Will make correlation between measured polarization and polarization in collisions very hard

18

Polarized He-3 progress and plans

- Spin dynamics at the acceleration in the injector chain and in RHIC is being studied. Increasing the number of Snakes in RHIC to 6 is required.
- Successful acceleration of unpolarized ³He⁺² beam in Booster and AGS has been demonstrated.
- Carbon target polarimeter in AGS was getting events from unpolarized beams
- RHIC EBIS ion source is being modified to provide capability of polarized He-3. (Completion in 2020)
- In 2020: test of polarized polarized He-3 acceleration through the injector chain (Booster, AGS, RHIC injection). Includes polarimetry testing.

Possibility for polarized deuterons in eRHIC

- Unpolarized deuteron beam has been used in RHIC in the course of its ion physics program.
- Present RHIC/eRHIC physics program does not include polarized deuterons.
- However the possibility of acceleration of polarized deuteron in RHIC was evaluated in the past by accelerator scientists and shown feasible. (See, for instance, E.Courant, AGS/RHIC/SN Note 66, 1997)

20

	р	³ He ⁺²	d	
m, GeV	0.938	2.808	1.876	
G	1.79	-4.18	-0.14	•
E/u, GeV	24-275	16-183	12-138	
$ G\gamma $	46.5-525.5	72.6-819.4	1.9-20.9	

Small deuteron G:

- Much higher magnetic field required for spin rotation
- But:
 - Weaker resonances
 - Small number of resonances

Polarized deuteron acceleration in eRHIC hadron ring

• Expected spin resonance strength:

- Imperfection resonances: σ_{co} < 0.3 mm , ϵ_{imp} < 0.004
- Intrinsic resonances: $\epsilon_{int} \sim 0.0005 0.002$
- Taking advantage of small number of resonances one can address particular resonances, causing troubles, by applying known accelerator technologies:
 - Controlled enhancement of imperfection resonances by making vertical orbit wave (using dipole correctors) synchronous with spin rotation. 1 mm orbit wave creates 0.002-0.02 resonance strength (depending on the energy)
 (technology used in RHIC Booster for polarized protons)
 - Ultimate solution, a partial snake, based on 15 T*m solenoid (ε_{imp} 0.0022), can be added providing full spin flip at each of 19 imperfection resonances. (technology used in AGS for polarized protons)
 - Enhancement of strong intrinsic resonances by creating coherent betatron oscillations using AC dipole. (technology used in past in AGS for polarized protons)
 - Speed up crossing of weaker intrinsic resonances using betatron tune jump (technology used in AGS and IUCF)
 - Increased machine setup time (compared with a setup relying on Siberian Snakes for protons and 3He) but feasible.

Deuteron longitudinal polarization

- Helical spin rotators require unreasonably large field (~300T*m)
- Approach: arrange vertical orbit wave through the arcs synchronous with spin rotation and move the beam energy to an integer spin tune.

That is somewhat similar to Figure-8 approach (using small fields for deuteron polarization control) but works at particular deuteron energies $(G\gamma = int)$:

 E_d (GeV) = 131.5, 124.9, 118.4, 111.8, ... and so on

- The orbit wave parameters:
 - The spin tune spread: $G\gamma^*(\Delta p/p)_{rms} = 0.01$
 - The vertical orbit wave of ~3-4 mm amplitude is needed to overcome the spin tune spread and ensure the polarization is in transverse plane.
 - Proper phase of the orbit wave provides longitudinal polarization at the experimental point.

Summary

- Polarized He-3 will utilize devices and techniques presently used to accelerate polarized protons in the injector chain and in RHIC ring.
- Number of Snakes in the hadron ring must be increased to 6 to guarantee the polarization preservation
- Testing of polarized He-3 source components is underway. The source, as an extension of RHIC EBIS source, should be ready in 2020.
- Testing of polarized He-3 acceleration through the injector chain is expected in 2020.
- High energy He-3 polarimetry will use similar approaches as polarized prot-jeton polarimeters (Carbon target polarimeter and polarized He-3-jet or H polarimeter). Studies are underway.
- Acceleration of polarized deuteron looks feasible, involving a number of state-of-the-art technologies. Further polarized deuteron studies, including detailed simulations, can be arranged if a clear eRHIC physics program interest is declared in this topic.

Acknowledgements to:

E. Aschenauer, H. Huang, F. Meot, M. Musgrave, A. Poblaguev, T. Roser, A. Zelenski