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Nuclear shadowing in DIS at small x  
• Nuclear shadowing is a high-energy coherent nuclear effect suppressing the nuclear 
cross section (structure functions) σA <A σN at small x < 0.01.
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1 Introduction

1.1 Nuclear shadowing in lepton–nucleus DIS

Nuclear shadowing is a high-energy nuclear effect consisting in the observation that the scattering cross
section of an energetic probe (hadron, real or virtual photon) on a nucleus is smaller than the sum of the
scattering cross sections of the probe on individual nucleons of the nucleus target [1, 2, 3].

An example of nuclear modifications of the total lepton–nucleus deep inelastic scattering (DIS) cross
section in the fixed-target kinematics is shown in Fig. 1: the suppression of σA/σD for x < 0.1 is nuclear
shadowing. (The ratio is normalized so that σA/σD = 1 in the absence of all nuclear effects.)
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Figure 1: The pattern of nuclear modifications of the σA/σD cross section ratio as a function of Bjorken
x for 56Fe and 64Cu.

The nuclear shadowing suppression factor of R(x) = σA/σD increases with an decrease of Bjorken x
(energy) and with an increase of A. As to the Q2 dependence, at first R decreases rapidly as one increases
Q2 from the Q2 = 0 photoproduction limit to Q2 ∼ few GeV2, but then R decreases logarithmically with
an increase of Q2 due to QCD (DGLAP) evolution.

For heavy nuclei, the nuclear shadowing suppression can be as large as ≈ 20% at x = 5 × 10−3 and
Q2 of the order of few GeV2. For deuterium, the shadowing suppression of F2D(x,Q2)/F2p(x,Q2) is a
1− 2% effect for x > 5× 10−3 and Q2 > 1.7 GeV2, see [3] for references.

1.2 Nuclear shadowing in nuclear parton distributions

By virtue of the QCD collinear factorization theorem, nuclear modifications of R(x) and of other nuclear
observables can be translated into modifications of nuclear parton distributions (PDFs) [4, 5, 6, 7, 8]
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Fig. 3.5. The structure function ratio F!
!
/F"

!
. Data from E665 [92] and NMC [93].

the order of a few percent. For carbon and calcium it amounts to typically 3% [72]. The most
precise measurement of this enhancement has been obtained for F"#

!
/F#

!
shown in Fig. 3.4.

Within the accuracy of the data no signi"cant Q!-dependence of this e!ect has been found in this
region.

! Region of `EMC ewecta: The region of intermediate 0.2(x(0.8 has been explored extensively
at CERN and SLAC. In the range 2 GeV!(Q!(15GeV!, data were taken by the E139
collaboration [73] for a large sample of nuclear targets between deuterium and gold. The
measured structure function ratios decrease with rising x and have a minimum at x+0.6. The
magnitude of this depletion grows approximately logarithmically with the nuclear mass number.
The observed e!ect agrees well with data for the ratios of iron and nitrogen to deuterium
structure functions from BCDMS taken at large Q! values, 14GeV!(Q!(200 GeV! [74,94].
These data imply that a strong Q!-dependence of the structure function ratios is excluded.

! Fermi motion region: At x'0.8 the structure function ratios rise above unity [73], but experi-
mental information is rather scarce. The free nucleon structure function F$

!
is known to drop as

(1!x)% when approaching its kinematic limit at x"1. Clearly, even minor nuclear e!ects
appear arti"cially enhanced in this kinematic range when presented in the form of the ratio
F&

!
/F$

!
.

! The region x'1: Data at large Bjorken x and large momentum transfer, 0.7(x(1.3 and
50GeV!( Q!(200GeV!, have been taken for carbon and iron by the BCDMS [95] and
CCFR [96] collaborations, respectively. The results disagree with model calculations at x&1
which account for Fermi motion e!ects only. For Q!(10GeV! data have been taken at SLAC
for various nuclei [97}101]. Both quasielastic scattering from nucleons as well as inelastic
scattering turns out to be important here.

3.4. Moments of nuclear structure functions

Given data for the ratio F&
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!
, the
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26 G. Piller, W. Weise / Physics Reports 330 (2000) 1}94For heavy nuclei, shadowing is as 
large as 20% for Q2>1 GeV2. For deuterium, shadowing is 1-2% effect.
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Arneodo, Phys. Rept. 240 (1994) 301; Piller, Weise, Phys. Rept. 330 (2000) 1

• Collinear factorization and global QCD fits translate nuclear modifications into nuclear 
parton distributions (nPDFs): (nDS) de Florian, Sassot, PRD 69 (2004) 074028; (HKN07) Hirai, Kumano, 
Nagai, PRC 76 (2007) 065207; (EPS09) Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065; (nCTEQ15) PRD93 
(2016) no.8, 085037; (EPPS16) Eskola, Paakkinen, Paukkunen, Salgado  EPJ C77 (2017) 163  

• Open question: magnitude of shadowing for different parton flavors for x < 0.005 → 
we need to better understand dynamics of shadowing.



Nuclear shadowing in DIS on D at small x  
• In global QCD of nPDFs, some groups ignore nuclear effects in deuterium (EPS09, 
DSSZ, EPPS16), some include them (HKN07, nCTEQ15). 

• Even 1-2% shadowing matters for the extraction of F2p-F2n from deuterium data since 
F2p-F2n is small at small x:  
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Figure 5: Unitarity cuts of the imaginary part of the double scattering contribution to the forward γ∗D
scattering amplitude: (a) diffractive cut, (b) and (c) single multiplicity cuts, (d) double multiplicity cut.
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Figure 6: Leading twist nuclear shadowing for the deuterium structure function F2D(x,Q2).

function F2D(x,Q2) at low x and Q2 of the order of a few GeV2 will constrain the nucleon diffractive

structure function FD(4)
2 .

To do: Due to the deuteron D-wave, the shadowing correction depends on the deuteron polariza-
tion. In addition to the fully unpolarized case considered above, we can consider different deuteron
polarizations.

2.2 Tagged scattering

By tagging the final proton in DIS on deuterium, one measures the dσγ∗D→pX/d3p cross section, which can
be expressed in terms of the tagged deuteron structure function F2D(x,Q2, p⃗), where p⃗ is the momentum
of the final proton. In the graphical form, F2D(x,Q2, p⃗) is shown in Fig. 7: graph a gives the impulse
approximation; graphs b and c is the nuclear shadowing correction.

