Electron scattering on ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ with Faddeev-type methods

 UNIVERSITY

J.Golak,
R.Skibiński, H. Witała, K.Topolnicki, H. Kamada, A. Nogga

Outline

1. Theoretical framework and technicalities
2. 3 N bound state
3. Inclusive processes
4. pd break-up of ${ }^{3} \mathrm{He}$
5. ppn break-up of ${ }^{3} \mathrm{He}$
6. Conclusions and outlook

3 N basis states in momentum space

In the 3N system we need two relative (Jacobi) momenta

and use states $\left|\vec{p} \vec{q} \vec{P} m_{1} v_{1} m_{2} v_{2} m_{3} v_{3}\right\rangle$
with individual spin $\left(m_{i}\right)$ and isospin $\left(v_{i}\right)$ magnetic quantum numbers

$$
\vec{p}=\frac{1}{2}\left(\vec{p}_{2}-\vec{p}_{3}\right), \vec{q}=\frac{2}{3}\left(\vec{p}_{1}-\frac{1}{2}\left(\vec{p}_{2}+\vec{p}_{3}\right)\right), \vec{P}=\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}
$$

Instead of

$$
\left|\vec{p} \vec{q} \vec{P} m_{1} v_{1} m_{2} v_{2} m_{3} v_{3}\right\rangle \quad \text { one can use states of the total } 3 N \text { spin and isospin: }
$$

$$
\left|\vec{p} \vec{q} \vec{P}\left(s \frac{1}{2}\right) S M_{S}\right\rangle\left|\left(t \frac{1}{2}\right) T M_{T}\right\rangle
$$

where the 2 N subsystem (iso)spin is coupled with the (iso)spin of the third nucleon)

$$
\begin{aligned}
& \left|\left(s \frac{1}{2}\right) S M_{S}\right\rangle=\sum_{m_{s}} c\left(s, \frac{1}{2}, S ; m_{s}, M_{S}-m_{s}, M_{S}\right)\left|s m_{s}\right\rangle\left|\frac{1}{2} M_{S}-m_{s}\right\rangle \\
& \left|\left(t \frac{1}{2}\right) T M_{T}\right\rangle=\sum_{m_{t}} c\left(t, \frac{1}{2}, T ; m_{t}, M_{T}-m_{t}, M_{T}\right)\left|t m_{t}\right\rangle\left|\frac{1}{2} M_{T}-m_{t}\right\rangle
\end{aligned}
$$

We introduce partial waves, eigenstates of the two (relative) orbital angular momentum operators

and build the states of the TOTAL angular momentum of the 3 N system:

$$
\left|p q(l \lambda) L M_{L}\right\rangle=\sum_{m_{l}} c\left(l, \lambda, L ; m_{l}, M_{L}-m_{l}, M_{L}\right)\left|p l m_{l}\right\rangle\left|q \lambda M_{L}-m_{l}\right\rangle
$$

They are normalized as

$$
\left\langle\vec{p}^{\prime} \vec{q}^{\prime} \mid p q(l \lambda) L M_{L}\right\rangle=\frac{\delta\left(p-\left|\vec{p}^{\prime}\right|\right)}{p^{2}} \frac{\delta\left(q-\left|\vec{q}^{\prime}\right|\right)}{q^{2}} \mathrm{Y}_{l \lambda}^{L M_{L}}\left(\hat{p}^{\prime}, \hat{q}^{\prime}\right),
$$

where

$$
\mathrm{Y}_{l \lambda}^{L M_{L}}\left(\hat{p}^{\prime}, \hat{q}^{\prime}\right)=\sum_{m_{l}} c\left(l, \lambda, L ; m_{l}, M_{L}-m_{l}, M_{L}\right) Y_{l m_{l}}\left(\hat{p}^{\prime}\right) Y_{\lambda M_{L}-m_{l}}\left(\hat{q}^{\prime}\right)
$$

Together wih $\left\langle\vec{p}^{\prime} \mid \vec{p}\right\rangle=\delta^{3}\left(\vec{p}^{\prime}-\vec{p}\right)$ and $\left\langle\vec{q}^{\prime} \mid \vec{q}\right\rangle=\delta^{3}\left(\vec{q}^{\prime}-\vec{q}\right)$
we get also

$$
\begin{aligned}
& \left\langle p^{\prime} q^{\prime}\left(l^{\prime} \lambda^{\prime}\right) L^{\prime} M_{L}^{\prime} \mid p q(l \lambda) L M_{L}\right\rangle= \\
& \frac{\delta\left(p-p^{\prime}\right)}{p^{2}} \frac{\delta\left(q-q^{\prime}\right)}{q^{2}} \delta_{l l^{\prime}} \delta_{\lambda \lambda^{\prime}} \delta_{L L^{\prime}} \delta_{M_{L} M_{L}}
\end{aligned}
$$

$$
\sum_{l=0}^{\infty} \sum_{\lambda=0}^{\infty} \sum_{L=|l-\lambda|}^{l+\lambda} \sum_{M_{L}=-L}^{L} \int_{0}^{\infty} d p p^{2} \int_{0}^{\infty} d q q^{2}\left|p q(l \lambda) L m_{L}\right\rangle\left\langle p q(l \lambda) m_{L}\right|=1
$$

Next from the product states $\left|p q(l \lambda) L M_{L}\right\rangle\left|\left(s \frac{1}{2}\right) S M_{S}\right\rangle$
we build eigenstates of the TOTAL 3 N angular momentum operator J :

$$
\left|p q(l \lambda) L\left(s \frac{1}{2}\right) S(L S) J M\right\rangle \equiv \sum_{M_{L}} c\left(L, S, J ; M_{L}, M-M_{L}, M\right)\left|p q(l \lambda) L M_{L}\right\rangle\left|\left(s \frac{1}{2}\right) S M-M_{L}\right\rangle
$$

Multiplying these states with the isospin states

$$
\left|\left(t \frac{1}{2}\right) T M_{T}\right\rangle
$$

we get the final form of basis states in the LS-coupling:

$$
|p q \beta\rangle \equiv\left|p q(l \lambda) L\left(s \frac{1}{2}\right) S(L S) J M\right\rangle\left|\left(t \frac{1}{2}\right) T M_{T}\right\rangle
$$

The 3N partial waves $\left|p q(l \lambda) L\left(s \frac{1}{2}\right) S(L S) J M\right\rangle\left|\left(t \frac{1}{2}\right) T M_{T}\right\rangle$,
have a definite parity: $\pi=(-1)^{l+\lambda}$
Condition $\quad(-1)^{l+s+t}=-1$,
guarantees that the states are antisymmetric with respect to the exchange of nucleons 2 and 3

Rotational invariance and parity conservation allows us to solve the Faddeev equations SEPARATELY for each total 3 N angular momentum J and its projection M and given parity π !

