The COMPASS Spin Program

Anna Martin Trieste University and INFN on behalf of the COMPASS Collaboration

Polarized light ion physics with EIC February 5-9, 2018, Ghent University

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

fixed target experiment at the CERN SPS

proposed physics programme:

hadron spectroscopy (p, π , K)

- light mesons, glue-balls, exotic mesons
- polarisability of pion and kaon

nucleon structure (µ)

- longitudinal spin structure
- transverse spin structure

Drell-Yan (π) DVCS (μ)

Gent, February 5, 2018

A. Martin

COMPASS spectrometer

designed to

- use high energy beams
- have large angular acceptance
- cover a broad kinematical range

two stages spectrometer

• Large Angle Spectrometer (SM1)

*COMP*ASS

• Small Angle Spectrometer (SM2)

COMPASS spectrometer

nuclear effects (160 GeV)

muon beam 160 GeV	deuteron (⁶ LiD) PT	2002 2003 2004	80% L target polarisation 20% T
		2005	acc. shut down / upgrade
		2006	100% L
	proton (NH ₃) PT	2007	50% L 50% T
hadron beam	LH target	2008 2009	spectroscopy, Primakoff
muon beam 160,200 GeV	proton (NH ₃) PT	2010	100% T
		2011	100% L
hadron beam	Ni target	2012	Primakoff
muon beam	LH ₂ target	2012	Pilot DVCS
		2013	acc. shut down
pion beam	proton (NH ₃) UT	2014	Pilot Drell-Yan
	proton (NH ₃) PT	2015	100% T, Drell-Yan
muon beam 160 GeV	LH ₂ target	2016 2017	DVCS, unpol. SIDIS
pion beam	proton (NH ₃) PT	2018	100% T, Drell-Yan

Gent, February 5, 2018

muon beam 160 GeV	deuteron (⁶ LiD) PT	2002 2003 2004	80% L target polarisation 20% T
		2005	acc. shut down / upgrade
		2006	100% L
	proton (NH ₃) PT	2007	50% L 50% T
hadron beam	LH target	2008 2009	spectroscopy, Primakoff
muon beam 160,200 GeV	proton (NH ₃) PT	2010	100% T
		2011	100% L

muon beam program:

LONGITUDINAL SPIN NUCLEON STRUCTURE

Δg/g from Photon Gluon Fusion

$\Delta g/g^{LO} = 0.113 \pm 0.038_{stat} \pm 0.035_{syst}$

- gluon polarisation is much smaller than thought in the 1990s by many theorists
- various methods confirmed by polarised pp at RHIC
- Δg still can make a substantial contribution to nucleon spin

Gent, February 5, 2018

 $\Delta g(x)dx \simeq 0.2$

 $g_{1}(x)$

Gent, February 5, 2018

Helicity

results for Δs depend very much on the strange quark FFs used

*COMP*ASS

 π, K, \dots

hadron multiplicities

hadron multiplicities	$\frac{dM^h(x,z,Q^2)}{dz} =$	$=\frac{d\sigma^{h}(x,z,Q^{2})/dxdzdQ^{2}}{d\sigma^{DIS}(x,Q^{2})/dxdQ^{2}}$
at LO pQCD	$\frac{dM^h(x,z,Q^2)}{dz} =$	$= \frac{\sum_{q} e_{q}^{2} q(x, Q^{2}) D_{q}^{h}(z, Q^{2})}{\sum_{q} e_{q}^{2} q(x, Q^{2})}$

317 (x,y,z) kinematic bins

strong z dependence, ~ no dependence on y

charged kaon multiplicities

160 GeV μ , unpolarised ⁶LiD

 $1 (GeV/c)^2 < Q^2 < 60 (GeV/c)^2$, 0.004 < x < 0.4,

0.1 < y < 0.7, W >5 GeV/c², 0.20 < z < 0.85

more than 620 data points

strong z dependence, week x dependence

MUON beam PROGRAM:

TRANSVERSITY and TMD PDFs

the structure of the nucleon

taking into account the quark intrinsic transverse momentum k_T , at leading order other 6 TMD PDFs are needed for a full description of the nucleon structure