The expression for F2D(x,Q2, p⃗) corresponding to the sum of graphs a, b, and c in Fig. 7 reads [14, 15]

5

• For polarized structure functions g1p ≈ -g1n → shadowing is a small correction for 
extraction of g1n - g1p from deuteron g1d.

Meltnitchouk, Thomas, PRD47 (1993) 3783; Piller, Niesler, Weise, Z. Phys. A358 (1997) 403; Frankfurt, Guzey, Strikman, 
PRL 91 (2003) 202001

F2n � F2p = F2D � 2F2p + 2�shadF2p



Nuclear shadowing in DIS at small x: qualitative  
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• In high-energy scattering on nuclear targets, nuclear shadowing is well-understood 
as due to distractive, QM interference among amplitudes for interaction with N=1, 
2, …A target nucleons: 

- pion-deuteron scattering for E < 5 GeV, Glauber, PRD 100 (1955) 242; hadron-nucleus 
scattering, Bassel, Wilkin, PR 174 (1968) 1179 

- pion-deuteron scattering for E > 5 GeV, Gribov, Sov Phys JETP 29 (1969) 483 
- extension of Gribov-Glauber model to lepton-nucleus DIS, Frankfurt, Strikman, Phys Rept. 160 

(1988) 235; Meltnitchouk, Thomas, PRD47 (1993) 3783; Armesto, Capella, Kaidalov, Lopez-Albacete, Salgado 
(1993); Frankfurt, Strikman, EPJ A 5 (1999) 293; Piller, Weise, Phys. Rept. 330 (2000) 1; Adeluyi, Fai, PRC 74 
(2006) 054904; Frankfurt, Guzey, Strikman, Phys, Rept. 512 (2012) 255 

- calculations in dipole model also have similar shadowing mechanism, Nikolaev, Zakharov 
(1993); Armesto, J. Phys. G. 32 (2006) R367 

• In DIS, shadowing is important, when the photon coherence length (𝛾* lifetime)          
lc ~1/(2 mNx) is compatible with inter-nucleon distance rNN~1.7 fm → x < 0.05.

• Magnitude of shadowing is controlled by ratio of rescattering cross section σ~25 mb 
and nuclear geometrical size. For deuteron, σ/(𝜋Rd2) ~ few percent.

• For tagged DIS, shadowing can be enhanced at t≠0 by δFA(t)/|FA(t)|2, where FA(t) is 
the nuclear factor.



Nuclear shadowing in DIS at small x: qualitative  
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• Shadowing and diffraction: 
- at high energies, 𝛾* can interact with two target nucleons 
by first dissociating into hadronic state → to have small 
momentum transfer to each nucleon, the interaction is 
diffractive  → no mismatch between in nucleon momenta 
in in and out states → interference diagram leads to 
shadowing 

- negative (shadowing) correction due to unitarity (AGK 
cutting rules for multiplicities due to Pomeron exchanges )

• Both shadowing and anti-shadowing arise from parton ladders (Pomerons) attaching 
to two different nucleons → the ladders can merge (shadowing, right, P2) or be 
independent (antishadowing middle, P1) → anti-shadowing compensates shadowing 
locally in rapidity ln(xP/x) < 1, Frankfurt, Guzey, Strikman, PRC 95 (2017) no.5, 055208

296 L. Frankfurt, M. Strikman: Diffraction and shadowing in DIS

Fig. 1. Double scattering diagram for the γ∗D scattering cor-
responding to a diffractive final state

from the Fermi motion of nucleons in the deuteron since
the spectator nucleon in the |in⟩ state has to have a mo-
mentum equal to the momentum of the diffracted nucleon
in the ⟨out| state. The screening effect is expressed ulti-
mately through −Ref2 where f is the diffractive ampli-
tude of the interaction of the probe with the nucleon as
compared to |f |2 in the case of diffractive scattering off
the nucleon. The real part of the diffractive amplitude is
rather small and can be calculated from the information
about the imaginary part of the amplitude. Thus the dif-
ference between |f |2 and −Ref2 is small and easy to deal
with.

Hence we can apply the Gribov results for the scatter-
ing off the deuteron and nuclei to evaluate the shadowing
contribution to the deuteron parton density of flavor j in
terms of the corresponding nucleon diffractive densities
(we consider only the Pomeron type contribution, so we
do not distinguish diffraction of protons and neutrons)

fj/2H(x, Q2) = fj/p(x, Q2) + fj/n(x, Q2)

− η
1
4π

∫
dxIP dtS(4t)fD

j/N

(
β, Q2, xIP , t

)
. (4)

Here S(t) is the electromagnetic form factor of the
deuteron, and −t = (k2

t + (xIP mN )2)/(1 − xIP ), and
η = (1 − (ReAdif /ImAdif )2)/1 + (ReAdif /ImAdif )2).

Similarly, in the approximation when only scattering
off two nucleons in the nucleus is taken into account one
can similarly deduce the expression for the shadowing
term in terms of the parton densities

fj/A(x, Q2)/A

= fj/N (x, Q2) − 1
2

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ x0

x
dxIP ·

· fD
j/N

(
β, Q2, xIP , t

)
|k2

t =0
ρA(b, z1)ρA(b, z2)

· cos(xIP mN (z1 − z2)). (5)

Here ρA(r) is the nucleon density in the nucleus normal-
ized according to the equation

∫
ρA(r)d3r = A. For sim-

plicity we gave the expression for the limit when the slope
of the dependence of diffractive amplitude on the momen-
tum transferred to target nucleon, t, is much smaller than

the one due to the nucleus form factor so that impact
parameters of two nucleons are equal. Note that (5) is
similar to the corresponding expression for the shadow-
ing in the vector dominance model, see (5.4) in [23] since
the space-time evolution of the interaction is the same in
both cases. This leads to the same structure of the nu-
clear block, provided one substitutes the VDM expression
for the longitudinal momentum transfer, qz = M2

V /2ν by
the Bjorken limit value: qz = xIP mN .

The crucial feature of (4,5) is that the parton densi-
ties which enter in the shadowing term evolve according
to the leading twist evolution equations. When they are
folded with a function of xIP which does not depend on
Q2 they retain this property. Since the QCD evolution of
real and imaginary parts of hard amplitude is governed
by the same evolution equation at sufficiently small x we
investigate in the paper the fact that real parts enter into
diffraction and into shadowing in a different way does not
influence the QCD evolution. This proves that (4,5) cor-
respond to the leading twist contribution to the nuclear
parton densities. In the limit of the low nuclear densities
(4,5) provide a complete description of the leading twist
nuclear shadowing.