We have two continuous variables (p and q) and about 100 combinations of discrete quantum numbers

States in the so-called $j l$ coupling $\quad|p q \alpha\rangle \equiv\left|p q(l s) j\left(\lambda \frac{1}{2}\right) I(j I) J M\right\rangle\left|\left(t \frac{1}{2}\right) T M_{T}\right\rangle$,
formed from the eigenstates of the total angular momentum of subsystem (23) and nucleon 1

9j recoupling coefficient

The relation between the two types of 3 N partial waves is following:

$$
\left|p q(l s) j\left(\lambda \frac{1}{2}\right) I(j I) J M\right\rangle=\sum_{L, S} \sqrt{(2 L+1)(2 S+1)(2 j+1)(2 I+1)}\left\{\begin{array}{ccc}
l & s & j \\
\lambda & 1 / 2 & I \\
L & S & J
\end{array}\right\}\left|p q(l \lambda) L\left(s \frac{1}{2}\right) S(L S) J M\right\rangle
$$

3N bound state

The Faddeev equation for the 3 N bound state:

Faddeev component

Another form of the Faddeev equation:

$$
\begin{aligned}
|\psi\rangle & =G_{0} t P|\psi\rangle+\left(1+G_{0} t\right) G_{0} V^{(1)}(1+P)|\psi\rangle \\
t & =V+V G_{0}^{2 N} t \longleftarrow \quad \text { Lippmann-Schwinger equation for t-matrix }
\end{aligned}
$$

The full 3 N wave function $\quad|\Psi\rangle=(1+P)|\psi\rangle$
is expanded as $|\Psi\rangle=\sum_{\beta} \int d p p^{2} \int d q q^{2} \psi_{\beta}(p, q)|p q \beta\rangle$

$$
\text { or } \quad|\Psi\rangle=\sum_{\alpha} \int d p p^{2} \int d q q^{2} \psi_{\alpha}(p, q)|p q \alpha\rangle
$$

Components of the wave function

$$
\begin{aligned}
& |\Psi\rangle=|\Psi\rangle_{L=0}+|\Psi\rangle_{L=1}+|\Psi\rangle_{L=2} \\
& \begin{array}{l}
\text { C-wave } \\
\begin{array}{l}
\text { S-wave } \\
\text { (dominant) }
\end{array} \\
\begin{array}{l}
\text { (tiny) }
\end{array} \\
\text { D-wave) }
\end{array}
\end{aligned}
$$

Principal S-state of ${ }^{3} \mathrm{He}$

$|\Psi m\rangle^{P S} \equiv\left|\phi_{S}\right\rangle\left|\xi_{a} m\right\rangle \longleftarrow \quad$ totally antisymmetric spin-isospin part
totally symmetric momentum part

$$
\begin{aligned}
\left|\xi_{a} m\right\rangle \equiv \frac{1}{\sqrt{2}} & \left(\left|\left(t=0, \frac{1}{2}\right) T=\frac{1}{2}\right\rangle\left|\left(s=1, \frac{1}{2}\right) S=\frac{1}{2}\right\rangle\right. \\
& \left.-\left|\left(t=1, \frac{1}{2}\right) T=\frac{1}{2}\right\rangle\left|\left(s=0, \frac{1}{2}\right) S=\frac{1}{2}\right\rangle\right)
\end{aligned}
$$

The principal S-state is a part of $|\Psi m\rangle_{L=0} \quad$ and $\quad\left|\phi_{S}\right\rangle \equiv\left\langle\xi_{a} m \mid \Psi m\right\rangle_{L=0}$

In LS-coupling

$$
\begin{gathered}
\left|\phi_{S}\right\rangle=\left\langle\xi_{a} m \mid \Psi m\right\rangle_{L=0}=\sum_{\beta} \int d p p^{2} \int d q q^{2}\left\langle\xi_{a} m \mid p q \beta\right\rangle_{L=0} \psi_{\beta}(p, q) \\
\left\langle\xi_{a} m \mid p q \beta\right\rangle_{L=0}=|p q(l l) 00\rangle \frac{1}{\sqrt{2}}\left(\delta_{s 1} \delta_{t 0}-\delta_{s 0} \delta_{t 1}\right) \\
\left|\phi_{S}\right\rangle=\sum_{l=0,2,4, \ldots} \int d p p^{2} \int d q q^{2}|p q(l l) 00\rangle \frac{1}{\sqrt{2}}\left(\psi^{(l l) 0\left(\frac{1}{2}\right) \frac{1}{2}\left(0 \frac{1}{2}\right) \frac{1}{2}}{ }^{2}(p, q)-\psi_{(l l) 0\left(\left(\frac{1}{2}\right) \frac{1}{2}\left(\frac{1}{2}\right) \frac{1}{2}\right.}(p, q)\right)
\end{gathered}
$$

Expansion amplitudes for the principal S-state

$$
\begin{aligned}
& \psi_{\beta}^{P S}(p, q) \equiv\langle p q \beta \mid \Psi m\rangle^{P S}=\left\langle p q \beta \mid \phi_{S}\right\rangle\left|\xi_{a} m\right\rangle=\delta_{L 0} \delta_{\lambda l} \phi_{l}(p, q) \frac{1}{\sqrt{2}}\left(\delta_{s 1} \delta_{t 0}-\delta_{s 0} \delta_{t 1}\right) \\
& \text { for } l=0,2,4, \ldots \\
& \phi_{l}(p, q) \equiv \frac{1}{\sqrt{2}}\left(\psi_{(l l) 0\left(1 \frac{1}{2}\right) \frac{1}{2}\left(0 \frac{1}{2}\right) \frac{1}{2}}(p, q)-\psi_{(l l) 0\left(0 \frac{1}{2}\right) \frac{1}{2}\left(1 \frac{1}{2}\right) \frac{1}{2}}(p, q)\right)
\end{aligned}
$$

