Ni it inef

GLUON DISTRIBUTIONS IN POLARIZED TARGETS OF SPIN ≤ 1

Sabrina Cotogno
(VU University and Nikhef, Amsterdam)

IN COLLABORATION WITH
D. BOER, T. VAN DAAL, P. J. MULDERS, A. SIGNORI, Y. ZHOU JHEP 16 (2016) 013 AND JHEP 17 (2017) 185

POLARIZED LIGHT-ION PHYSICS WITH EIC GHENT UNIVERSITY, 5-9 FEBRUARY 2018

Perturbative VS Non perturbative OCD

- Two distinct energy scales: the hadronic scale (order Λ_{ecD}) and the hard scale Q of the process.
- For several processes, factorization has been proven.

The hadron structure in high energy processes: examples

Proton-proton pp collision nucleus

Lepton-proton scattering nucleus

NONPERTURBATIVE PHYSICS:

 CORRELATION FUNCTIONS
Quantum field theory language

QCD paradigm: quarks and gluons are confined inside hadrons (no free-fields)

$$
\begin{aligned}
\sum_{s} u_{i}^{s}(k) \bar{u}_{j}^{s}(k) & \Rightarrow \Phi_{i j}(k ; P) \\
& =\sum_{X} \int \frac{d^{3} P_{X}}{(2 \pi)^{3} 2 E_{X}}\langle P| \bar{\psi}_{j}(0)|X\rangle\langle X| \psi_{i}(0)|P\rangle \delta^{4}\left(k+P-P_{X}\right) \\
& =\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle
\end{aligned}
$$

Transverse momentum dependent (light-front) correlation function for quarks

$\Phi_{i j}^{[U]}\left(x, \boldsymbol{k}_{T} ; n, P, S\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle\right|_{\xi \cdot n=0}$
Nonlocal operator: color-gauge invariance?

Wilson lines: connect the two space-time points and restore gauge invariance

$$
U(0, \xi)=\mathrm{P} \exp \left(-i g \int_{0}^{\xi} d s^{u} A_{u}\right)
$$

[Brodsky, Hwang,Schmidt, 2002;
Belitsky, Ji, Yuan, 2003; Boer, Mulders,Pijlman, 2003]

Type of path in high energy processes: staple-like (future- or past-pointing) ξ_{T}
Process dependence!

Process dependence of the TMDs

The path connecting the end points depends on the color flow
\longrightarrow process dependence
Famous sign-change of the Sivers and the Boer-Mulders functions

$$
\begin{array}{ccc}
f_{1 T}^{\perp[+]}\left(x, \boldsymbol{k}_{T}^{2}\right)=-f_{1 T}^{\perp[-]}\left(x, \boldsymbol{k}_{T}^{2}\right) & h_{1}^{\perp[+]}\left(x, \boldsymbol{k}_{T}^{2}\right)=-h_{1}^{\perp[-]}\left(x, \boldsymbol{k}_{T}^{2}\right) \\
\text { SIDIS } & \text { Drell-Yan } & \text { SIDIS }
\end{array}
$$

[Collins, 2002]
Universality of PDFs

PDFs are universal!

Transverse momentum dependent (light-front)

 correlation function for gluons$$
\begin{aligned}
\sum_{\lambda} \epsilon_{\lambda}^{* \mu}(k) \epsilon_{\lambda}^{\nu}(k) & \Rightarrow \Gamma^{\mu \nu}(k ; n, P) \\
& =\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i k \cdot \xi}\langle P| F^{n \mu}(0) F^{n \nu}(\xi)|P\rangle
\end{aligned}
$$

$\Gamma^{\mu \nu\left[U, U^{\prime}\right]}\left(x, \boldsymbol{k}_{T} ; n, P, S\right)=\left.\int \frac{d \xi \cdot P d^{2} \boldsymbol{\xi}_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle P, S| F^{n \mu}(0) U_{[0, \xi]} F^{n \nu}(\xi) U_{[\xi, 0]}^{\prime}|P, S\rangle\right|_{\xi \cdot n=0}$

Gauge invariant thanks to the Wilson lines (not unique)
Parametrized in terms of gluon TMDs

Transverse momentum dependent (light-front) correlation function for gluons

[Dominguez,Marquet,Xiao,Yuan,2011]