Obviously the derived equations could not provide a
complete picture of the deviations of nuclear parton den-
sities from the sum of the nucleon densities for all x. This is
because the derived equations take into account the contri-
butions related to the distances lc ≫ RA but not the ones
related to the configurations with much smaller coherence
lengths. The simplest way to estimate the corresponding
additional piece is to apply the energy-momentum and
baryon sum rules which are exact in QCD for the leading
twist parton densities. Therefore to satisfy these sum rules
the shadowing should be accompanied by an enhancement
of some parton densities at higher x. This enhancement
term has to be added to (4,5). If we introduce this term
at a scale Q2

0 for x ≥ x0 it would contribute for large Q2

for much smaller x. Hence the Gribov type approximation
becomes inapplicable for fixed x and Q2 → ∞ 3. Below,
to deal with the enhancement effects we will adopt the
procedure of [5] in which these effects are estimated at a
low normalization point and the subsequent evolution is
dealt with by solving the DGLAP evolution equations.

The range of the validity of approximation where in-
teractions with N ≥ 3 nucleons are neglected strongly
depends on the strength of the corresponding diffraction
channel. Hence in the next two sections we review the re-
sults of the recent analysis of the HERA diffractive data
and build approximation for treating interactions with
several nucleons.

3 In principle one should also take into account the effects of
nonnucleonic degrees of freedom (the large x EMC effect) but
for any practical purposes this effect is negligible.

Frankfurt, Strikman, EPJ A 5 (1999) 293
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FIG. 3. Merging of two ladders coupled to two different nucleons in the 2IP → IP process in the nucleus infinite momentum frame. This
process corresponds both to nuclear shadowing and antishadowing.

in DIS is dominated by soft Pomeron-like interactions, which
follows from the observation that αIP (0) in DIS is practically
the same as for soft interactions. Since in soft interactions the
correlation length in rapidity "y ∼1, modifications of parton
densities related to the merging of the two ladders should be
rather local in the rapidity and located close to the rapidity
position of the vertex describing the 2IP → IP [(nIP ) → IP ]
transition. Therefore, for a given light-cone momentum xIP car-
ried by the lower ladder in Fig. 3, the merging of ladders should
predominantly correspond to ln(x/xIP ) ! 1. This means that
for a given xIP , nuclear shadowing and antishadowing should
compensate each other in the momentum sum rule for nPDFs
on the interval ln(x/xIP ) ! 1.

While the lack of the detailed knowledge of the parton
structure of the 2IP → IP vertex does not allow us to built
a microscopic theory of antishadowing, the realization of the
observation that the momentum sum rule is valid locally on
the ln(x/xIP ) ! 1 interval enables us to model antishadowing
with only modest uncertainty in the final results.

Above we discussed the dynamical model of shadowing and
antishadowing originating from an exchange of two ladders
belonging to two different nucleons of the nucleus, which
exhausts the answer in the cases of low nuclear density
and the deuteron. In a general case, one needs to take into
account the interaction with N " 3 nucleons of the nucleus,
which can be done using the quasi-eikonal approximation
with the effective cross section σ

j
soft, see Eq. (1). These

additional elastic interactions do not involve the “first” and
the “last” nucleons, which couple to the merging ladders
(see Fig. 1), and, hence, do not affect the general picture shown
in Fig. 3.

Note that in this paper, we are concerned with the gluon
nPDF at small x, i.e., shadowing and antishadowing in the
vacuum channel. The dynamics of shadowing and antishad-
owing in the nonvacuum channel relevant for valence quark
nPDFs and polarized nPDFs involves the Pomeron-Reggeon
interference and merging, which is characterized by smaller
diffractive masses (the P2 probability) and a combinatoric
enhancement of the shadowing term. This in general results
in the x dependence and magnitude of shadowing and
antishadowing in the nonvacuum channel which are different
from those in the gluon channel.

Shadowing and antishadowing of antiquark nPDFs and
the nuclear structure function F2A(x,Q2) at moderate Q2

was modeled in Ref. [32] using the Glauber theory and
the high-energy Regge behavior of the antiquark-nucleon
scattering amplitude Tq̄N . In this approach, an antishadowing
enhancement arises due to the real part of Tq̄N , which is
given by the αR = 1/2 Reggeon exchanges. Note shadowing
and antishadowing in the gluon channel were not considered
in [32].

C. Constraining antishadowing using the momentum sum rule
including Coulomb effects

We discussed in the Introduction that in the gluon channel,
the small x shadowing effect should be supplemented by the
effect of antishadowing, which peaks at intermediate x (0.1 <
x < 0.2). To constrain the gluon antishadowing, one can use
the momentum sum rule for nuclear PDFs:

1
A

∑

j

∫ A

0
dxxfj/A(x,Q2) = 1 −ηγ (A), (2)

where the sum runs over all flavors j ; x = AQ2/2(q · PA)
is the rescaled Bjorken x (0 < x < A), where q and PA

are the four-momenta of the virtual photon and the nucleus,
respectively; ηγ (A) is the momentum fraction of a fast moving
nucleus carried by equivalent photons, which is of the order of
a fraction of the percent for heavy nuclei [33].

Nuclear modifications of fj/A(x,Q2) change its shape with
respect to the the impulse approximation. Since the discussed
effects are not large, it is necessary to take into account the
momentum carried by equivalent photons (explicit nucleus
non-nucleonic degrees of freedom) in the nucleus wave
function. For the impulse approximation (IA), one obtains

xf IA
j/A(x,Q2) = [Zx ′

pfj/p(x ′
p) + Nx ′

pfj/n(x ′
p)], (3)

where Z is the nucleus charge, N is the number of neutrons,
x ′

p = xp/(1 −ηγ (A)), and xp = Q2/(2p · q). The rescaling
xp → x ′

p [33] enables one to satisfy the momentum sum

055208-4
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• There are several ways to derive shadowing correction to D structure functions: 
- direct generalization of Gribov-Glauber model to DIS + AGK rules, Frankfurt, Strikman, EPJ A 5 

(1999) 293; Guzey, Strikman, Phys, Rept. 512 (2012) 255 
- calculations of covariant Feynman graphs with subsequent non-relativistic reduction (virtual 
nucleon approximation), Bertocchi, Nuovo Cim. A11 (1972) 45; Sargsian, Int. J. Mod. Phys. E10 (2001) 405 

- light-front perturbation theory, Strikman, Weiss, arXiv:1706.02244.
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Figure 4: The forward γ∗D scattering amplitude: (a) the impulse approximation, (b) the nuclear shad-
owing correction.