L	symmetry	Ps [\%] Bonn B	Ps [\%] AV18	Ps [\%] AV18 + Urbana IX
0	totally symmetric	91.6	89.9	89.3
0	totally antisymmetric	0	0	0
0	mixed	1.18	1.53	1.24
1		0.05	0.07	0.14
2		7.17	8.40	9.19

$$
\begin{aligned}
\left|\xi_{a} M_{S}=\frac{1}{2}\right\rangle \equiv & \frac{1}{\sqrt{2}}\left(\left|\left(t=0, \frac{1}{2}\right) T=\frac{1}{2}, M_{T}=\frac{1}{2}\right\rangle\left|\left(s=1, \frac{1}{2}\right) S=\frac{1}{2}, M_{S}=\frac{1}{2}\right\rangle\right. \\
& \left.-\left|\left(t=1, \frac{1}{2}\right) T=\frac{1}{2}, M_{T}=\frac{1}{2}\right\rangle\left|\left(s=0, \frac{1}{2}\right) S=\frac{1}{2}, M_{S}=\frac{1}{2}\right\rangle\right) \\
= & \frac{1}{\sqrt{3}}\left(|n,+\rangle_{2}|p\rangle_{3}|p\rangle_{1}\left|\left(\frac{1}{2}, \frac{1}{2}\right) 00\right\rangle_{31}+|n,+\rangle_{1}|p\rangle_{2}|p\rangle_{3}\left|\left(\frac{1}{2}, \frac{1}{2}\right) 00\right\rangle_{23}\right. \\
& +|n,+\rangle_{3}|p\rangle_{1}|p\rangle_{2}\left|\left(\frac{1}{2}, \frac{1}{2}\right) 00\right\rangle_{12} \quad \overrightarrow{{ }^{3}} \mathrm{He} \approx \overrightarrow{\mathrm{n}}(90 \%)
\end{aligned}
$$

In the principal S-state spins of two protons couple to zero!
The total angular momentum of ${ }^{3} \mathrm{He}$ is carried by the neutron!
Can we use that fact? YES!

3 N bound state in three dimensions

Our starting point is the operator form of ${ }^{3} \mathrm{H}$
(see I. Fachruddin et al., Phys. Rev. C 69, 064002 (2004)),
although other possibilities exist
(see S. Bayegan et al., Phys. Rev. C77, 064005 (2008))

The Faddeev equation for the 3 N bound state reads:

$$
\psi=G_{0} t P \psi+\left(1+G_{0} t\right) G_{0} V^{(1)}(1+P) \psi
$$

where
Ψ - Faddeev component,
$t-2 N$ t-matix,
G_{0} - free 3 N propagator,
$P=P_{12} P_{23}+P_{13} P_{23}$ (permutation operator),
$V^{(1)}$ - part of 3 N force symmetric under the exchange ($2 \leftrightarrow 3$)

It is possible to work with the 2 N force V and not to use t !

$$
\psi=G_{0} V(1+P) \psi+G_{0} V^{(1)}(1+P) \psi
$$

The full 3 N wave function is given as

$$
\Psi=(1+P) \psi
$$

Three possible isospin states in ${ }^{3} \mathrm{H}$

$$
\left|\gamma_{1}\right\rangle=\left|\left(0 \frac{1}{2}\right) \frac{1}{2}\right\rangle,\left|\gamma_{2}\right\rangle=\left|\left(1 \frac{1}{2}\right) \frac{1}{2}\right\rangle,\left|\gamma_{3}\right\rangle=\left|\left(1 \frac{1}{2}\right) \frac{3}{2}\right\rangle
$$

are used to expand the Faddeev component

$$
\psi=\sum_{i} \psi_{\gamma_{i}}\left|\gamma_{i}\right\rangle \equiv \sum_{t, T} \psi_{t T}\left|\left(t \frac{1}{2}\right) T\right\rangle
$$

We need two (relative) momenta to represent the Faddeev component:

$$
\vec{p}=\frac{1}{2}\left(\vec{p}_{2}-\vec{p}_{3}\right), \quad \vec{q}=\frac{2}{3}\left(\vec{p}_{1}-\frac{1}{2}\left(\vec{p}_{2}+\vec{p}_{3}\right)\right)
$$

The operator form for the Faddeev component:

$$
\langle\vec{p}, \vec{q}| \psi_{t T}=\sum_{i=1}^{8} \phi_{t T}^{i}(\vec{p}, \vec{q}) O^{i}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right)\left|\left(0 \frac{1}{2}\right) \frac{1}{2} m\right\rangle,
$$

with

$$
\begin{aligned}
& O^{1}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right)=1, \\
& O^{2}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right)=\frac{1}{\sqrt{3}} \vec{\sigma}_{23} \cdot \vec{\sigma}_{1}, \quad \vec{\sigma}_{23} \equiv \frac{1}{2}\left(\vec{\sigma}_{2}-\vec{\sigma}_{3}\right) \\
& O^{3}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right)=\sqrt{\frac{3}{2}} \frac{1}{i} \vec{\sigma}_{1} \cdot(\vec{p} \times \vec{q}), \\
& O^{4}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right)=\frac{1}{\sqrt{2}}\left(i \vec{\sigma}_{23} \cdot(\vec{p} \times \vec{q})-\left(\vec{\sigma}_{1} \times \vec{\sigma}_{23}\right) \cdot(\vec{p} \times \vec{q})\right), \ldots
\end{aligned}
$$

Note that $\phi_{t T}^{i}$ are scalar functions !

$$
\phi_{t T}^{i}(\vec{p}, \vec{q})=\phi_{t T}^{i}(p, q, x \equiv \hat{p} \cdot \hat{q})
$$

Using the steps outlined in W. Glöckle et al., Few-Body Systems 47, 25 (2010), we can write schematically the Faddeev equation as

$$
\phi=\underbrace{C^{-1}\left(D+D^{\prime}\right) \phi}_{\text {term with } \mathrm{P}}+\underbrace{C^{-1} L \phi}_{\text {term without } \mathrm{P}}
$$

A huge eigenvalue problem after discretization $\left(p_{j}, q_{j}, x_{k}\right)$:
ϕ has $3 \times 8 \times N_{p} \times N_{q} \times N_{x}$ components!
At present we keep only the total isospin $T=1 / 2$,
so ϕ has only $2 \times 8 \times N_{p} \times N_{q} \times N_{x}$ components.
$16 \times 40^{3}=1024000$
We solve this equation by iterations, employing the Lanczos method.