Process dependence!

process dependence, non universality and more:
Leading twist contribution: μ and v transverse
Gauge link structures:
staple-like
$\Gamma^{\left[U, U^{\prime}\right] i j}\left(x, \boldsymbol{k}_{T} ; n, P, S\right)=\left.\int \frac{d \xi \cdot P d^{2} \boldsymbol{\xi}_{T}}{(2 \pi)^{3}}\langle P, S| F^{n i}(0) U_{[0, \xi]} F^{n j}(\xi) U_{[\xi, 0]}^{\prime}|P, S\rangle\right|_{\xi \cdot n=0}$
[Boer, Mulders,Pijlman, 2003;Bomhof, Mulders, Pijlman, 2006]
[Bomhof, Mulders, 2006,Buffing, Mukherjee, Mulders,2012]

Relevant regions for gluon distributions

GLUON PDFs

* Large-x: suppressed
* Small-x: dominant

TARGET SPIN

Polarized Hadrons

- Parent hadron momentum P;
- Parton momentum $k^{\mu}=x P^{\mu}+k_{T}^{\mu}+\left(k \cdot P-x M^{2}\right) n^{\mu}$;
- n, light-like vector satisfying $P \cdot n=1$;

Vector polarization:

- Construction of the space-like spin vector satisfying $P \cdot S=0$;

Tensor polarization (relevant for spin-I and higher)

- Construction of the symmetric traceless spin tensor satisfying $P_{\mu} T^{\mu \nu}=0$;

$$
\begin{aligned}
T^{\mu \nu}=\frac{1}{2}[& \frac{2}{3} S_{L L} g_{T}^{\mu \nu}+\frac{4}{3} S_{L L} \frac{P^{\mu} P^{\nu}}{M^{2}}+\frac{S_{L T}^{\{\mu} P^{\nu\}}}{M}+S_{T T}^{\mu \nu} \\
& \left.-\frac{4}{3} S_{L L} P^{\{\mu} n^{\nu\}}-M S_{L T}^{\{\mu} n^{\nu\}}+\frac{4}{3} M^{2} S_{L L} n^{\mu} n^{\nu} \frac{P^{\mu} P^{\nu}}{M^{2}}\right]
\end{aligned}
$$

- Five more spin components (representing combinations of probability of finding the system in a certain spin state \rightarrow less simple to visualize)
[Bacchetta,PhD Thesis,2002]
[Leader, "Spin in Particle Physics", 200I]

Gluon TMDs in spin-1/2 target

		GLUON POLARIZATION		
		Unpolarized	Circular	Linear
z	U	f_{1}		h_{1}^{\perp}
占	L		g_{1}	$h_{1 L}^{\perp}$
$\underset{\sim}{\text { ¢ }}$	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Spin 0 and 1/2
[Mulders,Rodrigues,2001] [Meissner, Metz and Goeke, 2007]

- The functions have dependence:

$$
f^{\left[U, U^{\prime}\right]}\left(x, \boldsymbol{k}_{T}^{2}\right)
$$

- Bold face: collinear PDFs
- Red Boxes: T-odd

- The gluon Boer-Mulders is T-even
- There is no gluon analogue of the transversity PDF etc...

Gluon TMDs in spin-1/2 target

Spin 0 and 1/2 [Mulders,Rodrigues,2001] [Meissner, Metz and Goeke, 2007]

$$
U U: \quad g_{T}^{i j} f_{1}
$$

- The functions have dependence:

$$
f^{\left[U, U^{\prime}\right]}\left(x, \boldsymbol{k}_{T}^{2}\right)
$$

- Bold face: collinear PDFs
- Red Boxes: T-odd
- The gluon Boer-Mulders is T-even

$$
\begin{aligned}
L L & : \frac{i \epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} S_{L} h_{1 L}^{\perp} \\
T U & : \frac{g_{T}^{i j} \epsilon^{k \cdot S_{T}}}{M} f_{1 T}^{\perp} \\
T C & : \frac{i \epsilon_{T}^{i j} k_{T} \cdot S_{T}}{M} g_{1 T}
\end{aligned}
$$

- There is no gluon analogue of the transversity PDF
etc...