The expression for the deuteron structure function F2D(x,Q2) in the shadowing region reads [14, 15]:

F2D(x,Q
2) = F2p(x,Q

2) + F2n(x,Q
2)

−2
1− η2

1 + η2
Bdiff

∫ 0.1

x
dxIP dk2t F

D(3)
2

(

β, Q2, xIP
)

e−Bdiff k2
t ρD

(

4k2t + 4(xIPmN )2
)

, (3)

where FD(3) is the proton diffractive structure function, which depends on the light-cone fractions xIP
(the fraction of the nucleon momentum carried by the Pomeron) and β = x/xIP ; Bdiff = 6 GeV−2 is the
slope of the t dependence of the diffractive ep DIS cross section; kt is the transverse component of the
momentum transfer to the nucleon so that |t| = k2t + (xIPmN )2; η ≈ 0.17 is the ratio of the real to the
imaginary parts of the diffractive scattering amplitude. The integration over xIP = (M2

X+Q2)/(W 2+Q2)
corresponds to the summation over intermediate diffractive states. The lower limit on xIP is the kinematic
limit; the upper limit on xIP is essentially defined by the absence of diffraction for xIP > 0.1. Note also
that the region of large xIP in the integral in Eq. (3) is suppressed by the deuteron form factor. Therefore,
by construction, the leading twist shadowing goes to zero in the x → 0.1 limit.

The deuteron form factor ρD of the double argument can be written as an overlap between the initial
and final state deuteron wave functions:

ρD
(

4k2t + 4(xIPmN )2
)

=

∫

d3p⃗

[

u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (4)

where u and w are the S-wave and D-wave components of the deuteron wave function, respectively;
k⃗ = k⃗t + (xIPmN )ez.

The result of the calculation of leading twist nuclear shadowing for the deuterium structure function
F2D(x,Q2) using Eq. (3) is presented in the left panel of Fig. 6. One can see that the nuclear shadowing
effect is a 1− 2% effect.

In the right panel of the figure, we compare the absolute value of the shadowing correction |δF2D(x)| =
|F2D(x)− F2p(x)− F2n(x)| to the F2p(x)− F2n(x) difference. Since F2p(x)− F2n(x) is small at small x,
even small δF2D(x) affects the extraction of F2p(x)− F2n(x) from the deuteron data. Indeed, writing

F2D(x) = F2p(x) + F2n(x)− δF2D(x) ≡ 2F2p(x)−∆− δF2D(x) ,

F2D(x) = F2p(x) + F 0
2n(x) = 2F2p(x)−∆0 , (5)

where ∆ = F2p(x) − F2n(x) and ∆0 = F2p(x) − F 0
2n(x). Therefore, ∆ − ∆0 = δF2D(x) and, hence, the

shadowing correction to ∆ is two times as large as that for F2D(x)/(F2p(x) + F2n(x)).
The case of DIS on deuterium presents a very important testing ground for the leading twist theory of

nuclear shadowing since the shadowing correction can be calculated in a model-independent way, without
the necessity to model multiple scatterings. Conversely, precise measurements of the deuterium structure

4

• Forward Compton scattering amplitude → imaginary part gives structure function
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Figure 5: Unitarity cuts of the imaginary part of the double scattering contribution to the forward γ∗D
scattering amplitude: (a) diffractive cut, (b) and (c) single multiplicity cuts, (d) double multiplicity cut.
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Figure 6: Leading twist nuclear shadowing for the deuterium structure function F2D(x,Q2).

function F2D(x,Q2) at low x and Q2 of the order of a few GeV2 will constrain the nucleon diffractive

structure function FD(4)
2 .

To do: Due to the deuteron D-wave, the shadowing correction depends on the deuteron polariza-
tion. In addition to the fully unpolarized case considered above, we can consider different deuteron
polarizations.

2.2 Tagged scattering

By tagging the final proton in DIS on deuterium, one measures the dσγ∗D→pX/d3p cross section, which can
be expressed in terms of the tagged deuteron structure function F2D(x,Q2, p⃗), where p⃗ is the momentum
of the final proton. In the graphical form, F2D(x,Q2, p⃗) is shown in Fig. 7: graph a gives the impulse
approximation; graphs b and c is the nuclear shadowing correction.

The expression for F2D(x,Q2, p⃗) corresponding to the sum of graphs a, b, and c in Fig. 7 reads [14, 15]

5

NN

X

D D D D

b)

γ∗

N

γ∗

a)

γ∗
γ∗

N
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owing correction.

The expression for the deuteron structure function F2D(x,Q2) in the shadowing region reads [14, 15]:

F2D(x,Q
2) = F2p(x,Q

2) + F2n(x,Q
2)

−2
1− η2

1 + η2
Bdiff

∫ 0.1

x
dxIP dk2t F

D(3)
2

(

β, Q2, xIP
)

e−Bdiff k2
t ρD

(

4k2t + 4(xIPmN )2
)

, (3)

where FD(3) is the proton diffractive structure function, which depends on the light-cone fractions xIP
(the fraction of the nucleon momentum carried by the Pomeron) and β = x/xIP ; Bdiff = 6 GeV−2 is the
slope of the t dependence of the diffractive ep DIS cross section; kt is the transverse component of the
momentum transfer to the nucleon so that |t| = k2t + (xIPmN )2; η ≈ 0.17 is the ratio of the real to the
imaginary parts of the diffractive scattering amplitude. The integration over xIP = (M2

X+Q2)/(W 2+Q2)
corresponds to the summation over intermediate diffractive states. The lower limit on xIP is the kinematic
limit; the upper limit on xIP is essentially defined by the absence of diffraction for xIP > 0.1. Note also
that the region of large xIP in the integral in Eq. (3) is suppressed by the deuteron form factor. Therefore,
by construction, the leading twist shadowing goes to zero in the x → 0.1 limit.

The deuteron form factor ρD of the double argument can be written as an overlap between the initial
and final state deuteron wave functions:

ρD
(

4k2t + 4(xIPmN )2
)

=

∫

d3p⃗

[

u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (4)

where u and w are the S-wave and D-wave components of the deuteron wave function, respectively;
k⃗ = k⃗t + (xIPmN )ez.

