

## Outline

- EIC physics with (far-)forward tagging
- forward proton and spectator nucleon measurements in ep and eA: What's involved
- Interaction Region integration at eRHIC


## EIC physics and measurements



## eRHIC main detector

$-4<\eta<4$ :Tracking (TPC+GEM+MAPS) \& E/M Calorimetry (hermetic coverage)

## Hadron PID:

$-I<\eta<1$ : proximity focusing
RICH + TPC: dE/dx
$1<\eta<3$ : Dual-radiator RICH
-I>ף>-3:Aerogel RICH
Lepton PID:
$-3<\eta<3$ e/p
$\mathrm{I}<|\mathrm{n}|<3$ : in addition HCal response
\& $\gamma$ suppression via tracking
$|\eta|>3$ : ECal+Hcal response \&

$\gamma$ suppression via tracking

## Physics with forward tagging

- Defining exclusive reactions in ep/eA:
- ep: reconstruction of all particles in (diffractive) event including scattered proton with wide kinematics coverage
-eA: identify with rapidity gap. need wide rapidity coverage [ HCal for $\mathrm{I}<\eta<4.5$ ]
- Identifying coherence of nucleus in diffractive eA:
- ~ $100 \%$ acceptance for neutrons from nucleus break-up

- Sampling target in $e^{+3} \mathrm{He}, \mathrm{d}$ with spectator nucleons
- Accessing event geometry in semi-inclusive eA with evaporated nucleons



## Forward protons in diffraction




Roman Pots at STAR / RHIC

- Scattered with ~O(mrad): Need a detector close to the beam - Roman Pot to detect
- Large angle (high-t) acceptance mainly limited by magnet aperture $\left[t \sim p T^{2} \sim p^{2} \theta^{2}\right]$
- Small angle (low-t) acceptance limited by beam envelop ( $\sim 10 \sigma$ )
- Reconstruction resolution limited by
- beam angular divergence ( $\sim$ ( $100 \mu \mathrm{rad})$ ), emittance
- uncertainties in vertex reconstruction ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ), beam offset, crossing, detector alignment, resolution
- at RHIC
- $\delta p / p \sim 0.005$
- $\delta \mathrm{t} / \mathrm{t} \sim 0.03 / \sqrt{\mathrm{t}}$
- in addition, effect of crab crossing (expected to be << beam divergence) need to be simulated


## Impact of reduced proton acceptance

Measurement




Physics observable (cross-section vs impact parameter)




## Requirement:

$\int \mathrm{L}_{\text {int }}=10 \mathrm{fb}^{-1}$
$0.18<\mathrm{P}_{\mathrm{t}}(\mathrm{GeV})<1.3$
$0.03<|t|\left(\mathrm{GeV}^{2}\right)<1.6$
$\int L_{\text {int }}=10 \mathrm{fb}^{-1}$
$0.44<\mathrm{P}_{\mathrm{T}}(\mathrm{GeV})<1.3$
$\int \mathrm{L}_{\mathrm{int}}=10 \mathrm{fb}^{-1}$
$0.18<\mathrm{P}_{\mathrm{T}}(\mathrm{GeV})<0.8$

## Forward neutrons from nucleus break-up

Diffractive physics in eA
$\rightarrow$ Measure spatial gluon distribution in nuclei
$\rightarrow$ Reaction: $\mathrm{e}+\mathrm{Au} \rightarrow \mathrm{e}^{\prime}+\mathrm{Au}^{\prime}+\mathrm{J} / \psi, \phi, \rho$


Physics requires forward scattered nucleus needs to stay intact
$\rightarrow$ Veto incoherent diffraction with break-up (evaporated) neutron detection


## Requirements

- Need at $+/-4$ mrad beam element free region before the zero degree calorimeter for $100 \%$ acceptance to detect the breakup neutrons at 100 GeV
- Neutrons are also crucial to reconstruct collisions geometry $\rightarrow$ precision neutron energy with good reconstruction resolution with complete coverage


## Spectator protons in ${ }^{3} \mathrm{He}, \mathrm{d}$



- Crucial for identifying processes with a neutron "target" $[e(p)+n]$ in light ions - d, ${ }^{3} \mathrm{He}$
- Spectator neutron (<~4 mrad) can be identified by a calorimeter at beam rapidity (zero degree calorimeter)
- Tagging spectator protons from d, ${ }^{3} \mathrm{He}$
- Relying on separation from magnetic rigidity $\left(B_{r}\right)$ changes ${ }^{3} \mathrm{He}: \mathrm{p}=3 / 2: 1$
- Momentum spread mainly due to Fermi motion + Lorentz boost


## Spectator proton with Roman Pots




- Unambiguously identified $e^{+} p$ event vs e+n event in $\mathrm{e}+{ }^{3} \mathrm{He}$ $1 p+1 n$ vs $2 p=30 \%$ vs $22 \%$ (DPMJetlII)
- Common detector be utilized for tagging forward proton from diffraction and the spectator protons from ${ }^{3} \mathrm{He}$ ?
- measurement can be done with RPs + forward detector + ZDC
- Shown example distribution at fixed locations at IR
- Detectors can be configured to optimize the acceptance


## Controlling collision geometry in e-A?


d : in medium traveling length
R: distance from involved nucleon to the center of nucleus
b : impact parameter
$N_{n}$ : number of neutrons in forward region




## collision geometry selected by forward neutrons




EPJA 50 I89 (20|4) L.Zheng, JHL, E. Aschenauer

- Forward neutrons dominantly correlated with collision geometry
- Zero Degree Calorimeter ( $\theta<\sim 3 \mathrm{mrad}$ ) can be used to count the forward neutrons
- More detailed study including unclear shadowing effect in progress


## Interaction Region Requirements

- Maximized Luminosity, Minimized background
- Buildable components
- Fit in experimental hall and tunnels
- Acceptances and detectors for physics
- Luminosity monitor \& e-tagger
- $\quad$ +/ 4.5 m for Central detector
- Widest possible angular coverage maximizing kinematic reach for forward proton
- large and clear zero degree neutron acceptance
- accommodate spectator nucleons with different rigidity


## Luminosity vs. energy: eRHIC



- Low divergence (High Acceptance) and High Luminosity (High Divergence) running mode for optimal physics running with physics program with forward protons
- beam divergence $50 \mu \mathrm{rad}-300 \mu \mathrm{rad}$

- Integrating requirements for hadron beam direction
- Forward Detector (5-20 mrad)
- Neutron detector ZDC ( 0 to 5 mrad )
- Roman Pots (sensitive I to 5 mrad)
- Possible "Spectator tagger"
- electron and hadron polarimetry at separate IR @ IP-I2


## Forward Detector - coverage (to be finalized)



- Extending forward proton acceptance (5-20 mrad)
- рт-acceptance to $\sim \mathrm{I} \mathrm{GeV}$ at proton beam energy 50 GeV
- Design optimization in progress


## Summary

- Forward tagging crucial part of EIC physics
- Stringent requirement for forward detectors are integrated in the eRHIC IR design
- The IR with the forward detector system can cover physics needs for wide ranges of nucleon energies in ep and eA (50-275 GeV)
- More detailed study with further optimization underway


## back-up

## $x-Q^{2}$ range accessible at EIC


polarized e-p

e-A

## $x-Q^{2}$ range for DVCS at EIC