Like in the deuteron case, also for ${ }^{3} \mathrm{H}$ we need several sets of scalar coefficients

$$
\begin{array}{r}
C_{k i}(\vec{p}, \vec{q} ; \vec{p}, \vec{q})=\sum_{m}\left\langle\chi^{m}\right| O^{k}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right) O^{i}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right)\left|\chi^{m}\right\rangle, \\
\begin{array}{l}
D_{k j k^{\prime}}\left(\vec{p}, \vec{q} ; \vec{p}^{\prime}, \vec{q}^{\prime} ; \vec{p}^{\prime \prime}, \vec{q}^{\prime \prime}\right)=-\frac{1}{2} \sum_{m}\left\langle\chi^{m}\right| O^{k}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right) w_{j}\left(\vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}^{\prime}, \vec{q}^{\prime}\right) \\
\left.D_{k k^{\prime}}^{\prime}\left(\vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{\sigma}_{1}, \vec{p}^{\prime \prime}, \vec{q}^{\prime \prime}\right)\left(1+\overrightarrow{\sigma_{23}} \cdot \vec{\sigma}_{2} \cdot \vec{\sigma}_{1}\right)\left|\vec{q}^{\prime} ; \vec{p}^{\prime \prime}\right\rangle, \vec{q}^{\prime \prime}\right)=\frac{1}{2} \sum_{m}\left\langle\chi^{m}\right| O^{k}\left(\vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}, \vec{q}\right) w_{j}\left(\vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{p}^{\prime}, \vec{q}^{\prime}\right) \\
\\
\quad O^{k^{\prime}}\left(\vec{\sigma}_{3}, \vec{\sigma}_{2}, \vec{\sigma}_{1}, \vec{p}^{\prime \prime}, \vec{q}^{\prime \prime}\right)\left(1-\vec{\sigma}_{23} \cdot \vec{\sigma}_{1}\right)\left|\chi^{m}\right\rangle
\end{array}
\end{array}
$$

and more if we include the 3 N force.
Of course all done (easily !) with Mathematica ${ }^{\circledR}$

The full wave function $\quad \Psi=(1+P) \psi$.
We have to consider the isospin, spin and momentum spaces:

$$
\begin{gathered}
\psi=\sum_{\gamma}|\gamma\rangle \psi_{\gamma} \equiv \sum_{t T}\left|\left(t \frac{1}{2}\right) T\right\rangle \psi_{t T} \\
\langle\gamma| P\left|\gamma^{\prime}\right\rangle=\delta_{T T^{\prime}} P_{t t^{\prime} T}=\delta_{T T^{\prime}} F_{t t^{\prime} T}\left(P_{12}^{s m} P_{23}^{s m}+(-)^{t+t^{\prime}} P_{13}^{s m} P_{23}^{s m}\right), \\
\langle\gamma| P \psi=\sum_{t^{\prime}} F_{t t^{\prime} T}\left(P_{12}^{s m} P_{23}^{s m}+(-)^{t+t^{\prime}} P_{13}^{s m} P_{23}^{s m}\right) \psi_{t^{\prime} T} \\
\langle\vec{p} \vec{q}| P_{12}^{s m} P_{23}^{s m}\left|\vec{p}^{\prime} \vec{q}^{\prime}\right\rangle=\delta\left(\vec{p}^{\prime}-\vec{P}_{1}(\vec{p}, \vec{q})\right) \delta\left(\vec{q}^{\prime}-\vec{Q}_{1}(\vec{p}, \vec{q})\right) P_{12}^{s} P_{23}^{s}, \\
\langle\vec{p} \vec{q}| P_{13}^{s m} P_{23}^{s m}\left|\vec{p}^{\prime} \vec{q}^{\prime}\right\rangle=\delta\left(\vec{p}^{\prime}-\vec{P}_{2}(\vec{p}, \vec{q})\right) \delta\left(\vec{q}^{\prime}-\vec{Q}_{2}(\vec{p}, \vec{q})\right) P_{13}^{s} P_{23}^{s} \\
\vec{P}_{1}(\vec{p}, \vec{q})=\frac{1}{2} \vec{p}+\frac{3}{4} \vec{q}, \quad \vec{P}_{2}(\vec{p}, \vec{q})=\frac{1}{2} \vec{p}-\frac{3}{4} \vec{q}, \\
\vec{Q}_{1}(\vec{p}, \vec{q})=\vec{p}-\frac{1}{2} \vec{q}, \quad \vec{Q}_{2}(\vec{p}, \vec{q})=-\vec{p}-\frac{1}{2} \vec{q} .
\end{gathered}
$$

$$
\begin{aligned}
& \psi_{t T}(\vec{p}, \vec{q}) \equiv\langle\vec{p} \vec{q}|\langle\gamma| \psi \equiv\left\langle\vec{p} \vec{q} \mid \psi_{t T}\right\rangle=\sum_{i=1}^{8} \phi_{t T}^{(i)}(\vec{p}, \vec{q}) O_{i}\left|\chi^{m}\right\rangle, \\
& \langle\vec{p} \vec{q}|\langle\gamma| P \psi:=\sum_{i=1}^{8} \alpha_{t T}^{(i)}(\vec{p}, \vec{q}) O_{i}\left|\chi^{m}\right\rangle, \\
& \alpha_{t T}^{(m)}(\vec{p}, \vec{q})=\sum_{t^{\prime}} F_{t t^{\prime} T} \sum_{k=1}^{8} C_{m k}^{-1}(\vec{p} \vec{q}, \vec{p} \vec{q}) \sum_{l=1}^{8}\left\{W_{k l}\left(\vec{p} \vec{q}, \vec{P}_{1} \vec{Q}_{1}\right) \phi_{t^{\prime} T}^{(l)}\left(\vec{P}_{1}, \vec{Q}_{1}\right)\right. \\
& \left.+(-)^{t+t^{\prime}} Z_{k l}\left(\vec{p} \vec{q}, \vec{P}_{2} \vec{Q}_{2}\right) \phi_{t^{\prime} T}^{(l)}\left(\vec{P}_{2}, \vec{Q}_{2}\right)\right\} . \\
& C_{k i}(\vec{p} \vec{q}, \vec{p} \vec{q})=\sum_{m}\left\langle\chi^{m}\right| O_{k}\left(\vec{\sigma}_{(1)}, \vec{\sigma}_{(2)}, \vec{\sigma}_{(3)}, \vec{p}, \vec{q}\right) O_{i}\left(\vec{\sigma}_{(1)}, \vec{\sigma}_{(2)}, \vec{\sigma}_{(3)}, \vec{p}, \vec{q}\right)\left|\chi^{m}\right\rangle, \\
& W_{k i}\left(\vec{p} \vec{q}, \vec{P}_{1} \vec{Q}_{1}\right)=-\frac{1}{2} \sum_{m}\left\langle\chi^{m}\right| O_{k}\left(\vec{\sigma}_{(1)}, \vec{\sigma}_{(2)}, \vec{\sigma}_{(3)}, \vec{p}, \vec{q}\right) \\
& O_{i}\left(\vec{\sigma}_{(2)}, \vec{\sigma}_{(3)}, \vec{\sigma}_{(1)}, \vec{P}_{1}, \vec{Q}_{1}\right)\left(1+\vec{\sigma}(23) \cdot \vec{\sigma}_{(1)}\right)\left|\chi^{m}\right\rangle,
\end{aligned}
$$

