Neutron DVCS and GPDs

Carlos Muñoz Camacho

Institut de Physique Nucléaire d'Orsay

Polarized light ion physics with EIC Ghent University, Belgium

Outline

- Motivations (GPD E + flavor separation)
- Hall A nDVCS program of measurements:
 - Early 2007 results
 - Recent (preliminary) results from 2010 run
- **12** GeV program (CLAS12) and possible extensions (polarized ³He)

Deeply Virtual Compton Scattering (DVCS): $\gamma^* \ p \rightarrow \gamma \ p$

High Q^2 Perturbative QCD

Non-perturbative GPDs

Bjorken limit:

$$egin{array}{ccc} Q^2 = & -q^2
ightarrow & \infty \ &
u
ightarrow & \infty \end{array} iggriggrightarrow & x_B = rac{Q^2}{2M
u} ext{ fixed}$$

Leading twist GPDs

8 GPDs related to the different combination of quark/nucleon helicities

4 chiral-even GPDs: conserve the helicity of the quark

Access through DVCS (and DVMP)

Leading twist GPDs

8 GPDs related to the different combination of quark/nucleon helicities

4 chiral-odd GPDs: flip helicity of the quark "transversity GPDs"

Experimental access more complicated (π^0 electroproduction?)

Generalized Parton Distributions

- Correlate between different partonic states
- Correlate momentum and position of partons
- Access to new fundamental properties of the nucleon

Contribution of the angular momentum of quarks to proton spin:

$$\frac{1}{2} = \underbrace{\frac{1}{2}\Delta\Sigma + L_q}_{J_q} + J_g \quad \Rightarrow \quad J_q = \frac{1}{2}\int_{-1}^{1} dx \, x[H^q(x,\xi,0) + E^q(x,\xi,0)]$$

DVCS cleanest process to access GPDs

DVCS experimentally: interference with Bethe-Heitler

At leading twist:

$$d^{5} \overrightarrow{\sigma} - d^{5} \overleftarrow{\sigma} = \Im m (T^{BH} \cdot T^{DVCS})$$

$$d^{5} \overrightarrow{\sigma} + d^{5} \overleftarrow{\sigma} = |BH|^{2} + \Re e (T^{BH} \cdot T^{DVCS}) + |DVCS|^{2}$$

$$\mathcal{T}^{DVCS} = \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} + \dots =$$

$$\underbrace{\mathcal{P} \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi}}_{x-\xi} - \underbrace{i\pi H(x=\xi,\xi,t)}_{x-\xi} + \dots$$

Access in helicity-independent cross section

Access in helicity-dependent cross-section

Accessing different GDPs

 $\begin{aligned} \text{Polarized beam, unpolarized target (BSA)} \\ d\sigma_{LU} &= \sin\phi \cdot \mathcal{I}m\{F_1\mathcal{H} + x_B(F_1 + F_2)\tilde{\mathcal{H}} - kF_2\mathcal{E}\}d\phi \end{aligned}$

Unpolarized beam, longitudinal target (ITSA) $d\sigma_{UL} = \sin \phi \cdot \mathcal{I}m\{F_1 \tilde{\mathcal{H}} + x_B(F_1 + F_2)(\tilde{\mathcal{H}} + x_B/2\mathcal{E}) - x_B k F_2 \tilde{\mathcal{E}} \dots \} d\phi$

Polarized beam, longitudinal target (BITSA) $d\sigma_{LL} = (A + B\cos\phi) \cdot \mathcal{R}e\{F_1\tilde{\mathcal{H}} + x_B(F_1 + F_2)(\tilde{\mathcal{H}} + x_B/2\mathcal{E})\dots\}d\phi$

> Unpolarized beam, transverse target (tTSA) $d\sigma_{UT} = \cos\phi \cdot \mathcal{I}m\{k(F_2\mathcal{H} - F_1\mathcal{E}) + \dots\}d\phi$

The Hall A DVCS program

Accurate cross-section measurements (3–4% uncertainties)

