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In the 3N system we need two relative (Jacobi) momenta
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Instead of one can use states of the total 3N spin and isospin:
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where the 2N subsystem (iso)spin is coupled with the (iso)spin of the third nucleon)
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We introduce partial waves, eigenstates of the two (relative) orbital angular momentum operators
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and build the states of the TOTAL angular momentum of the 3N system:



They are normalized as 
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Next from the product states

we build eigenstates of the TOTAL 3N angular momentum operator J:
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we get the final form of basis states in the LS-coupling: 
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Condition   ,11 
 tsl

guarantees that the states are antisymmetric with respect to the exchange of nucleons 2 and 3 
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Rotational invariance and parity conservation allows us to solve the Faddeev equations SEPARATELY for 

each total 3N angular momentum J and its projection M and given parity π !

We have two continuous variables (p and q) and about 100 combinations of discrete quantum numbers



formed from the eigenstates of the total angular momentum of subsystem (23) and nucleon 1

States in the so-called jI coupling   ,
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The  relation between the two types of 3N partial waves is following: 
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3N bound state

The Faddeev equation for the 3N bound state:
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Another form of the Faddeev equation:
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0 Lippmann-Schwinger equation for t-matrix



The full 3N wave function   P 1

 


  pqqpqdqpdp ),(22is expanded as

 


  pqqpqdqpdp ),(22
or

Components 

of the wave function 210 


LLL

S-wave

(dominant)
P-wave

(tiny)

D-wave)



Principal S-state of 3He
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In LS-coupling
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Expansion amplitudes for the principal S-state
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for ...,4,2,0l

L symmetry Ps [%] 

Bonn B

Ps [%] 

AV18

Ps [%] 

AV18 + Urbana IX

0 totally symmetric 91.6 89.9 89.3

0 totally antisymmetric 0 0 0

0 mixed 1.18 1.53 1.24

1 0.05 0.07 0.14

2 7.17 8.40 9.19
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In the principal S-state spins of two protons couple to zero ! 

The total angular momentum of 3He is carried by the neutron ! Can we use that fact ?  YES !



Our starting point is the operator form of 3H
(see I. Fachruddin et al., Phys. Rev. C 69, 064002 (2004)),

although other possibilities exist
(see S. Bayegan et al., Phys. Rev. C77, 064005 (2008))

The Faddeev equation for the 3N bound state reads:
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where

Ψ – Faddeev component,

t – 2N t-matix,

G0 – free 3N propagator,

P=P12P23 + P13P23 (permutation operator),

V(1) - part of 3N force symmetric under the exchange (2↔3)

3N bound state in three dimensions



It is possible to work with the 2N force V and not to use t !
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The full 3N wave function is given as
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Three possible isospin states in 3H
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are used to expand the Faddeev component



We need two (relative) momenta to represent the Faddeev component:
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Using the steps outlined in W. Glöckle et al., Few-Body Systems 47, 25 (2010), 

we can write schematically the Faddeev equation as 
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A huge eigenvalue problem after discretization (pi,qj,xk): 

ϕ has 3 x 8 x Np x Nq x Nx components !

At present we keep only the total isospin T=1/2, 

so ϕ has only 2 x 8 x Np x Nq x Nx components.

16 x 403 =  1024000
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Note that ϕi

tT are scalar functions !

We solve this equation by iterations, employing the Lanczos method.
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Like in the deuteron case, also for 3H we need several sets of scalar coefficients

and more if we include the 3N force. 

Of course all done (easily !) with Mathematica ®



The full wave function   .1 P

We have to consider the isospin, spin and momentum spaces:

spin space

operators



expansion

coefficients



Finally the expansion coefficients for the full wave function are:

and we write



Normalisation condition: 

requires that

where



t=0, x=-0.73

i=1

i=2



t=1, x=-0.73

i=6

i=7

Several tests passed:

(1) Eigenvalue 1 for the 

binding energy E

(2) expectation values of 

the kinetic and potential

energy operators sum 

up to E

(3) two formulations give

equivalent results



Factorization of the total transition amplitude

under the one-photon approximation

QED (known analytically)

e + 3He  e + p + d

e + 3He  e + p + p + n

e + 3He  e + 3He 



Nµ = < f | jµ | i >

The crucial (nuclear) matrix element

Final 3N state. Can be 

bound (elastic case) or 

scattering (describes 

either two-body or three-

body break-up of 3He) 

Initial 3N bound state

3N electromagnetic 

current operator



Reference frame given by the electron arm
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(quantization axis)

span the x-z plane !