$$
\begin{array}{r}
Z_{k i}\left(\vec{p} \vec{q}, \vec{P}_{2} \vec{Q}_{2}\right)=-\frac{1}{2} \sum_{m}\left\langle\chi^{m}\right| O_{k}\left(\vec{\sigma}_{(1)}, \vec{\sigma}_{(2)}, \vec{\sigma}_{(3)}, \vec{p}, \vec{q}\right) \\
O_{i}\left(\vec{\sigma}_{(3)}, \vec{\sigma}_{(1)}, \vec{\sigma}_{(2)}, \vec{P}_{2}, \vec{Q}_{2}\right)\left(1-\vec{\sigma}(23) \cdot \vec{\sigma}_{(1)}\right)\left|\chi^{m}\right\rangle
\end{array}
$$

Finally the expansion coefficients for the full wave function are:

$$
\beta_{\gamma}^{(i)}(\vec{p}, \vec{q})=\phi_{\gamma}^{(i)}(\vec{p}, \vec{q})+\alpha_{\gamma}^{(i)}(\vec{p}, \vec{q})
$$

and we write

$$
\Psi=\sum_{\gamma} \int d^{3} p \int d^{3} q|\vec{p} \vec{q}\rangle|\gamma\rangle \sum_{i=1}^{8} \beta_{\gamma}^{(i)}(\vec{p}, \vec{q}) O_{i}\left(\vec{\sigma}_{(1)}, \vec{\sigma}_{(2)}, \vec{\sigma}_{(3)}, \vec{p}, \vec{q}\right)\left|\chi^{m}\right\rangle
$$

Normalisation condition:

$$
1=\langle\Psi \mid \Psi\rangle=\langle\psi(1+P) \mid(1+P) \psi\rangle=3\langle\psi \mid \Psi\rangle
$$

requires that

$$
2=3 \sum_{\gamma} \int d^{3} p \int d^{3} q \sum_{i, j=1}^{8} \phi_{\gamma}^{(i)}(\vec{p}, \vec{q}) \beta_{\gamma}^{(j)}(\vec{p}, \vec{q}) R_{i j}(\vec{p} \vec{q}, \vec{p} \vec{q}),
$$

where

$$
R_{i j}(\vec{p} \vec{q}, \vec{p} \vec{q})=\sum_{m}\left\langle\chi^{m}\right| O_{i}^{\dagger}\left(\vec{\sigma}_{(1)}, \vec{\sigma}_{(2)}, \vec{\sigma}_{(3)}, \vec{p}, \vec{q}\right) O_{j}\left(\vec{\sigma}_{(1)}, \vec{\sigma}_{(2)}, \vec{\sigma}_{(3)}, \vec{p}, \vec{q}\right)\left|\chi^{m}\right\rangle
$$

$$
\beta_{\gamma}^{(i)}(\vec{p}, \vec{q})
$$

Factorization of the total transition amplitude

 under the one-photon approximation

The crucial (nuclear) matrix element

 Final 3N state. Can be bound (elastic case) or

 scattering (describes either two-body or threebody break-up of ${ }^{3} \mathrm{He}$)3N electromagnetic
current operator

Reference frame given by the electron arm

$$
\vec{k} \text { and } \vec{k}^{\prime} \text { span the } \mathrm{x}-\mathrm{z} \text { plane! }
$$

$$
\hat{y}=\frac{\vec{k} \times \vec{k}^{\prime}}{\left|\vec{k} \times \vec{k}^{\prime}\right|}, \quad \vec{Q}=\vec{k}-\vec{k}^{\prime} \| \hat{z} \quad \text { (quantization axis) }
$$

Θ^{*} and Φ^{*} define the direction of the initial ${ }^{3} \mathrm{He}$ spin
$\xrightarrow[\text { GHENT }]{\widehat{\text { IIIIII }}}$

General formula for the (exclusive) cross section

Based on three assumptions:
(1) one-photon approximation
(2) nuclear current conservation
(3) final electron helicity is not measured

$$
\omega N^{0}=\vec{Q} \cdot \vec{N} \xrightarrow{\vec{Q} \| \hat{\imath}} N_{z}=\frac{\omega}{|\vec{Q}|} N^{0}
$$

$$
\sigma=\sum+\Delta M+\begin{aligned}
& \text { the only dependence on } \\
& \text { the initial electron } \\
& \text { helicity ! }
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma=\sigma_{M o t t}\left(v_{L} R_{L}+v_{T} R_{T}+v_{T T} R_{T T}+v_{T L} R_{T L}\right) \rho \\
& \Delta=\sigma_{M o t t}\left(v_{T^{\prime}} R_{T^{\prime}}+v_{T L^{\prime}} R_{T L^{\prime}}\right) \rho \\
& \sigma_{M o t t}=\frac{\alpha^{2} \cos ^{2}\left(\frac{\theta_{e}}{2}\right)}{4 E^{2} \sin ^{4}\left(\frac{\theta_{e}}{2}\right)} \quad \text { Mott cross section }
\end{aligned}
$$

