Forward detection with eRHIC

J.H. Lee BNL

Polarized Light Ion Physics with EIC Feb. 7 2018

Outline

- EIC physics with (far-)forward tagging
- forward proton and spectator nucleon measurements in ep and eA: What's involved
- Interaction Region integration at eRHIC

EIC physics and measurements

semi-inclusive **DIS**

detect the scattered lepton and final state (jets, hadrons, correlations in final state) ~~~

exclusive processes

all particles in the event identified

inclusive DIS measure scattered electron with high precision

eRHIC main detector

-4<η<4:Tracking (TPC+GEM+MAPS)
& E/M Calorimetry (hermetic coverage)

Hadron PID:

-I<η<I: proximity focusing RICH + TPC: dE/dx I<η<3: Dual-radiator RICH -I>η>-3: Aerogel RICH

Lepton PID:

-3 <η< 3: e/p I<|η|<3: in addition HCal response & γ suppression via tracking |η|>3: ECal+Hcal response & γ suppression via tracking

Physics with forward tagging

- Defining exclusive reactions in ep/eA:
 - •ep: reconstruction of all particles in (diffractive) event
 - including scattered proton with wide kinematics coverage
 - •eA: identify with rapidity gap. need wide rapidity coverage [HCal for I<η<4.5]
- Identifying coherence of nucleus in diffractive eA:
 - ~100% acceptance for neutrons from nucleus break-up
- Sampling target in e+3He,d with spectator nucleons
- Accessing event geometry in semi-inclusive eA with evaporated nucleons

Forward protons in diffraction

 Scattered with ~O(mrad): Need a detector close to the beam - Roman Pot to detect

- Large angle (high-t) acceptance mainly limited by magnet aperture [t~p²~p²θ²]
- Small angle (low-t) acceptance limited by beam envelop (~<10σ)
- Reconstruction resolution limited by
 - beam angular divergence (~O(100µrad)), emittance
 - uncertainties in vertex reconstruction (x,y,z), beam offset, crossing, detector alignment, resolution
 - at RHIC
 - $\delta p/p \sim 0.005$
 - $\delta t/t \sim 0.03/\sqrt{t}$
 - in addition, effect of crab crossing (expected to be << beam divergence) need to be simulated

Roman Pots at STAR / RHIC

Impact of reduced proton acceptance

Forward neutrons from nucleus break-up

Diffractive physics in eA

- → Measure spatial gluon distribution in nuclei
- → Reaction: $e + Au \rightarrow e' + Au' + J/\psi$, ϕ , ρ

Physics requires forward scattered nucleus needs to stay intact

Veto incoherent diffraction with break-up (evaporated) neutron detection

Requirements

- Need at +/- 4 mrad beam element free region before the zero degree calorimeter for 100% acceptance to detect the breakup neutrons at 100 GeV
- Neutrons are also crucial to reconstruct collisions geometry
 - Precision neutron energy with good reconstruction resolution with complete coverage

Spectator protons in ³He, d

- Crucial for identifying processes with a neutron "target" [e(p)+n] in light ions - d, ³He
- Spectator neutron (<~4 mrad) can be identified by a calorimeter at beam rapidity (zero degree calorimeter)
- Tagging spectator protons from d, ³He
 - Relying on separation from magnetic rigidity (B_r) changes
 ³He: p = 3/2:1
 - Momentum spread mainly due to Fermi motion + Lorentz boost

Spectator proton with Roman Pots

- Unambiguously identified e+p event vs e+n event in e+³He 1p +1n vs 2p = 30% vs 22% (DPMJetIII)
- Common detector be utilized for tagging forward proton from diffraction and the spectator protons from ³He?
- measurement can be done with RPs + forward detector + ZDC
- Shown example distribution at fixed locations at IR
- Detectors can be configured to optimize the acceptance

Controlling collision geometry in e-A?

collision geometry selected by forward neutrons

EPJA 50 189 (2014) L.Zheng, JHL, E. Aschenauer

- Forward neutrons dominantly correlated with collision geometry
- Zero Degree Calorimeter ($\theta < \sim 3$ mrad) can be used to count the forward neutrons
- More detailed study including unclear shadowing effect in progress

Interaction Region Requirements

- Maximized Luminosity, Minimized background
- Buildable components
- Fit in experimental hall and tunnels
- Acceptances and detectors for physics
 - Luminosity monitor & e-tagger
 - +/- 4.5 m for Central detector
 - Widest possible angular coverage maximizing kinematic reach for forward proton
 - large and clear zero degree neutron acceptance
 - accommodate spectator nucleons with different rigidity

Luminosity vs. energy: eRHIC

- Low divergence (High Acceptance) and High Luminosity (High Divergence) running mode for optimal physics running with physics program with forward protons
 - beam divergence 50 µrad 300 µrad

- Integrating requirements for hadron beam direction
 - Forward Detector (5 20 mrad)
 - Neutron detector ZDC (0 to 5 mrad)
 - Roman Pots (sensitive I to 5 mrad)
 - Possible "Spectator tagger"
- electron and hadron polarimetry at separate IR @ IP-12

Forward Detector - coverage (to be finalized)

- Extending forward proton acceptance (5 20 mrad)
 - p_T-acceptance to ~I GeV at proton beam energy 50 GeV
 - Design optimization in progress

Summary

- Forward tagging crucial part of EIC physics
- Stringent requirement for forward detectors are integrated in the eRHIC IR design
- The IR with the forward detector system can cover physics needs for wide ranges of nucleon energies in ep and eA (50 - 275 GeV)
- More detailed study with further optimization underway

back-up

x-Q² range accessible at EIC

x-Q² range for DVCS at EIC