The result of the calculation of leading twist nuclear shadowing for the deuterium structure function
F2D(x,Q2) using Eq. (3) is presented in the left panel of Fig. 6. One can see that the nuclear shadowing
effect is a 1− 2% effect.

In the right panel of the figure, we compare the absolute value of the shadowing correction |δF2D(x)| =
|F2D(x)− F2p(x)− F2n(x)| to the F2p(x)− F2n(x) difference. Since F2p(x)− F2n(x) is small at small x,
even small δF2D(x) affects the extraction of F2p(x)− F2n(x) from the deuteron data. Indeed, writing

F2D(x) = F2p(x) + F2n(x)− δF2D(x) ≡ 2F2p(x)−∆− δF2D(x) ,

F2D(x) = F2p(x) + F 0
2n(x) = 2F2p(x)−∆0 , (5)

where ∆ = F2p(x) − F2n(x) and ∆0 = F2p(x) − F 0
2n(x). Therefore, ∆ − ∆0 = δF2D(x) and, hence, the

shadowing correction to ∆ is two times as large as that for F2D(x)/(F2p(x) + F2n(x)).
The case of DIS on deuterium presents a very important testing ground for the leading twist theory of

nuclear shadowing since the shadowing correction can be calculated in a model-independent way, without
the necessity to model multiple scatterings. Conversely, precise measurements of the deuterium structure

4
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Diffraction in ep DIS at HERA

depend on x.

3.5.2 Diffractive structure functions and diffractive PDFs

Most of the HERA experimental studies were performed at small x. In this case, one
often uses the variable xIP = 1− z. The cross section for the process ep → e+ p+X (or
production of any other hadron), see Fig. 17, is usually parameterized in the following
form:

d4σD
ep

dxIP dt dx dQ2
=

2πα2

xQ4

[(

1 + (1− y)2
)

FD(4)
2 (x,Q2, xIP , t)− y2FD(4)

L (x,Q2, xIP , t)
]

,(83)

where Q2 is the virtuality of the exchanged photon; x = Q2/(2p·q) is the Bjorken variable;
y = (p · q)/(p · k) is the fractional energy loss of the incoming lepton. We follow here the
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Fig. 17. Diffractive production of a hadron with momentum p′ in the nucleon fragmentation
region in DIS.

notations commonly used for the description of phenomena in the small x kinematics; in
order to emphasize the role of small xIP processes, one introduces the superscript ”D”
denoting FD(4)

2 and FD(4)
L as the diffractive structure functions (the superscript ”(4)”

denotes that the structure functions depend on four variables). (Note that in the case of
generic x and z, these quantities are often referred to as fracture functions [148].) The
variables xIP and t are expressed through the experimentally measured quantities:

t= (p′ − p)2 ,

xIP =
q · (p− p′)

q · p
≈

M2
X +Q2

W 2 +Q2
,

β=
Q2

2q · (p− p′)
=

x

xIP
≈

Q2

Q2 +M2
X

, (84)

53

• One of main HERA results is discovery of large fraction of diffractive events (~10%) ➞ 
diffraction is a leading twist phenomenon (H1 and ZEUS, 1994-2006)   
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• Collinear factorization (Collins ’97) ➞ diffractive parton distributions

• Measurement of the t-dependence of diffractive cross section: Bdiff = 6 GeV-2 ± 15%  
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twist theory of nuclear shadowing predicts for x = 10�4 and b = 0 that gA(x, b,Q 2)/[ATA(b)gN(x,Q 2)] = 0.33 (FGS10_H)
and gA(x, b,Q 2)/[ATA(b)gN(x,Q 2)] = 0.51 (FGS10_L), see Fig. 41.

The discussed results give another illustration of the observation that realistic nuclei can be treated as rather dilute
systems in the processes involving nuclear shadowing with large fluctuations of the number of involved nucleons, even at
small impact parameters.

3.5. Diffraction in DIS and the QCD factorization theorem

3.5.1. Nucleon fragmentation in DIS
In DIS a struck parton is removed from the nucleon and moves with a large momentum relative to the spectator system.

The struck parton and spectator system fragment into separate groups of hadrons. (Hadrons at the central rapidities may
belong to either of the groups.) It is convenient to consider the process in the Breit frame where the nucleon momentum
P ! 1 and the photon momentum is aligned along the same axis: Eq = �2xEP and qµ = 0 for all other components. In
the parton model approximation, the final quark flies with the momentum �xP in the opposite direction with respect to
the residual system that carries the momentum (1 � x)P . As a result, a hadron in the target fragmentation region can be
produced with the maximal light-cone fraction z relative to the incident nucleon: z  (1� x). For large x � 0.1, the process
corresponds to the removal of the valence quark from the nucleon and creation of a color flow between the current and
target fragmentation regions. As a result, for such x, the distribution in the variable xF = z/(1 � x) should go to zero at the
kinematic limit xF ! 1 [123,139]. (This kinematic limit follows from the requirement that theminus component of the four
momentum of the system X should be positive. The actual dependence on xF follows from details of the QCD dynamics and
is often parameterized in terms of quark counting rules.) With a decrease of x, the dynamics changes; hence, the shape of
the distribution z(xF ) should depend on x.

3.5.2. Diffractive structure functions and diffractive PDFs
Most of the HERA experimental studies were performed at small x. In this case, one often uses the variable xP = 1 � z.

The cross section for the process ep ! e + p + X (or production of any other hadron), see Fig. 17, is usually parameterized
in the following form:

d4� D
ep

dxP dt dx dQ 2 =
2⇡↵2

xQ 4

h�
1 + (1 � y)2

�
FD(4)
2 (x,Q 2, xP, t) � y2FD(4)

L (x,Q 2, xP, t)
i
, (83)

whereQ 2 is the virtuality of the exchanged photon; x = Q 2/(2p ·q) is the Bjorken variable; y = (p ·q)/(p ·k) is the fractional
energy loss of the incoming lepton. We follow here the notations commonly used for the description of phenomena in the
small x kinematics; in order to emphasize the role of small xP processes, one introduces the superscript ‘‘D’’ denoting FD(4)

2
and FD(4)

L as the diffractive structure functions (the superscript ‘‘(4)’’ denotes that the structure functions depend on four
variables). (Note that in the case of generic x and z, these quantities are often referred to as fracture functions [148].) The
variables xP and t are expressed through the experimentally measured quantities:

t = (p0
� p)2,

xP =
q · (p � p0)

q · p
⇡

M2
X + Q 2

W 2 + Q 2 ,

� =
Q 2

2q · (p � p0)
=

x
xP

⇡
Q 2

Q 2 + M2
X
, (84)

whereMX is the invariant mass of the produced final state;W 2 is the invariant mass squared of the � ⇤p system (see Fig. 17).
The variable xP describes the fractional loss of the proton longitudinal momentum; we also defined here � which is the
longitudinal momentum fraction with respect to xP carried by the interacting parton (to the leading order in ↵s). Note that
the contribution of the termproportional to FD(4)

L in Eq. (83) is kinematically suppressed and usually neglected in the analysis
of diffraction.