- Highest sensitivity observable
- Necessary for disperssion analysis
- 2 Q^2 -dependence of all observables
 - Only way to disentangle higher twists
- Soth proton and neutron (deuteron) targets
 - Flavor sensitivity

The program:

- First round of experiments in 2004 (published in 2006-2007)
- Second round (Rosenbluth separation) in 2010 (some results published in 2016–2017)
- 12 GeV: Extended kinematic coverage in 2014–2016

Experimental setup

High Resolution Spectrometer

100-channel scintillator array

132-block PbF₂ electromagnetic calorimeter

DVCS on the neutron: experiment E03-106 at JLab

Main contribution for neutron

DVCS on the neutron & deuteron

- Small helicity-dependent signal (as expected by models)
- Unpolarized cross section could *not* be extracted (experimental calibration issues \rightarrow next experiment)

Rosenbluth-like separation of the DVCS cross section

$$\sigma(ep \to ep\gamma) = \underbrace{|BH|^2}_{\text{Known to} \sim 1\%} + \underbrace{\mathcal{I}(BH \cdot DVCS)}_{\text{Linear combination of GPDs}} + \underbrace{|DVCS|^2}_{\text{Bilinear combination of GPDs}}$$

$$\mathcal{I} \propto 1/y^3 = (k/\nu)^3,$$

$$\left|\mathcal{T}^{DVCS}\right|^2 \propto 1/y^2 = (k/\nu)^2$$

BKM-2010 – at leading twist \rightarrow 7 independent GPD terms:

 $\Big\{ \Re \mathsf{e}, \Im \mathsf{m} \left[\mathcal{C}^{\mathcal{I}}, \mathcal{C}^{\mathcal{I}, V}, \mathcal{C}^{\mathcal{I}, A} \right] (\mathcal{F}) \Big\}, \qquad \text{and} \qquad \mathcal{C}^{DVCS} (\mathcal{F}, \mathcal{F}*).$

 φ -dependence provides 5 independent observables:

$$\sim$$
1, $\sim \cos arphi, \sim \sin arphi$, $\sim \cos(2arphi), \sim \sin(2arphi)$

The measurement of the cross section at two or more beam energies for exactly the same Q^2 , x_B , t kinematics, provides the additional information in order to extract all leading twist observables independently.

Carlos Muñoz Camacho (IPNO)

Experimental upgrades and improvements

- Frequent swap between LH₂ & LD₂ targets
 - \rightarrow better proton data substraction
- ② Calorimeter upgrade:
 - Larger detector (11×12 \rightarrow 13×16 3x3 cm² PbF4 crystals)
 - Lower energy threshold
 - \rightarrow Better π^0 substraction

$LD_2 \& LH_2 ep \rightarrow ep\gamma X$ missing mass squared

Impulse approximation:

$$D(e, e'\gamma)X - H(e, e'\gamma)X = n(e, e'\gamma)n + d(e, e'\gamma)d + \dots$$

n+d DVCS cross sections (preliminary)

$$E_b = 4.5 \text{ GeV}$$
 $E_b = 5.6 \text{ GeV}$

nDVCS & dDVCS cross sections (preliminary)

- First experimental determination of the unpolarized $en \rightarrow e\gamma n$ cross section
- $\sigma(en \rightarrow e\gamma n) > \sigma(BH_n)$: Sizeable DVCS off the neutron

π^0 electroproduction $(ep \rightarrow ep\pi^0)$

At leading twist:

.

$$\frac{d\sigma_L}{dt} = \frac{1}{2} \Gamma \sum_{h_N, h_{N'}} |\mathcal{M}^L(\lambda_M = 0, h'_N, h_N)|^2 \propto \frac{1}{Q^6} \qquad \sigma_T \propto \frac{1}{Q^8}$$
$$\mathcal{M}^L \propto \left[\int_0^1 dz \frac{\phi_\pi(z)}{z} \right] \int_{-1}^1 dx \left[\frac{1}{x - \xi} + \frac{1}{x + \xi} \right] \times \left\{ \Gamma_1 \widetilde{H}_{\pi^0} + \Gamma_2 \widetilde{E}_{\pi^0} \right\}$$