SIDIS gives access to all of them

T-odd change of sign

Gent, February 5, 2018

hard interaction of a lepton with a nucleon via virtual photon exchange

$$x = \frac{Q^2}{2P \cdot q} \qquad y = \frac{P \cdot q}{P \cdot \ell} =_{LAB} \frac{E - E'}{E}$$
$$Q^2 = -q^2 \qquad W^2 = (P + q)^2$$
$$z = \frac{P \cdot P_h}{P \cdot q} =_{LAB} \frac{E_h}{E - E'}$$

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h,L}^2} =$$

$$\frac{14 \text{ independent azimuthal modulations}}{amplitudes of the modulations}}$$

$$\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos\phi_h \right\}_{UU}^{\cos\phi_h}$$

$$+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_{\varepsilon} \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h} F_{LU}^{\sin\phi_h}$$

$$+ s_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) \right]_{UL}^{\phi_h} + S_{\parallel} \lambda_{\varepsilon} \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h \right]_{LL}^{\cos\phi_h}$$

$$+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) \right]_{UL}^{\phi_h} + S_{\parallel} \lambda_{\varepsilon} \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h \right]_{LL}^{\cos\phi_h} \right]$$

$$+ \left| S_{\perp} \right| \left[\frac{f_{1T}^{+} D}{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right]$$

$$+ \left| S_{\perp} \right| \left[\frac{f_{1T}^{-} D}{(\cos\phi_h - \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) \right]_{UT}^{\sin(3\phi_h - \phi_S)} + \left[\frac{f_{1T}^{-} D}{(1+\varepsilon)} \right]_{UT}^{\sin(2\phi_h - \phi_S)} \right]$$

$$+ \left| S_{\perp} \right| \lambda_{\varepsilon} \left[\sqrt{1-\varepsilon^2} (\cos(\phi_h - \phi_S)) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} (\cos\phi_S) \right]_{LT}^{\cos\phi_S}$$

$$+ \sqrt{2\varepsilon(1-\varepsilon)} (\cos(2\phi_h - \phi_S)) F_{LT}^{\cos(2\phi_h - \phi_S)} \right]$$

Gent, February 5, 2018

A. Martin

measured in COMPASS on p and d

Gent, February 5, 2018

unpolarised SIDIS

relevance for TMDs:

- the cross-section depends on P_{hT} comes from:
 - intrinsic k_T of the quarks
 - p_{\perp} generated in the quark fragmentation

$$\langle P_{hT}^2
angle = \langle p_\perp^2
angle + z^2 \langle k_T^2
angle$$

- the azimuthal modulations in the unpolarized cross-sections comes from:
 - intrinsic k_T of the quarks
 - Boer-Mulders PDF

combined analysis should allow to disentangle the different effects phenomenological work is ongoing the Boer-Mulders PDF is still unknown

COMPASS has published results on

- azimuthal asymmetries and P_{hT} distributions from 2004 ⁶LiD data
- P_{hT} distributions from 2006 ⁶*LiD* data NEW and more results will come from 2016/17 data on LH_2

k_T

Ρ

protor

A. Martin

unpolarised SIDIS – P_{hT} distributions

A. Martin

some results from SIDIS off transversely polarised targets

TRANSVERSITY and TMD PDFs

THE 3-D STRUCTURE OF THE NUCLEON

Gent, February 5, 2018

TRANSVERSITY PDFs

Collins asymmetry

~ $h_1 \otimes H_1^{\perp}$

2004: first evidence for non-zero Collins asymmetry on p from HERMES

Gent, February 5, 2018

Collins asymmetry

~ $h_1 \otimes H_1^{\perp}$

2004: first evidence for non-zero Collins asymmetry on p from HERMES

Gent, February 5, 2018

A. Martin

transversity from SIDIS

M. Anselmino et al., Nucl. Phys. Proc. Suppl. 2009

fit to HERMES p, COMPASS d, Belle e+e- data

A. Martin

Transversity from Collins and di-hadron asymmetries

point by point extraction

one can use directly the COMPASS p and d asymmetries, and the Belle data to evaluate the analysing power (with some "reasonable" assumption) *advantage*: no Monte Carlo nor parametrisation is needed

open points: dihadron closed points: Collins

A.M., F. Bradamante, V. Barone PRD 2015

Transversity from Collins and di-hadron asymmetries

point by point extraction

Sivers function

Sivers asymmetry

$$A_{Siv} \sim \frac{\sum_q e_q^2 f_{1T}^{\perp q} \otimes D_{1q}}{\sum_q e_q^2 f_1^q \cdot D_{1q}}$$