In pQCD a partonwith a virtualityQ 2
0 is resolved at higherQ 2 leading to the scaling violations. If a parton at the resolution

scale (x,Q 2) is removed, the final state in the fragmentation region will be changed as compared to the removal of a parent
parton at the scale (x0,Q 2

0 ). The difference is due to the emission of partons in the evolution process and fragmentation of the
struck quark. However, partons produced in the hard process of the evolution from scale Q0 to scale Q have the transverse
momenta�Q0 and, hence, their overlapping integral with a low pt and finite z hadron is suppressed by a power of Q 2

0 [121].
The quark–gluon system produced in the hard interaction is well localized in the transverse directions and, hence, should
interactwith the target in the sameway as the parton at (x0,Q 2

0 ). As a result, theQ 2 evolution of the fragmentation functions
for fixed t and z is given by the same DGLAP equations as those for the nucleon PDFs [59,121]. This result follows from the
fact that QCD evolution occurs in both cases off a single parton. The kinematical window appropriate for the onset of the
applicability of the QCD factorization theorem depends on the interplay between z and x: (i) the selection of smaller x
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Fig. 17. Diffractive production of a hadron with momentum p0 in the nucleon fragmentation region in DIS.

increases the contribution of higher-twist effects, and (ii) the products of the hard parton fragmentation tend to fill the
rapidity gap between the photon and target fragmentation regions, especially in the case when this parton carries a small
fraction z of the photon momentum. Thus, larger Q0 is necessary to suppress the both effects.

Similarly to the inclusive case, the factorization theorem for diffraction (production of a hadron with fixed z and t) in DIS
states that, at given fixed t and xP and in the leading twist approximation, the diffractive structure function FD(4)

2 is given by
the convolution of the same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)

j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (85)

where � = x/xP. The diffractive PDFs f D(4)
j are conditional probabilities to find a parton of flavor jwith a light-cone fraction

� in the proton that undergoes diffractive scattering characterized by the longitudinal momentum fraction xP and the
momentum transfer t , see Sections 3.5 and 3.6 for details.

3.5.3. Diffractive dynamics in DIS
DIS at finite x creates a color flow between the current and target fragmentation regions leading to a strong break-up of

the nucleon since a typical nucleon carries a relatively small light-cone fraction of the initial nucleonmomentum (remember
that z > 1 � x is kinematically forbidden in this case). Hence, the HERA observation of the significant diffraction in DIS at
small x came as a surprise to the theorists not used to the small x dynamics since pQCD and the confinement of color do not
allow rapidity gaps.

The key to resolving this puzzle has been provided long time ago by the aligned jet model (AJM) [122]. The model was
proposed to address the Gribov paradox consisting in the observation that if all configurations in the virtual photon wave
function interacted with large hadronic strengths with nuclei, the Bjorken scaling would be grossly violated at small x.
Bjorken has demonstrated that if one follows the spirit of the parton model and allows only the interactions of the partons
with small kt , the scaling is restored. The dominant configurations in the photon wave function are the qq̄ pairs with the
invariant masses of the order of Q 2 and transverse momenta ksoft. In the rest frame of the target, the partons carry the
momenta p1 ⇠ q0 and p2 = k2soft/(2xmN). In coordinate space, the process proceeds as follows: � ⇤ transforms into a qq̄ pair
with the momenta ±ksoft at a large distance 1/(2mNx) from the target. After covering this distance to the target, the qq̄ pair
has the transverse separation which is of the order of 1/ksoft and the system can interact with the typical hadronic strength.

In QCD one needs to modify the AJM to account for two effects [81]. One is the Sudakov form factor: � ⇤ cannot transform
into a qq̄ pair with small kt without gluon radiation. This effect is taken into account by the pQCD evolution (change of
x of the parton). It does not change the transverse size of the system and, as a result, the system interacts with the same
strength at largeQ 2. The secondmodification is the presence of large kt configurations that have small transverse sizes. Their
interaction is suppressed by the factor↵s(kt)2/k2t —the color transparency effect. However, due to a large phase volume, these
configurations give a contribution comparable to that of the AJM. (The estimate of [81,82] suggested that the AJM contributes
about 70% to F2p(x ⇠ 10�2,Q 2

0 ⇠ 2–3 GeV2).)
While diffraction for the AJM configurations is expected to be comparable to that of hadrons, it is strongly suppressed for

small size configurations for moderate x > 10�3 since the strength of the interaction enters quadratically in the diffractive
cross section.

The dominance of the AJM configurations leads to the expectation that the W dependence of diffraction at fixed Q 2 and
M2

X should be close to that for soft processes [138]. Another important contribution to diffraction is due to large size color
octet dipoles (qq̄g configurations in the virtual photon). These predictions are in a good agreement with the current HERA
data, see below.
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and the ZEUS data on xP�
D(3)
r , the normalization of the predictions of the H1 fit B is somewhat smaller than that of the ZEUS

fit [73].
One should also mention that the value of ↵P(0) at low virtualities Q 2 obtained by the H1 and ZEUS analyses are very

close: the H1 value of ↵P(0) in Eq. (91) should be compared to ↵P(0) = 1.11 � 1.12 ± 0.02 obtained by ZEUS [73].

3.6.2. Diffractive structure function FD(4)
2

The measurement of the t dependence of hard inclusive diffraction and the structure function FD(4)
2 can be performed by

detecting the final state proton. This was done using the forward proton spectrometer (FPS) by the H1 collaboration [62]
and the leading proton spectrometer (LPS) by the ZEUS collaboration [72]. In the following, we focus on the H1 results since
we used the H1 Fit B as an input for our calculations of nuclear shadowing.

