Flavor separation of quark transverse momentum

Polarized light-ion physics with an EIC Ghent - February 5 ${ }^{\text {th }}, 2018$

Basque Foundation for Science
Gunar.Schnell @ DESY.de

Deep-inelastic scattering

Deep-inelastic scattering

Experimental Prerequisites

- Large acceptance spectrometer
- Good Particle IDentification (PID)

Experimental Prerequisites

- Large acceptance spectrometer
- Good Particle IDentification (PID)

The COMPASS experiment @ CERN

HERMES Experiment (†2007) @ DESY

27.6 GeV polarized e^{+} / e^{-} beam scattered off ...

unpolarized (H, D, He,..., Xe) as well as transversely (H) and longitudinally (H, D, He)
 polarized (pure) gas targets

6GeV e- @ Jefferson Lab

Inclusive DIS

$$
(E, p) \quad\left(E^{\prime}, p^{\prime}\right)-1
$$

Inclusive DIS (one-photon exchange)

Spin Plane

$$
\frac{\mathrm{d}^{2} \sigma(s, S)}{\mathrm{d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2} y^{2}}{Q^{6}} \mathbf{L}_{\mu \nu}(s) \mathbf{W}^{\mu \nu}(S)
$$

Inclusive DIS (one-photon exchange)

Spin Plane

Inclusive DIS (one-photon exchange)

Spin Plane

Hadron Tensor parametrized in terms of
 Structure Functions

Inclusive DIS (one-photon exchange)

Spin Plane

Hadron Tensor parametrized in terms of Structure Functions
$\frac{d^{3} \sigma}{d x d y d \phi}$

$$
\begin{aligned}
\propto & \frac{y}{2} F_{1}\left(x, Q^{2}\right)+\frac{1-y-\gamma^{2} y^{2}}{2 x y} / F_{2}\left(x, Q^{2}\right) \\
& -S_{l} S_{N} \cos \alpha\left[\left(1-\frac{y}{2}-\frac{\gamma^{2} y^{2}}{4}\right) g_{1}\left(x, Q^{2}\right)-\frac{\gamma^{2} \frac{y}{y}}{2} g_{2}\left(x, Q^{2}\right)\right]
\end{aligned}
$$

$$
+S_{l} S_{N} \sin \alpha \cos \phi \gamma \sqrt{1-y-\frac{\gamma^{2} y^{2}}{4}}\left(\frac{y}{2} g_{1}\left(x, Q^{2}\right)+g_{2}\left(x, Q^{2}\right)\right)
$$

Check the details!

Two-photon exchange

- candidate to explain discrepancy in form-factor measurements
- interference between oneand two-photon exchange amplitudes leads to SSAs
 in inclusive DIS off transversely polarized targets
- cross section proportional to $S\left(k x k^{\prime}\right)$-> either measure left-right asymmetries or sine modulation
- sensitive to beam charge due to odd number of e.m. couplings to beam

Signatures of two-photon exchange

consistent with
zero for both e^{+} / e^{-} in case of protons

Signatures of two-photon exchange

... the other polarized SF ...

A_{2} and $x g_{2}$ on the proton

- latest HERMES data consistent with (sparse) world data
- rather low beam polarization during HERA II \rightarrow small f.o.m.

A_{2} and $x g_{2}$ on the proton

the neutron case
[M. Posik et al., PRL 113, 022002 (2014)]

the neutron case

- opposite sign compared to proton case (and SLAC measurements) (expected, e.g., by M. Burkardt, PRD 88, 114502 (2013) due to "instantaneous transverse color force")
- desirable to have more precise large $-Q^{2}$ data covering wide \times range

Semi-inclusive DIS

Spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
& \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Spin-momentum structure of the nucleon

$\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]=$	$\frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right]$
$\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]=$	$\frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right.$
	$\left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]$

Sivers

transversity

Boer-Mulders ${ }^{\text {Br }}$ ibes a particular spinrrelation

- functions in black survive integration over transverse momentum
pretzelosity ${ }^{\text {Jreen box are chirally odd }}$
- functions in red are naive T-odd

Quark polarimetry

- unpolarized quarks: easy - "just" hit them (and count)
- longitudinally polarized quarks: use polarized beam

Quark polarimetry

- unpolarized quarks: easy - "just" hit them (and count)
- longitudinally polarized quarks: use polarized beam

- transversely polarized quarks: need final-state polarimetry, e.g.