Kinematical factors v_{i}

$$
\begin{aligned}
v_{L} & =\frac{\left(\mathbf{q}^{2}\right)^{2}}{Q^{4}} \\
v_{T} & =-\frac{1}{2} \frac{\mathbf{q}^{2}}{Q^{2}}+\tan ^{2} \frac{\theta_{\mathrm{e}}}{2} \\
v_{T T} & =\frac{1}{2} \frac{\mathbf{q}^{2}}{Q^{2}} \\
v_{T L} & =\frac{1}{\sqrt{2}} \frac{\mathbf{q}^{2}}{Q^{2}}\left[-\frac{\mathbf{q}^{2}}{Q^{2}}+\tan ^{2} \frac{\theta_{\mathrm{e}}}{2}\right]^{1 / 2}, \\
v_{T^{\prime}} & =\tan \frac{\theta_{\mathrm{e}}}{2}\left[-\frac{\mathbf{q}^{2}}{\mathrm{Q}^{2}}+\tan ^{2} \frac{\theta_{\mathrm{e}}}{2}\right]^{1 / 2}, \\
v_{T L^{\prime}} & =\frac{1}{\sqrt{2}} \frac{\mathbf{q}^{2}}{Q^{2}} \tan \frac{\theta_{\mathrm{e}}}{2}
\end{aligned}
$$

Dynamical quantities (response functions) Ri

They still carry information about the polarizations of the nuclear fragments in the final state!

$$
\begin{aligned}
& R_{L}=\left|N^{0}\right|^{2}, \\
& R_{T}=\left|N_{+1}\right|^{2}+\left|N_{-1}\right|^{2}, \\
& R_{T T}=2 \operatorname{Re}\left(N_{+1} N_{-1}^{*}\right), \\
& R_{T L}=-2 \operatorname{Re}\left(N^{0}\left(N_{+1}-N_{-1}\right)^{*}\right), \\
& R_{T^{\prime}}=\left|N_{+1}\right|^{2}-\left|N_{-1}\right|^{2}, \\
& R_{T L^{\prime}}=-2 \operatorname{Re}\left(N^{0}\left(N_{+1}+N_{-1}\right)^{*}\right), \\
& N_{+1}=-\frac{1}{\sqrt{2}}\left(N_{x}+i N_{y}\right), \quad N_{-1}=\frac{1}{\sqrt{2}}\left(N_{x}-i N_{y}\right) \\
& \text { spherical components }
\end{aligned}
$$

All we need is $\ldots N_{\mu}=<\Psi_{f}\left|j_{\mu}\right| \Psi_{i}>$!

Also for photodisintegration processes !

General strategy in the few-nucleon physics:
Ab initio calculations that

- use the basic dynamical ingredients (2 N and 3 N potentials, current operators)
- solve the dynamical equations (Schrödinger equation, Lippmann-Schwinger equation, Faddeev equations)
- give properties of the bound states and reaction observables

Two-body break-up of ${ }^{3} \mathrm{He}: \mathrm{e}+{ }^{3} \mathrm{He} \rightarrow \mathrm{e}+\mathrm{p}+\mathrm{d}$

plane wave impulse approximation (symmetrized) PWIAS

Three-body break-up of ${ }^{3} \mathrm{He}: \mathrm{e}+{ }^{3} \mathrm{He} \rightarrow \mathrm{e}+\mathrm{p}+\mathrm{p}+\mathrm{n}$

How to get N_{μ} ?

calculated in two steps
(1) Solve an auxiliary equation for the $/ U_{\mu}>$ state

$$
\begin{aligned}
\left|U_{\mu}\right\rangle & =\left[t G_{0}+\frac{1}{2}(1+P) V^{(1)} G_{0}\left(1+t G_{0}\right)\right](1+P) j_{\mu}\left|\Psi_{i}\right\rangle \\
& +\left[t G_{0} P+\frac{1}{2}(1+P) V^{(1)} G_{0}\left(1+t G_{0}\right) P\right]\left|U_{\mu}\right\rangle
\end{aligned}
$$

(2) Get $N_{\mu}{ }^{\text {RESCATT }}$ by quadratures

$$
N_{\mu}^{\text {RESCATT }}=\left\{\begin{array}{c}
\left\langle\Phi_{N d}\right| P\left|U_{\mu}\right\rangle, \quad 2 B B \\
\left\langle\Phi_{3 N}\right| t G_{0}(1+P) j_{\mu}\left|\Psi_{i}\right\rangle+\left\langle\Phi_{3 N}\right| P\left|U_{\mu}\right\rangle+\left\langle\Phi_{3 N}\right| t G_{0} P\left|U_{\mu}\right\rangle, \quad 3 B B
\end{array}\right.
$$

Very efficient approach !

(1) $\left|U_{\mu}>=\right| U_{\mu}(\omega, Q)>$ for given j_{μ}
(2) The same equation is solved for $2 B B$ and $3 B B$

Basis states $/ p q \alpha>$ are used to solve the equation on $/ U_{\mu}>$
The bulk of predictions obtained with the AV18 2N force, the UrbanalX 3N force, the single nucleon current supplemented with π - and ρ-like 2 N currents linked to AV18 (no 3 N currents)

What we calculate (keep in mind: $\sigma\left(h, \vec{S},\left\{m_{f}\right\}\right)=\Sigma\left(\vec{S},\left\{m_{f}\right\}\right)+h \Delta\left(\vec{S},\left\{m_{f}\right\}\right)$

$$
\sigma_{0}=\frac{1}{2} \sum_{\left\{m_{f}\right\}}\left(\Sigma\left(\vec{S},\left\{m_{f}\right\}\right)+\Sigma\left(-\vec{S},\left\{m_{f}\right\}\right)\right)
$$