In the kinematic range 2 < Q 2 < 50 GeV2 and xP < 0.02, the t dependence of FD(4)
2 was parameterized in a simple

exponential form with a constant slope,

FD(4)
2 (x,Q 2, xP, t) = eBdiff(t�tmin)FD(4)

2 (x,Q 2, xP, tmin), (92)

where Bdiff ⇡ 6 GeV�2 [62]. Note that this value is somewhat lower (but still consistent) than the ZEUS LPS result,
Bdiff = 7.0 ± 0.3 GeV�2 [72].

After the integration over t , the FPS data on �
D(3)
r [62] can be compared to the LRG data [61]. A point-by-point comparison

shows that

�
D(3)
r (LRG)

�
D(3)
r (FPS)

= 1.23 ± 0.03 (stat.) ± 0.16 (syst.). (93)

Eq. (93) is interpreted as that the excess of events in the LRG method compared to the FPS method must come from the
proton dissociation into the states with the invariant massMY < 1.6 GeV.

The FPSmethod also allows one to find the relation between the sub-leading cross sections obtained in the twomethods:

nR(LRG)

nR(FPS)
= 1.39 ± 0.48 (exp.) ± 0.29 (model). (94)

Eqs. (93) and (94) mean that the QCD prediction for the diffractive structure function FD(3)
2 , which would be consistent

with the H1 FPS data [62], is obtained by scaling down fits A and B for the Pomeron PDFs by the factor 1.23 and the constant
nR by the factor 1.39. This is illustrated in Fig. 21 (taken from Ref. [62]), where the scaled QCD predictions are compared to
the H1 FPS data. The solid curves correspond to fit A in the kinematic region used in the fit (see comments for Fig. 20); the
dashed curves correspond to fit A extrapolated beyond the kinematic region used in the fit; the dotted curves correspond
to the Pomeron contribution only. Since the FPS data extend to larger values of xP, Fig. 21 clearly indicates the need for the
sub-leading Reggeon contribution for xP > 0.01.

3.6.3. Tests of the QCD factorization using other diffractive DIS processes
The diffractive parton distributions (DPDFs) f D(4)

j are process-independent universal quantities that enter the pQCD
description of such diffractive processes as inclusive DIS diffraction [60–62,66,67,69,71–73], diffractive electroproduction
of jets [63,64,70], diffractive photoproduction of jets [64,151,152], diffractive electroproductions of heavy quarks [65,153],
and diffractive photoproduction of heavy quarks [154]. The Q 2 dependence of f D(4)

j is given by the DGLAP equations with
the same splitting functions as in the case of inclusive DIS. Hence, a wide range of processes (some of them are mentioned
above) can be described from the first principles in the framework of perturbative QCD using universal non-perturbative
DPDFs as input.

Measurements of diffractive DIS processes serve as stringent tests of theQCD factorization for hard diffraction and further
constrain diffractive PDFs. One example of such a diffractive process, which predominantly probes the gluon diffractive PDF,
is diffractive production of dijets, see Fig. 22. The figure depicts diffractive production of dijets in DIS. Replacing the virtual
photon by the real (quasi-real) one, it is possible to study diffractive photoproductions of dijets. In the latter process, the
hard scale is given by the transverse momenta of the jets.

Both H1 and ZEUS collaborations measured diffractive dijet production. In detail, the H1 collaboration measured
diffractive dijet production in DIS (4 < Q 2 < 80 GeV2) and photoproduction (Q 2 < 0.01 GeV2) in the reaction
ep ! e jet1 jet2 XY [64,151]. It was found that, in DIS, the data are described well by diffractive PDFs extracted from the
fits to the H1 data on inclusive diffraction in DIS [61,62]. The dijet data clearly favors fit B, which corresponds to a smaller
(compared to fit A) gluon diffractive PDF fg/P(�,Q 2) in the large � limit, see Fig. 19.

In photoproduction of dijets, theoretical predictions based on fit B overestimate the data by approximately a factor
of two (both for the direct and resolved contributions). This indicates the breakdown of the QCD factorization theorem
for the photoproduction, similarly to the case of factorization breaking in hadron-induced diffractive dijet production, see
e.g., [155]. One should note that while the factorization breaking is expected for the resolved component of the real photon
(since the resolved component consists of hadronic fluctuations interactingwith the targetwith typical, large hadronic cross

Author's personal copy

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393 285

It is also instructive to consider diffraction in the Breit frame. It is easy to see that the AJM contribution corresponds to
the following process: a parton with the light-cone fraction x absorbs � ⇤ and turns around so that it has the momentum
(xP, �xP). To produce a color neutral system with the typical mass squared M2

X ⇡ Q 2, it has to pick up a parton with the
momentum (x0P, x0P) leading to M2

X = Q 2(x0/x) and pull it out of the nucleon. This implies that although the diffraction
involves the absorption of � ⇤ by one parton, it requires the presence of a strong short-range correlation in rapidity between
the partons in the nucleon light-cone wave function [138]. A nearly hadron-level strength of the diffraction indicates that a
strong color screening takes place in the proton wave function for small x locally in x (in rapidity �Y = ln x0/x).

3.6. Summary of the QCD analysis of the data on hard diffraction at HERA

3.6.1. Diffractive structure function FD(3)
2

The bulk of the data on diffraction in DIS at HERA comes from inclusive measurements performed by H1 and ZEUS
collaborations [60–73]. When the t dependence of the diffractive cross section is not measured [60,61,67,71,73], the data
are analyzed in terms of the diffractive structure function FD(3)

2 :

FD(3)
2 (x,Q 2, xP) =

Z tmin

�1GeV2
dtFD(4)

2 (x,Q 2, xP, t), (86)

where FD(4)
2 is defined by Eq. (83); tmin = �m2

Nx
2
P/(1 � xP) ⇡ �m2

Nx
2(1 + M2

X/Q
2)2 with mN the nucleon mass.

The weak (logarithmic) Q 2 dependence of FD(3)
2 , which follows from the QCD evolution equations for diffractive PDFs,

was observed experimentally, see, e.g., Fig. 21 below.
As we discussed above the diffractive structure function FD(3)

2 is given in terms of the diffractive PDFs f D(3)
j :

FD(3)
2 (x,Q 2, xP) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(3)
j (y,Q 2, xP). (87)

Extensive studies of hard inclusive diffraction at HERA were performed both by H1 and ZEUS collaborations [60–73].
Within the normalization uncertainties, the measurements of the two collaborations are in good agreement, see, e.g., the
comparison in Ref. [72].