TMD fragmentation functions

	quark pol.			
		U	L	T
ס'	U	D_{1}		H_{1}^{\perp}
\%	L		G_{1}	$H_{1 L}^{\perp}$
告	T	$D_{1 T}^{\perp}$	$G_{1 T}^{\perp}$	$H_{1} H_{1 T}^{\perp}$

TMD fragmentation functions

TMD fragmentation functions

Probing TMDs in semi-inclusive DIS

 in SIDIS*) couple PDFs to:
*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

" \rightarrow give rise to characteristic azimuthal dependences
*) semi-inclusive DIS with unpolarized final state

1-Hadron production (ep $\rightarrow e h X)$

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{array}
$$

$$
\begin{array}{cc}
\overbrace{X Y} & +\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right) \\
\begin{array}{c}
\text { Beam Target } \\
\text { Polarization }
\end{array} & \left.+\lambda_{e}\left[\cos \left(\phi-\phi_{S}\right) d \sigma_{L T}^{13}+\frac{1}{Q}\left(\cos \phi_{S} d \sigma_{L T}^{14}+\cos \left(2 \phi-\phi_{S}\right) d \sigma_{L T}^{15}\right)\right]\right\}
\end{array}
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

1-Hadron production (ep $\rightarrow e h X$)

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{array}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

1-Hadron production (ep $\rightarrow e h X$)

$$
\begin{gathered}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}-\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{gathered}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504
... back to results ...

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Helicity density

flavor separation of LO quark-helicity distribution using H and D DIS data

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Helicity density

[M. Alekseev et al., PLB 680 (2009) 217]

caveat: potentially large dependences on knowledge of FFs!

polarized light ions?

- case for iso-scalar target as less (\& more convenient?) FFs involved:
$A_{\|, d}^{K^{ \pm}}(x) \frac{\mathrm{d}^{2} N^{K}(x)}{\mathrm{d} x \mathrm{~d} Q^{2}}=\mathcal{K}_{L L}\left(x, Q^{2}\right)\left[\Delta Q(x) \int \mathcal{D}_{Q}^{K}(z) \mathrm{d} z+\Delta S(x) \int \mathcal{D}_{S}^{K}(z) \mathrm{d} z\right]$
- measure strange helicity distribution using polarized D (unpolarized D can be used to constrain strangeness and fragmentation functions involved)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Helicity density

CLAS data hints at width μ_{2} of g_{1} that is less than the width μ_{0} of f_{1}

$$
\begin{aligned}
& f_{1}^{q}\left(x, k_{T}\right)=f_{1}(x) \frac{1}{\pi \mu_{0}^{2}} \exp \left(-\frac{k_{T}^{2}}{\mu_{0}^{2}}\right) \\
& g_{1}^{q}\left(x, k_{T}\right)=g_{1}(x) \frac{1}{\pi \mu_{2}^{2}} \exp \left(-\frac{k_{T}^{2}}{\mu_{2}^{2}}\right)
\end{aligned}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Helicity density

CLAS data hints at width μ_{2} of g_{1} that is less than the width μ_{0} of f_{1}

$$
\begin{aligned}
& f_{1}^{q}\left(x, k_{T}\right)=f_{1}(x) \frac{1}{\pi \mu_{0}^{2}} \exp \left(-\frac{k_{T}^{2}}{\mu_{0}^{2}}\right) \\
& g_{1}^{q}\left(x, k_{T}\right)=g_{1}(x) \frac{1}{\pi \mu_{2}^{2}} \exp \left(-\frac{k_{T}^{2}}{\mu_{2}^{2}}\right)
\end{aligned}
$$

$$
0.4 \quad \boldsymbol{A}_{1 D}^{\pi^{-}} \quad \text { HERMES Preliminary }
$$

 HERMES and COMPASS

The quest for transversity

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{\frac{1}{1 T}}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity

(Collins fragmentation)

- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to

- leads to various cancellations in SSA observables

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Collins amplitudes

COMPASS 2010 proton data

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Collins amplitudes

COMPASS 2010 proton data

excellent agreement of various proton data, also with neutron results

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- since those early days, a wealth of new results:
- COMPASS
[PLB 692 (2010) 240,
PLB 717 (2012) 376, PLB 744 (2015) 250]
- HERMES
[PLB 693 (2010) 11]
- Jefferson Lab
[PRL 107 (2011) 072003]

Collins amplitudes
[C. Adolph, PLB 744 (2015) 250]

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Collins amplitudes

- since those early days, a wealth of new results:
- COMPASS
[PLB 692 (2010) 240,
PLB 717 (2012) 376, PLB 744 (2015) 250]
- HERMES
[PLB 693 (2010) 11]
- Jefferson Lab
[PRL 107 (2011) 072003]

cancelation of (unfavored) u and d fragmentation (opposite signs of up and down transversity)?

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- since those early days, a wealth of new results:
- COMPASS
[PLB 692 (2010) 240,
PLB 717 (2012) 376, PLB 744 (2015) 250]
- HERMES
[PLB 693 (2010) 11]
- Jefferson Lab
[PRL 107 (2011) 072003, PRC90 (2014).055201]

Collins amplitudes

but relatively large K^{-}asymmetry on ${ }^{3} \mathrm{He}$?

flashback

EINN 2005

A Closer Look at Collins Asymmetries II

express asymmetries in terms of flavor ratios:

$$
\begin{aligned}
\tilde{A}_{C}^{\pi^{+}} & =\mathcal{K}(x, z) \frac{4+\delta r \mathcal{H}}{4+r \mathcal{D}} \\
\tilde{A}_{C}^{\pi^{-}} & =\mathcal{K}(x, z) \frac{4 \mathcal{H}+\delta r}{4 \mathcal{D}+r} \\
\tilde{A}_{C}^{\pi^{0}} & =\mathcal{K}(x, z) \frac{(4+\delta r)(1+\mathcal{H})}{(4+r)(1+\mathcal{D})}
\end{aligned}
$$

$\Rightarrow 3$ constraints and 3 unknowns!

flashback

EINN 2005

A Closer Look at Collins Asymmetries II

express asymmetries in terms of flavor ratios:

$$
\begin{aligned}
\tilde{A}_{C}^{\pi^{+}} & =\mathcal{K}(x, z) \frac{4+\delta r \mathcal{H}}{4+r \mathcal{D}} \\
\tilde{A}_{C}^{\pi^{-}} & =\mathcal{K}(x, z) \frac{4 \mathcal{H}+\delta r}{4 \mathcal{D}+r} \\
\tilde{A}_{C}^{\pi^{0}} & =\mathcal{K}(x, z) \frac{(4+\delta r)(1+\mathcal{H})}{(4+r)(1+\mathcal{D})}
\end{aligned}
$$

The three asymmetries are not independent $\left(C(x, z) \equiv \frac{r(x)+4 \mathcal{D}(z)}{r(x) \mathcal{D}(z)+4}\right)$:

$$
\tilde{A}_{C}^{\pi^{+}}(x, z)+C(x, z) \tilde{A}_{C}^{\pi^{-}}(x, z)-(1+C(x, z)) \tilde{A}_{C}^{\pi^{0}}(x, z)=0
$$

e.g., CTEQ6,R1990 and Kretzer et al.

$\Rightarrow 3$ constraints and 3 unknowns!

flashback

EINN 2005

A Closer Look at Collins Asymmetries II

express asymmetries in terms of flavor ratios:

$$
\begin{aligned}
\tilde{A}_{C}^{\pi^{+}} & =\mathcal{K}(x, z) \frac{4+\delta r \mathcal{H}}{4+r \mathcal{D}} \\
\tilde{A}_{C}^{\pi^{-}} & =\mathcal{K}(x, z) \frac{4 \mathcal{H}+\delta r}{4 \mathcal{D}+r} \\
\tilde{A}_{C}^{\pi^{0}} & =\mathcal{K}(x, z) \frac{(4+\delta r)(1+\mathcal{H})}{(4+r)(1+\mathcal{D})}
\end{aligned}
$$

The three asymmetries are not independent $\left(C(x, z) \equiv \frac{r(x)+4 \mathcal{D}(z)}{r(x) \mathcal{D}(z)+4}\right)$:

$$
\tilde{A}_{C}^{\pi^{+}}(x, z)+C(x, z) \tilde{A}_{C}^{\pi^{-}}(x, z)-(1+C(x, z)) \tilde{A}_{C}^{\pi^{0}}(x, z)=0
$$

e.g., CTEQ6,R1990 and Kretzer et al.