Gent, February 5, 2018

Sivers function

COMPASS

Anselmino et al., JHEP04 2017

large uncertainties, in particular for the d-quark

Sivers asymmetry on proton

$$A_{Siv} \propto \frac{\sum_{q} e_{q}^{2} \cdot f_{1T}^{\perp q} \otimes D_{1q}^{h}}{\sum_{q} e_{q}^{2} \cdot f_{1}^{q} \cdot D_{1q}^{h}}$$

convolution

→ non negligible uncertainties in extractions \vec{k}_T !

a possible way out: use of the P_T weighted asymmetries

. . . .

obtained by weighting the spin dependent part of the cross-section

$$w = P_T / zM \qquad A_{Siv}^w = \frac{\sigma_S^w}{\sigma_U} = 2 \frac{\sum_q e_q^2 \cdot f_{1T}^{\perp(1)q} \cdot D_{1q}^h}{\sum_q e_q^2 \cdot f_1^q \cdot D_{1q}^h}$$

easier to extract $f_{1T}^{\perp(1)q}$
proposed a long time ago ...

D. Boer and P. J. Mulders, PRD 57 (1998) 5780

J. C. Collins et al. PRD 73 (2006) 014021

reconsidered recently

Zhong-Bo Kang et al., Phys.Rev. D87 (2013)

preliminary results by HERMES in 2005

u-dominance: $A_{Siv}^{w} \sim 2f_{1T}^{\perp(1)u}(x)/f_{1}^{u}(x)$

 A_{Siv}^{w} SPIN2016,arXiv:1702.00621 A_{Siv} PLB717 (2012) 383

Gent, February 5, 2018

other SIDIS results

- 2h TSAs
- interplay Collins asymmetry 2h asymmetry

*COMP*ASS

 $-h^+$

→h

0.1 - 0.003<x<0.008

 $0.05 = z > 0.1; p_{x} > 0.1$

0 ₽ĭ

Drell-Yan at COMPASS

DRELL-YAN PROCESS

COMPLEMENTARY APPROACH TO SIDIS

COMPASS is measuring for the FIRST TIME

the Drell-Yan process $\pi^- p \rightarrow \mu^+ \mu^- X$ with a transversely polarized proton target

aim: test the fundamental prediction che change of sign of the Sivers function from SIDIS to Drell-Yan

DRELL-YAN PROCESS

COMPLEMENTARY APPROACH TO SIDIS

COMPASS is measuring for the FIRST TIME

the Drell-Yan process $\pi^- p \rightarrow \mu^+ \mu^- X$ with a transversely polarized proton target

aim: test the fundamental prediction che change of sign of the Sivers function from SIDIS to Drell-Yan

Gent, February 5, 2018

Drell-Yan

190 GeV π^- beam, transversely polarised proton (NH₃) target

2015 run:

Drell-Yan

190 GeV π^- beam, transversely polarised proton target

Drell-Yan

190 GeV π^- beam, transversely polarised proton target

future

future

near future

proposal for

one year of run with 160 GeV muons to measure SIDIS off transversely polarised d the missing piece of information to complete our programme to EPS

with these data, the d asymmetries would have a statistical uncertainty

 $\sigma_d \cong 0.6 \, \sigma_p$ or smaller

an example Collins asymmetry

transversity from COMPASS p and d data

we will gain knowledge in a kinematic range that only COMPASS can cover, as long as EIC will not start

Gent, February 5, 2018

A. Martin

COMP_ASS

in 2012

SIDIS gave and is giving fundamental contributions to the study of the spin structure of the nucleon

helicity Sivers PDF, transversity, Collins FFs different from zero

to progress further

- comparison with different processes, e+e-, Drell-Yan, pp hard scattering
- more from SIDIS
 - precision measurements at new facilities with different energies JLab12, EIC
 - COMPASS can still do a lot in the "consolidation" phase from existing data

 Λ polarisation, weighted asymmetries, \ldots new ideas and tests and with new data

 LH_2 , the future d \uparrow run

still a long way, a lot to be learned, and a lot of fun!