(1) Unpolarized cross sections
set of spin magnetic quantum numbers in the final state
(2) Target analyzing power
(3) Spin dependent helicity asymmetries

$$
\begin{array}{r}
\sum_{y}=\frac{m_{\left.m_{f}\right\}}\left(\Sigma\left(\hat{y},\left\{m_{f}\right\}\right)-\Sigma\left(-\hat{y},\left\{m_{f}\right\}\right)\right)}{\sum_{\left\{m_{f}\right\}}\left(\Sigma\left(\hat{y},\left\{m_{f}\right\}\right)+\Sigma\left(-\hat{y},\left\{m_{f}\right\}\right)\right)} \\
A(\vec{S}) \equiv \frac{\sum_{\left\{m_{f}\right\}}\left(\sigma\left(h=1, \vec{S},\left\{m_{f}\right\}\right)-\sigma\left(h=-1, \vec{S},\left\{m_{f}\right\}\right)\right)}{\sum_{\left\{m_{f}\right\}}\left(\sigma\left(h=1, \vec{S},\left\{m_{f}\right\}\right)+\sigma\left(h=-1, \vec{S},\left\{m_{f}\right\}\right)\right)}
\end{array}
$$

Inclusive electron scattering
$\sigma^{i n c}=\sigma_{\text {Mott }}\left(v_{L} R_{L}^{i n c}+v_{T} R_{T}^{i n c}-h\left(v_{T^{\prime}} R_{T^{\prime}}^{\text {inc }} \cos \theta^{*}+2 v_{T L^{\prime}} R_{T L^{\prime}}^{i n c} \sin \theta^{*} \cos \phi^{*}\right)\right) \quad R_{i}^{i n c} \equiv R_{i}^{i n c}(\omega,|\vec{Q}|)$

$R_{T^{\prime}}^{i n c}\left[\mathrm{MeV}^{-1}\right] \quad{ }^{3} \mathrm{H}$

Spin dependent helicity asymmetries

Under PWIA approximation

$$
\begin{aligned}
& A(\vec{S}) \equiv \frac{\sum_{\mid m_{f},}\left(\sigma\left(h=1, \vec{S},\left\{m_{f}\right\}\right)-\sigma\left(h=-1, \vec{S},\left\{m_{f}\right\}\right)\right)}{\sum_{\left\langle m_{f}\right\}}\left(\sigma\left(h=1, \vec{S},\left\{m_{f}\right\}\right)+\sigma\left(h=-1, \vec{S},\left\{m_{f}\right\}\right)\right)}
\end{aligned}
$$

$$
A_{\|} \equiv A\left(\theta^{*}=0^{o}, \phi^{*}=0^{o}\right) \equiv A_{T^{\prime}} \propto\left(G_{M}^{n}\right)^{2}
$$

$$
A_{\perp} \equiv A\left(\theta^{*}=90^{o}, \phi^{*}=0^{o}\right) \equiv A_{T L^{\prime}} \propto G_{M}^{n} G_{E}^{n} \longleftarrow
$$

Question: Can we use inclusive asymmetries to obtain information about G_{M}^{n} and G_{E}^{n} ?
Answer: YES for G_{M}^{n} NO for G_{E}^{n} !!!

Analysis of a Mainz experiment, where the ejected neutron was measured in coincidence with the outgoing electron

$\xrightarrow[\text { GHENT }]{\widehat{\text { IIIIII }}}$

Exclusive $\mathrm{e}+{ }^{3} \mathrm{He} \rightarrow \mathrm{e}+\mathrm{p}+\mathrm{d}$ reaction

FSI is important for all proton angles !

FSI less visible in the proton knockout kinematics, MEC do not play any important role

Deuteron knock-out cross section as a function of the missing (proton) momentum

Deuteron knock-out cross section for the „paralel kinematics" as a function of the missing (proton) momentum

$\xrightarrow[\text { GHENT }]{\widehat{\text { IIIIII }}}$

Semi-exclusive ${ }^{3} \mathrm{He}\left(\mathrm{e}, \mathrm{e}\right.$ 'p)pn and ${ }^{3} \mathrm{He}(\mathrm{e}, \mathrm{e}$ 'n)pp reactions

Target analyzing power
Table 1
Results of A_{y}^{0} for the ${ }^{3} \overrightarrow{\mathrm{He}}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{n}\right)$ and ${ }^{3} \overrightarrow{\mathrm{He}}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)$ reactions. The experimental data at $Q^{2}=0.37(\mathrm{GeV} / c)^{2}$ are compared to results of a complete Faddeev calculation. For (e, $e^{\prime} n$) the effects of dropping different contributions in the calculation are also shown

$Q^{2}(\mathrm{GeV} / c)^{2}$	0.37	0.67
${ }^{3} \overrightarrow{\mathrm{He}}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{n}\right):$		
Experiment	0.144 ± 0.034	0.028 ± 0.010
Theory	0.178	
Theory without MEC	0.186	
Theory with $G_{\mathrm{ep}}=G_{\mathrm{mp}}=0$	0.004	
${ }^{3} \overrightarrow{\mathrm{He}}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right):$		
Experiment	-0.025 ± 0.005	-0.016 ± 0.005
Theory	-0.017	

Spectral function
in the FS23
approximation can be obtained both from R_{L} and R_{T}

$$
E \equiv \frac{\vec{p}_{23}^{2}}{m}, \vec{k} \equiv \vec{p}_{1}-\vec{Q}
$$

$$
\begin{aligned}
S(E, k) & =\frac{1}{2} m p_{23} \frac{1}{\left(G_{E}\right)^{2}} \int \mathrm{~d} \hat{p}_{23} R_{L}(\mathrm{FSI} 23) \\
& =\frac{1}{2} m_{23} \frac{2 m^{2}}{Q^{2}\left(G_{M}\right)^{2}} \int \mathrm{~d} \hat{p}_{23} R_{T}(\mathrm{FSI} 23) \\
& \begin{array}{l}
\text { nucleon } \\
\text { mass }
\end{array} \quad \begin{array}{l}
\text { relative momentum } \\
\text { of nucleons } 2 \text { and } 3
\end{array}
\end{aligned}
$$

What do we get for other dynamical pictures?

$$
\begin{aligned}
& S(E, k)_{L}^{\mathrm{FSI}}=\frac{1}{2} m p_{23} \frac{1}{\left(G_{E}\right)^{2}} \int \mathrm{~d} \hat{p}_{23} R_{L}(\mathrm{FSI}), \\
& S(E, k)_{T}^{\mathrm{FSI}}=\frac{1}{2} m p_{23} \frac{2 m^{2}}{Q^{2}\left(G_{M}\right)^{2}} \int \mathrm{~d} \hat{p}_{23} R_{T}(\mathrm{FSI})
\end{aligned}
$$