Different quark weights: flavor separation of GPDs

$$|\pi^{0}\rangle = \frac{1}{\sqrt{2}} \{ |u\bar{u}\rangle - |d\bar{d}\rangle \} \qquad \qquad \widetilde{H}_{\pi^{0}} = \frac{1}{\sqrt{2}} \left\{ \frac{2}{3} \widetilde{H}^{u} + \frac{1}{3} \widetilde{H}^{d} \right\}$$
$$|p\rangle = |uud\rangle \qquad \qquad \qquad H_{DVCS} = \frac{4}{9} H^{u} + \frac{1}{9} H^{d}$$

~

Rosenbluth separation

M. Defurne et al., PRL 117 (2016)

π^0 electroproduction and transversity GPDs

Modified handbag approach (Kroll & Goloskokov):

Divergencies regularized by k_{\perp} of q, \bar{q} + Sudakov suppression factor:

model of σ_T using transversity GPDs of the nucleon + twist-3 π DA

π^0 separated response functions

E08-025: DVCS and π^0 off quasi-free neutrons

- LD₂ as a target
- Quasi-free p evts subtracted using the (normalized) data from E07-007
- \bullet Concurrent running: switching LD2/LD2 \rightarrow minimize uncertainties

$$D(e, e \, \pi^0) X - p(e, e \, \pi^0) p = n(e, e \, \pi^0) n + d(e, e \, \pi^0) a$$

The average momentum transfer to the target is much larger than the np relative momentum, justifying this **impulse approximation**

Carlos Muñoz Camacho (IPNO)

nDVCS

 π^0 electroproduction LD₂ target

π^0 electroproduction cross section off the neutron

- Cross section off coherent d found negligeable within uncertainties
- Very low *E*_{beam} dependence of the *n* cross section \rightarrow dominance of σ_T

Carlos Muñoz Camacho (IPNO)

1 = 0.2

0.1

-0.1

 π^0 electroproduction LD₂ target

Separated π^0 cross section off the neutron

Carlos Muñoz Camacho (IPNO)

nDVCS

E12-11-003: DVCS on the neutron with CLAS12

Carlos Muñoz Camacho (IPNO)

E12-11-003: projections

DVCS with transversally polarized target

- Conditionally approved (pending target feasibility)
- $d\sigma_{UT} \propto \mathcal{I}m\{k(F_2\mathcal{H}-F_1\mathcal{E})+\dots\}$

Polarized ${}^{3}He$ target

- *n* lum. of $10^{36}/\text{cm}^2/\text{s}$ (14 atm×40 cm)
- Background luminosity:
 - $p \text{ in } {}^{3}He + \text{entrance/exit windows}$
 - $10^{37}/\text{cm}^2$ total luminosity
- Polarization: 50%
 - Nuclear physics dilution factor 0.86 (d-state)
 - -2.8% p polarization
 - Long. & Trans.

³He target upgrade

- R&D ongoing for an upgraded target
- Neutron luminosity of $10^{37}/cm^2/s$
 - Proton luminosity $2 \cdot 10^{37} / \text{cm}^2 / \text{s}$
 - $\bullet~Endcaps \leq 10^{37}/cm^2/s$
- Target polarization: $0.5 \cdot (0.86n 0.028p)$

Future possibilities

Cross section projections (at 10³⁷ cm⁻²s⁻¹)

▶ 50%×80% polarization

Figures by C. Hyde

Summary

- \bullet Recent DVCS cross sections off a LD_2 target in Hall A at JLab
- Sizeable signal from nDVCS beyond BH
- Analysis underway on impact in GPD E & flavor separation for DVCS
- L/T separation of π^0 electroproduction cross section off neutron: dominance of σ_T measured
- Flavor separation of transversity GPD convolutions within the modified factorization approach
- Posibilities of polarized target observables (long. & trans.) with polarized ³He target