$\Rightarrow 8$ constraints and 3 unknowns!

flashback

EINN

 2005
A Closer Look at Collins Asymmetries III

eliminate \mathcal{K} and relate \mathcal{H} to δr
\Rightarrow scan solution space for \mathcal{H} and δr by sampling set of $\left(\tilde{A}_{C}^{\pi^{+}}, \tilde{A}_{C}^{\pi^{-}}, \tilde{A}_{C}^{\pi^{0}}\right)$
(around measured values according to statistical uncertainty)

35

flashback

EINN

 2005
A Closer Look at Collins Asymmetries III

eliminate \mathcal{K} and relate \mathcal{H} to δr
\Rightarrow scan solution space for \mathcal{H} and δr by sampling set of $\left(\tilde{A}_{C}^{\pi^{+}}, \tilde{A}_{C}^{\pi^{-}}, \tilde{A}_{C}^{\pi^{0}}\right)$
(around measured values according to statistical uncertainty)

36

Limits on Transversity and Collins FF

$\delta r \approx \delta d / \delta u$ from χ QSM \longrightarrow look at slice of distribution:

strong hint for H_{d} / H_{f} negative

IN

 2005
Limits on Transversity and Collins FF

$\delta r \approx \delta d / \delta u$ from χ QSM

but transversity ratio hardly constrained strong hint for H_{d} / H_{f} negative

the "Collins trap"

$$
H_{1, \mathrm{fav}}^{\perp} \simeq-H_{1, \mathrm{dis}}^{\perp}
$$

thus
$\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\pi^{+}} \sim\left(4 h_{1}^{u}-h_{1}^{d}\right) H_{1, \mathrm{fav}}^{\perp}$
$\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\pi^{-}} \sim-\left(4 h_{1}^{u}-h_{1}^{d}\right) H_{1, \text { fav }}^{\perp}$

clearly need precise data from "neutron" target(s)
(valid for all chiral-odd TMDs)

Transversity's friends

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Worm-Gear II

- first direct evidence on:
- ${ }^{3} \mathrm{He}$ target at JLab
- H target at COMPASS \& HERMES

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{~T}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{~T}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

π^{+}dominated by u-quark scattering:

$$
\simeq-\frac{f_{1 T}^{\perp, u}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}
$$

~u-quark Sivers DF < 0

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

π^{+}dominated by u-quark scattering:
$\simeq-\frac{f_{1 T}^{\perp u}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}$

- u-quark Sivers DF < 0
- d-quark Sivers DF > 0
(cancelation for π^{-})

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

[A. Bacchetta et al.]

- cancelation for D target supports opposite signs of up and down Sivers

Sivers amplitudes

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes

[A. Bacchetta et al.]
[PRL 107 (2011) 072003]

- cancelation for D target supports opposite signs of up and down Sivers
- newer results from JLab ${ }_{0.05}$ using ${ }^{3} \mathrm{He}$ target and from COMPASS for proton target (also multi-d)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes pions vs. kaons

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes

pions vs. kaons

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes pions vs. kaons

conclucions

- first round of SIDIS measurements coming to an end
- various indications of flavor-dependent transverse momentum
- transversity is non-zero and quite sizable
- can be measured, e.g., via Collins effect
- d-quark transversity difficult to access with only proton targets
- Sivers function also clearly non-zero
- opposite sign for up and down quarks in line with their contributions to the nucleon's anomalous magnetic moment
- precision measurements at ongoing and future SIDIS facilities needed to fully map TMD landscape
- in particular, several intriguing results for neutron targets motivate program with polarized D and ${ }^{3} \mathrm{He}$