Proton knock-out

Proton knock-out

Proton knock-out

Proton knock-out

$\omega=100 \mathrm{MeV}$ $\mathrm{Q}=200 \mathrm{MeV} / \mathrm{c}$

Proton knock-out

Neutron knock-out

Neutron knock-out

Neutron knock-out

$\omega=100 \mathrm{MeV}$ $\mathrm{Q}=200 \mathrm{MeV} / \mathrm{c}$

Some remarks

For a realistic situation we deal with some acceptances, which means that we need to integrate over exclusive cross section Σ_{f}.

$$
\bar{\Sigma} \equiv \int d E \int d \theta_{e}^{\prime} \int d E^{\prime} \int d f^{\prime} \frac{1}{2} \sum_{m_{i}} \sum_{\left\{m_{f}\right\}} \Sigma_{f}\left(\theta^{*}\left(E, \theta_{e}^{\prime}, E^{\prime}\right), \phi^{*}\left(E, \theta_{e}^{\prime}, E^{\prime}\right)\right)
$$

Note that we deal here with two types of integrations. First three integrations are for the „electron arm". Their ranges decide how many equations for / $U_{\mu}>$ have to be solved!

The integral marked as $\int d f^{\prime}$ is meant for the „hadronic arm". Here we may deal with two- and three-body break-up of ${ }^{3} \mathrm{He}$, different angles and energies of the nuclear fragments but for fixed „electron arm". All vectors and angles in the "hadronic arm" have to calculated with respect to the system of reference given by the „electron arm".

A lot of „ $\int d f^{\prime}$ "can obscure physics !

GHENT
UNIVERSITY

Summary and outlook

1. We have at our disposal a universal nonrelativistic framework to investigate several electromagnetic (electroweak) processes on ${ }^{2} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ below the pion production threshold
2. We work with AV18, UrbanalX and related current operators
3. We can learn about basic reaction mechanisms and verify popular approximations
4. Observables provide information about EM properties of the nucleon, momentum distributions in ${ }^{3} \mathrm{He}$, nucleon-nucleon correlations, ...
5. The same framework can be applied also to other processes with 3 N (muon capture on ${ }^{3} \mathrm{He}$, neutrino scattering on $\mathrm{A}=2,3$ nuclei, non-mesonic and mesonic weak decays of the hypertriton, non-radiative and radiative pion capture, ...)

Some references:
Phys. Rept. 415, 89 (2005),
Eur. Phys. J. A25, 177 (2005),
Phys. Rev. C 72, 054005 (2005),
Phys. Rev. Lett. 101, 022303 (2008),
Phys. Rev. Lett. 103, 152501 (2009)

Summary and outlook

1. We have at our disposal a universal nonrelativistic framework to investigate several electromagnetic (electroweak) processes on ${ }^{2} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ below the pion production threshold (Limitations: nonrelativistic character and lack of Coulomb force in the 3 N continuum)
2. We can learn about basic reaction mechanisms and verify popular approximations
3. Observables provide information about EM properties of the nucleon, momentum distributions in ${ }^{3} \mathrm{He}$, nucleon-nucleon correlations, ...
4. The same framework can be applied also to other processes with 3 N (muon capture on ${ }^{3} \mathrm{He}$, neutrino scattering on $\mathrm{A}=2,3$ nuclei, non-mesonic and mesonic weak decays of the hypertriton, non-radiative and radiative pion capture, ...)

Some references:
Phys. Rept. 415, 89 (2005),
Eur. Phys. J. A25, 177 (2005),
Phys. Rev. C 72, 054005 (2005),
Phys. Rev. Lett. 101, 022303 (2008),
Phys. Rev. Lett. 103, 152501 (2009)

Summary and outlook (cont.)

6. To make better predictions we need improved models of the nuclear forces and current operators (special role played by the Chiral Effective Field Theory).
7. We need very good tools to deal with many spin-isospin structures that appear in the 2 N forces, 3 N forces (even 4 N forces) and in the current operators.
8. New („3D") approach - expansion in independent operators to work with scalar functions (already done for the deuteron, NN scattering, electroweak processes in the 2 N system, 3 N bound state). Work in progress for Nd scattering states as formulated in Eur. Phys. J A43, 339 (2010).
9. LENPIC (Low Energy Nuclear Physics International Collaboration) to coordinate fewnucleon and many-nucleon calculations

http://www.lenpic.org
"to understand nuclear structure and reactions with chiral forces"

UNIVERSITY

LENPIC

Sven Binder, Kai Hebeler,

 Joachim Langhammer, Robert Roth
IOWA STATE UNIVERSITY

Pieter Maris, Hugh Potter, James Vary

Jacek Golak, Roman Skibiński, Kacper Topolnicki, Henryk Witała

RUB

Evgeny Epelbaum, Hermann Krebs

Richard J. Furnstahl,

- JÜLICH

Andreas Nogga

TRIUMF
Angelo Calci

Veronique Bernard

Summary and outlook (cont.)

10. precision measurements are badly needed for various reactions in the kinematical regimes, where chiral predictions are applicable (MESA - a new linear accelerator in Mainz can be very important)

Expected MESA parameters ($\mathrm{E}=150 \mathrm{MeV}, \mathrm{E}^{\prime}>20 \mathrm{MeV}, \Theta_{\mathrm{e}}>10 \mathrm{deg}$)
ideal to study few-nucleon dynamics within the nonrelativistic framework with the input from ChEFT !

From Abhay Desphande's lectures at National Nuclear Physics Summer School held at MIT in July 2016

"What are you doing here ?"

The EIC Machine parameters:

For e-p/n collisions:

- Polarized e, p, deteron or ${ }^{3} \mathrm{He}$ beams
- Electron beam energy ~ 5-20 GeV
- Proton beam energy up to $\sim 50-250 \mathrm{GeV}$ (RHIC exists!)
- Luminosity $\mathrm{L}_{\mathrm{ep}} \sim 10^{33-34} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
- Center of mass energy $\sim \operatorname{sqrt}\left(4 \times E_{p} \times E_{e}\right) \sim 30-140 \mathrm{GeV}$

For e-A collisions: (use the same collider ring...)

- Wide range in Nuclei (proton-to-Uranium)
- Luminosity per nucleon (scaled) by the one for e-p
- Variable CM energy (scaled by A)

Thank you for your attention!