Θ* and Φ* define 

the direction

of the initial 3He spin



phase space factor

(kinematical factor) 

Mott cross section

General formula for the (exclusive) cross section

Based on three assumptions: 

(1) one-photon approximation

(2) nuclear current conservation

(3) final electron helicity is not measured

h the only dependence on 

the initial electron 

helicity !

0ˆ||0 N
Q

NNQN z

zQ 
  

 



Kinematical factors vi
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Dynamical quantities (response functions) Ri

They still carry information about the polarizations of the nuclear fragments in 

the final state ! 

spherical components  



General strategy in the few-nucleon physics:

Ab initio calculations that

• use the basic dynamical ingredients (2N and 3N potentials, current operators)

• solve the dynamical equations (Schrödinger equation, Lippmann-Schwinger

equation, Faddeev equations)

• give properties of the bound states and reaction observables

All we need is … Nµ = < f | jµ | i > !

Also for photodisintegration processes !



Two-body break-up of 3He: e + 3He  e + p + d

2N t-matrix in the 3N space

plane wave impulse 

approximation (symmetrized)

PWIAS



2N t-matrix in the 3N space

Three-body break-up of 3He: e + 3He  e + p + p + n

plane wave impulse 

approximation (symmetrized)

PWIAS

Note: the diagrams neglect

many-nucleon currents

and three-nucleon forces !

FSI-23



How to get Nμ ?

Nµ = Nµ
RESCATT +   Nµ

PWIAS

calculated

directly
calculated in two steps

(1) Solve an auxiliary equation for the | Uμ > state
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(2) Get Nµ
RESCATT  by quadratures
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Basis states | pqα > are used to solve the equation on |Uµ>

(1) |Uµ> = |Uµ(,Q) > for given jμ
(2) The same equation is solved for 2BB and 3BB

Very efficient approach !

The bulk of predictions obtained with the AV18 2N force, the UrbanaIX 3N force,

the single nucleon current supplemented with π- and ρ-like 2N currents linked to AV18 (no 3N currents)



What we calculate (keep in mind:

set of spin 

magnetic quantum 

numbers in the 

final state

(1) Unpolarized cross sections
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(2) Target analyzing power
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(3) Spin dependent

helicity asymmetries



Inclusive electron scattering
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Spin dependent

helicity asymmetries

Under PWIA 

approximation
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Question: Can we use inclusive asymmetries to obtain information about and          ?
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W. Xu et al., Phys. Rev. Lett. 85, 2900 (2000)

our results



Analysis of a Mainz experiment, 

where the ejected neutron was measured

in coincidence with the outgoing electron

our result

J. Golak et al., Phys. Rev. C 63, 034006 (2001)



Usually electron and 

hadronic

planes coincide !

Two-nucleon kinematics,

provided  the „electron arm” is fixed
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Exclusive e + 3He  e + p + d  reaction



p [deg]

FSI is important for all proton angles !

FSI

PWIAS

FSI+MEC

PWIA

 = 113 MeV, Q = 250 MeV/c



 p [deg]

FSI less visible in the proton knockout kinematics, 

MEC do not play any important role

FSI FSI+MEC
PWIA

PWIAS

 = 107 MeV, Q = 431 MeV/c



Deuteron knock-out cross section as a function of the missing (proton) momentum

FSI with MEC

FSI

FSI with MEC 

and 3NF PWIAS

E= 370 MeV

ω= 50 MeV

Q=412 MeV/c



Deuteron knock-out cross section for the „paralel kinematics”

as a function of the missing (proton) momentum

E= 370 MeV

Q=412 MeV/c



Semi-exclusive 3He(e,e’p)pn and  3He(e,e’n)pp reactions

Target analyzing power



Spectral function

in the FS23 

approximation can be obtained

both from RL and RT

+

relative momentum
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What do we get for other dynamical pictures ?  



ω= 100 MeV

Q= 400 MeV/c

Proton knock-out

FSI23

FSI RL

FSI RT



ω= 100 MeV

Q= 500 MeV/c

Proton knock-out



ω= 150 MeV

Q= 600 MeV/c

Proton knock-out



ω= 100 MeV

Q= 200 MeV/c

Proton knock-out



ω= 200 MeV

Q= 300 MeV/c

Proton knock-out



ω= 100 MeV

Q= 500 MeV/c

Neutron knock-out



ω= 150 MeV

Q= 600 MeV/c

Neutron knock-out



ω= 100 MeV

Q= 200 MeV/c

Neutron knock-out



For a realistic situation we deal with some acceptances, which means that we 

need to integrate over exclusive cross section Σf.
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Note that we deal here with two types of integrations. First three integrations

are for the „electron arm”. Their ranges decide how many equations for | Uμ > 

have to be solved !