Gluon TMDs in spin-1 target

Gluon PDFs in spin-1 target

		GLUON POLARIZATION		
		Unpolarized	Circular	Linear
	U	f_{1}		
	L		g_{1}	
	T			
	LL	$f_{1 L}$		
	LT			
	TT			$h_{1 T T}(x)$

NUCLEAR GLUONOMETRY *

R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology. Cambridge, MA 02139, USA

Received 24 March 1989

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized targets (such as nuclei) with spin $\geqslant 1$. The structure function measures a gluon distribution in the target and vanishes for a bound state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target.

[Detmold,Shanahan,2016]
$\Delta(x)$ Double helicity flip structure function

Probability to find linearly polarized gluons $h_{1 T T}(x)$ inside a transversely tensor polarized target (misleadingly called "gluon transversity")

Lattice calculations
[NPLQCD collaboration,2017]
$h_{1 T T}(x) \quad$ Clear signal of a non-vanishing first Mellin moment
$f_{1 L L}(x) \quad$ With the current precision not resolvable from zero

POSITIVITY BOUNDS

Matrix representation of the correlator

Single out hadron spin:

$$
\rho=\frac{1}{3}\left(I+\frac{3}{2} S^{i} \Sigma^{i}+3 T^{i j} \Sigma^{i j}\right) .
$$

$$
\Gamma^{i j}=\sum_{s s^{\prime}} \rho_{s s^{\prime}} G_{s s^{\prime}}^{i j}
$$

Gamma: matrix in the gluon polarization space G: matrix in gluon \otimes target spin space
Circular polarization bases $| \pm\rangle=\mp \frac{1}{\sqrt{2}}(|x\rangle \pm i|y\rangle)$;
Quarks:
$\left.\begin{array}{l}\text { [Bacchetta,Boglione,Henneman, } G^{i j}=\left(\begin{array}{ll}G+7 \\ \text { Mulders,2000] }\end{array}\right. \\ G-+ \\ G--\end{array}\right)$
[Bacchetta, Mulders200I]
Gluons:
[Mulders,Rodrigues,2001]
[Meissner, Metz and Goeke,2007]

Positivity bounds on gluon TMDs

6×6 matrix in gluon \otimes target spin space

$$
\frac{\boldsymbol{k}_{T}^{4}}{2 M^{4}}\left|h_{1 T T}^{\perp \frac{1}{2}}\right| \leq f_{1}+\frac{f_{1 L L}}{2}-g_{1}
$$

$$
\frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}}\left|h_{1}^{\perp}-h_{1 L L}^{\perp}\right| \leq f_{1}-f_{1 L L}
$$

Bounds can be sharpened!

$$
\frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}}\left(h_{1}^{2}+4 h_{1 L T}^{2}\right) \leq\left(f_{1}-f_{1 L L}\right)\left(f_{1}+\frac{f_{1 L L}}{2}+g_{1}\right)
$$

... 6 more inequalities from the remaining 2×2 principal minors

Bounds on the gluon PDFs in spin-I targets

Only few gluon functions survive upon integration over transverse momenta:
$G_{s s^{\prime}}^{i j}(x)=$

$$
\left(\begin{array}{ccc:ccc}
f_{1}+\frac{f_{1 L L}}{2}-g_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & f_{1}-f_{1 L L} & 0 & 0 & 0 & 0 \\
0 & 0 & f_{1}+\frac{f_{1 L L}}{2}+g_{1} & -2 h_{1 T T} & 0 & 0 \\
0 & 0 & -2 h_{1 T T} & f_{1}+\frac{f_{1 L L}}{2}+g_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & f_{1}-f_{1 L L} & 0 \\
0 & 0 & 0 & 0 & 0 & f_{1}+\frac{f_{1 L L}}{2}-g_{1}
\end{array}\right)
$$

$$
f_{1 L L} \leq f_{1},
$$

Bounds come from the diagonalization of the full matrix

$$
\left|g_{1}\right| \leq f_{1}+\frac{f_{1 L L}}{2},
$$

$$
\left|h_{1 T T}\right| \leq \frac{1}{2}\left(f_{1}+\frac{f_{1 L L}}{2}+g_{1}\right)
$$

Lattice calculations on the first moment of this bound
[Detmold,Shanahan,2016]

REMARKS ON POSITIVITY BOUNDS

- Model-independent inequalities;
- Rigorous test of QCD;
- Allow for an estimate of the magnitude of the functions.