The integral marked as ∫ df’ is meant for the „hadronic arm”. Here we may

deal with two- and three-body break-up of 3He, different angles and energies

of the nuclear fragments but for fixed „electron arm”. All vectors and angles in 

the „hadronic arm” have to calculated with respect to the system of reference

given by the „electron arm”. 

A lot of  „ ∫ df’ ” can obscure physics !

Some remarks



1. We have at our disposal a universal nonrelativistic framework to investigate several

electromagnetic (electroweak) processes on 2H and 3He below the pion production

threshold

2. We work with AV18, UrbanaIX and related current operators

3. We can learn about basic reaction mechanisms and verify popular approximations

4. Observables provide information about EM properties of the nucleon, momentum

distributions in 3He, nucleon-nucleon correlations, …

5. The same framework can be applied also to other processes with 3N (muon capture on 
3He, neutrino scattering on A=2,3 nuclei, non-mesonic and mesonic weak decays of the 

hypertriton, non-radiative and radiative pion capture,   …)

Some references: 

Phys. Rept. 415, 89 (2005),
Eur. Phys. J. A25, 177 (2005),

Phys. Rev. C 72, 054005 (2005),

Phys. Rev. Lett. 101, 022303 (2008),

Phys. Rev. Lett. 103, 152501 (2009)

Summary and outlook



1. We have at our disposal a universal nonrelativistic framework to investigate several

electromagnetic (electroweak) processes on 2H and 3He below the pion production

threshold (Limitations: nonrelativistic character and lack of Coulomb force in the 3N 

continuum)

2. We can learn about basic reaction mechanisms and verify popular approximations

3. Observables provide information about EM properties of the nucleon, momentum

distributions in 3He, nucleon-nucleon correlations, …

4. The same framework can be applied also to other processes with 3N (muon capture on 
3He, neutrino scattering on A=2,3 nuclei, non-mesonic and mesonic weak decays of the 

hypertriton, non-radiative and radiative pion capture,   …)

Some references: 

Phys. Rept. 415, 89 (2005),
Eur. Phys. J. A25, 177 (2005),

Phys. Rev. C 72, 054005 (2005),

Phys. Rev. Lett. 101, 022303 (2008),

Phys. Rev. Lett. 103, 152501 (2009)

Summary and outlook



Summary and outlook (cont.)

6. To make better predictions we need improved models of the nuclear forces and current

operators (special role played by the Chiral Effective Field Theory). 

7. We need very good tools to deal with many spin-isospin structures that appear in the 2N 

forces, 3N forces (even 4N forces) and in the current operators. 

8. New („3D”) approach - expansion in independent operators to work with scalar functions

(already done for the deuteron, NN scattering, electroweak processes in the 2N system, 3N 

bound state). Work in progress for Nd scattering states as formulated in Eur. Phys. J A43, 

339 (2010). 

9. LENPIC (Low Energy Nuclear Physics International Collaboration) to coordinate few-

nucleon and many-nucleon calculations

http://www.lenpic.org

``to understand nuclear structure and 

reactions with chiral forces’’



LENPIC

Sven Binder, Kai Hebeler, 

Joachim Langhammer, Robert Roth

Andreas Nogga

Pieter Maris, Hugh Potter, James Vary

Evgeny Epelbaum, Hermann Krebs

Hiroyuki Kamada

Richard J. Furnstahl,

Jacek Golak, Roman Skibiński, 

Kacper Topolnicki, Henryk Witała

Ulf-G.Meißner

Veronique Bernard

Angelo Calci



10. precision measurements are badly needed for various reactions in the kinematical regimes, 

where chiral predictions are applicable (MESA – a new linear accelerator in Mainz can be 

very important)

Summary and outlook (cont.)

Expected MESA parameters (E= 150 MeV, E’ > 20 MeV, ϴe > 10 deg)

ideal to study few-nucleon dynamics within the nonrelativistic framework with the input

from ChEFT !



From Abhay Desphande’s lectures at National Nuclear Physics Summer School held at MIT in July 2016 

„What are you doing here ?” 



Thank you for your attention !