- Process dependence:

The matrix G is positive semidefinite only for operators in the form $\mathrm{O}^{\dagger}(0) \mathrm{O}(\xi)$. The simplest gauge link structures for which this holds are $[+,+],[-,-],[+,-]$, and $[-,+]$;

- QCD evolution effects:

Multi-scale evolution: no studies have been performed on the (in)stability of the TMD bounds after evolution.

Collinear bounds are stable under DGLAP equations

EXPERIMENTAL

 RELEVANCE
Experimental relevance at present facilities:

Spin-I program at JLab:

- Proposals on tensor polarized experiments using nitrogen targets: extraction of the gluon structure function Δ (encouraged for full submission at JLab by PAC 44)

In the future...

Possibilities at LHC:

- COMPASS and AFTER@LHC (it allows, in principle, for polarized targets)

Electron Ion Collider EIC

- Would allow to thoroughly study many gluon observables.

CONCLUSIONS

Conclusions

- Gluon TMDs are fundamental tools to understand hadron internal structure (3D distribution of momentum);
- Their knowledge would reveal a lot about the internal dynamics of gluons in hadrons, which is at present almost unknown;
- TMDs allows one to study fundamental problems such as gauge invariance and process dependence.
- Gluon distributions (PDFs and TMDs) are dominant is in the small-x limit: it is important that future facilities access this kinematical region.
- When hadron polarization is included, the additional degrees of freedom could open up a wide range of new phenomena (signs of different types of partonhadron correlations);
- Positivity bounds can be used as model-independent tools to estimate magnitude of mainly unknown functions.
- "Exotic" or non-nucleonic gluonic effects within nuclei would also allow to study more thoroughly the binding between the constituents;

Thank you!

BACK UP SLIDES

	Unpolarized	Longitudinal	Transverse
U	$\boldsymbol{f}_{\mathbf{1}}$		h_{1}^{\perp}
L		$\boldsymbol{g}_{\mathbf{1}}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$\boldsymbol{h}_{\mathbf{1}}, h_{1 T}^{\perp}$
LL	$\boldsymbol{f}_{\mathbf{1 L \boldsymbol { L }}}$		$h_{1 L L}^{\perp}$
LT	$f_{1 L T}$	$g_{1 L T}$	$h_{1 L T}, h_{1 L T}^{\perp}$
TT	$f_{1 T T}$	$g_{1 T T}$	$h_{1 T T}, h_{1 T T}^{\perp}$

Functions depend on: $f^{q[U]}\left(x, \boldsymbol{k}_{T}^{2}\right)$

Bold-face: Collinear

Red Box: T-odd

Spin-orbit correlations: Sivers function Boer-Mulders function

$$
\boldsymbol{s} \cdot\left(\boldsymbol{P} \times \boldsymbol{k}_{T}\right) \quad \boldsymbol{s} \cdot\left(\boldsymbol{P} \times \boldsymbol{k}_{T}\right)
$$

- $h_{1 L T}$ is T-odd and survives $\mathrm{k}_{\text {T-integration }}$
$-f_{14}$ enters in the spin-1 structure function ${ }_{30} b_{1}$

Parametrization of the gluon correlator:

$$
\begin{aligned}
& \Gamma^{i j[U]}\left(x, k_{T}\right)=\frac{x}{2}\left\{-g_{T}^{i j} f_{1}^{[U]}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} h_{1}^{\perp}{ }^{[U]}\left(x, k_{T}^{2}\right)\right\} \\
& \Gamma_{L}^{i j[U]}\left(x, k_{T}\right)=\frac{x}{2}\left\{i \epsilon_{T}^{i j} S_{L} g_{1}^{[U]}\left(x, k_{T}^{2}\right)+\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} S_{L} h_{1 L}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\} \\
& \Gamma_{T}^{i j[U]}\left(x, k_{T}\right)=\frac{x}{2}\left\{\frac{g_{T}^{i j} \epsilon_{T}^{k S_{T}}}{M} f_{1 T}^{\perp[U]}\left(x, k_{T}^{2}\right)-\frac{i \epsilon_{T}^{i j} k_{T} \cdot S_{T}}{M} g_{1 T}^{[U]}\left(x, k_{T}^{2}\right)\right. \\
& \left.-\frac{\epsilon_{T}^{k\{i} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} h_{1}\left(x, k_{T}^{2}\right)-\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha S_{T}}}{2 M^{3}} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right)\right\} \\
& \Gamma_{L L}^{i j[U]]}\left(x, k_{T}\right)=\frac{x}{2}\left\{-g_{T}^{i j} S_{L L} f_{1 L L}^{[U]}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} S_{L L} h_{1 L L}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\} \\
& \Gamma_{L T}^{i j[U]}\left(x, k_{T}\right)=\frac{x}{2}\left\{-g_{T}^{i j} \frac{k_{T} \cdot S_{L T}}{M} f_{1 L T}^{[U]}\left(x, k_{T}^{2}\right)+i \epsilon_{T}^{i j} \frac{\epsilon_{T}^{S_{L T} k}}{M} g_{1 L T}^{[U]}\left(x, k_{T}^{2}\right)\right. \\
& \left.+\frac{S_{L T}^{\{i} k_{T}^{j\}}}{M} h_{1 L T}^{[U]}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{i j \alpha} S_{L T \alpha}}{M^{3}} h_{1 L T}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\} \\
& \Gamma_{T T}^{i j[U]}\left(x, k_{T}\right)=\frac{x}{2}\left\{-g_{T}^{i j} \frac{k_{T}^{\alpha \beta} S_{T T \alpha \beta}}{M^{2}} f_{1 T T}^{[U]}\left(x, k_{T}^{2}\right)+i \epsilon_{T}^{i j} \frac{\epsilon_{T \gamma}^{\beta} k_{T}^{\gamma \alpha} S_{T T \alpha \beta}}{M^{2}} g_{1 T T}^{[U]}\left(x, k_{T}^{2}\right)\right. \\
& +S_{T T}^{i j} h_{1 T T}^{[U]}\left(x, k_{T}^{2}\right)+\frac{S_{T T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} h_{1 T T}^{\perp[U]}\left(x, k_{T}^{2}\right) \\
& \left.+\frac{k_{T}^{i j \alpha \beta} S_{T T \alpha \beta}}{M^{4}} h_{1 T T}^{\perp \perp[U]}\left(x, k_{T}^{2}\right)\right\}
\end{aligned}
$$

Density matrix

$$
\begin{gathered}
\rho=\frac{1}{3}\left(I+\frac{3}{2} S^{i} \Sigma^{i}+3 T^{i j} \Sigma^{i j}\right) \\
\rho=\left(\begin{array}{ccc}
\frac{S_{L}}{2}+\frac{S_{L L}}{3}+\frac{1}{3} & \frac{S_{L T x}-i S_{L T y}}{2 \sqrt{2}}+\frac{S_{T x}-i S_{T y}}{2 \sqrt{2}} & \frac{1}{2}\left(S_{T T x x}-i S_{T T x y}\right) \\
\frac{S_{L T x}+i S_{L T y}}{2 \sqrt{2}}+\frac{S_{T x}+i S_{T y}}{2 \sqrt{2}} & \frac{1}{3}-\frac{2 S L L}{3} & \frac{S_{L T x}+i S_{L T y}}{2 \sqrt{2}}+\frac{S_{T x}-i S_{T y}}{2 \sqrt{2}} \\
\frac{1}{2}\left(S_{T T x x}+i S_{T T x y}\right) & \frac{-S_{L T x}-i S_{L T y}}{2 \sqrt{2}}+\frac{S_{T x}+i S_{T y}}{2 \sqrt{2}} & -\frac{S_{L}}{2}+\frac{S_{L L}}{3}+\frac{1}{3}
\end{array}\right)
\end{gathered}
$$

Positivity bounds: construction of the matrix

$$
\begin{aligned}
& G=\frac{x}{2}\left(\begin{array}{cc}
A & B \\
B^{\dagger} & C
\end{array}\right) \quad \mathrm{C} \text { is the transformed of } \mathrm{A} \text { under Parity }
\end{aligned}
$$