It was suggested in [149] that diffraction in hard process can be treated as scattering off a t-channel exchange – Pomeron
– which has the same properties for different xP. We have argued above that the dominant source of the diffraction in DIS is
the AJM-like configurations in the virtual photon. In a wide energy range, these hadron-like configurations should interact
through a coupling to a soft ladder. The properties of such a ladder (or a multiladder system), which are local in rapidity,
should weakly depend on its length in rapidity proportional to ln(x0/xP), where x0 ⇠ 0.01.

In line with the suggestion of [149], the QCD analyses of the HERA diffractive data make an additional soft/Regge
factorization assumption (which does not contradict the data) that DPDFs f D(3)

j can be presented as a sum of the leading
Pomeron-exchange term and the subleading Reggeon-exchange term (the latter plays a role only at large xP). Each of the
terms is given as the product of the corresponding flux factors and the parton distribution functions,

f D(3)
j (�,Q 2, xP) = fP/p(xP)fj/P(�,Q 2) + nRfR/p(xP)fj/R(�,Q 2), (88)

where fP/p(xP) is the Pomeron flux factor; fR/p is the Reggeon flux factor; fj/P(�,Q 2) can be interpreted as the PDF of flavor j
of the Pomeron; fj/R(�,Q 2) are PDFs of the subleading Reggeon; nR is a small free parameter determined from the fit to the
data. The Q 2 dependence of fj/P(�,Q 2) is given by the DGLAP evolution equations.

Note that Eq. (88) does not follow from the QCD factorization theorem, but it is rather a hypothesis of the soft matching
to the non-perturbative QCD, which is supported by the data (see the discussion below).

The schematic view of the separation of f D(3)
j into the flux factors and the corresponding PDFs used in Eq. (88) is presented

in Fig. 18. The figure also illustrates the physical interpretation of the variable �: � is the light-cone fraction of the Pomeron
(or Reggeon) momentum carried by the interacting parton.

It is important to emphasize that the words ‘‘Pomeron’’ and ‘‘Reggeon’’ are used in the analysis of the hard diffraction
in DIS only as bookkeeping terms since those terms are reserved for soft hadron–hadron interactions. The parameters
(intercepts, slopes, etc.) of the Pomeron and Reggeon exchanges as determined from the phenomenology of soft
hadron–hadron interactions may differ from the parameters obtained from the fits to the hard diffractive data at HERA.

In Eq. (88), the Pomeron and Reggeon flux factors have the following form:

fP/p(xP) =

Z tmin

�1GeV2
dt AP

eBPt

x2↵P(t)�1
P

, ↵P(t) = ↵P(0) + ↵0

Pt,

fR/p(xP) =

Z tmin

�1GeV2
dt AR

eBRt

x2↵R(t)�1
P

, ↵R(t) = ↵R(0) + ↵0

Rt. (89)



Nuclear shadowing in unpolarized tagged DIS on D  

Nuclear shadowing is larger in the tagged DIS than in the inclusive case due to: 
 - AGK enhancement 
 - IA drops with spectator momentum faster than the shadowing term
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Figure 7: Graphs depicting the contributions to the deuteron tagged structure function F2D(x,Q2, p⃗):
(a) the impulse contribution, (b)+(c) the nuclear shadowing correction.
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where F IA
2D(x,Q

2, p⃗) is the impulse approximation. Note that the weight of the shadowing correction
(3 − η2)/(1 + η2) is larger than 2(1 − η2)/(1 − η2) for the inclusive case due to the AGK rules. (Recall
that η ≈ 0.17.) Thus, the nuclear shadowing correction is larger in the tagged case than in the inclusive
case.

For the impulse approximation, we use:
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where x̃ = (1 − pz/mN )x which takes into account the effect of Fermi motion; αIP (0) = 1.11. The
(1 + qz/q0 pz/mN )αIP (0)−1 factor reflects the different invariant energies of the virtual photon–deuteron
and the virtual photon–neutron interactions.

We quantify the effect of nuclear shadowing on the spectrum of the produced proton by the ratio
R(x,Q2, p⃗):

R(x,Q2, p⃗) =
F2D(x,Q2, p⃗)

F IA
2D(x,Q

2, p⃗)
. (8)

Figure 8 presents the ratio R(x,Q2, p⃗) of Eq. (8) as a function of Bjorken x at fixed Q2 = 4 GeV2.
The left panel corresponds to the case of the zero longitudinal momentum of the final proton, pz = 0, and
different values of the transverse momentum, |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds
to |p⃗t| = 0 and pz = ±100 MeV/c.

A comparison of Figs. 8 and 6 shows that the shadowing correction to the tagged deuteron structure
function is much larger than that for the inclusive structure function. This happens because of the
following two features of the tagged case. First, the weight of the shadowing correction is larger because
of the AGK cutting rules (see the discussion above). Second, the impulse approximation decreases
with increasing |p⃗| faster than the shadowing term, which enhances the relative magnitude of nuclear
shadowing.

From the experimental point of view, several strategies of the extraction of the neutron structure
function F2n(x,Q2) from the deuteron data using the proton tagging are possible (the text below is
copied from our papers on the subject). As our analysis above shows, by selecting only very low pt
protons, the distortion of the proton spectrum by the nuclear shadowing and FSI effects will be minimal.
However, the drawback of this approach is the gross loss of statistics. The other, more promising approach
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Figure 7: Graphs depicting the contributions to the deuteron tagged structure function F2D(x,Q2, p⃗):
(a) the impulse contribution, (b)+(c) the nuclear shadowing correction.
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where F IA
2D(x,Q

2, p⃗) is the impulse approximation. Note that the weight of the shadowing correction
(3 − η2)/(1 + η2) is larger than 2(1 − η2)/(1 − η2) for the inclusive case due to the AGK rules. (Recall
that η ≈ 0.17.) Thus, the nuclear shadowing correction is larger in the tagged case than in the inclusive
case.

For the impulse approximation, we use:

F IA
2D(x,Q

2, p⃗) =
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1 +
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pz
mN

)αIP (0)−1

[u2(p) + w2(p)]F2n(x̃, Q
2) , (7)

where x̃ = (1 − pz/mN )x which takes into account the effect of Fermi motion; αIP (0) = 1.11. The
(1 + qz/q0 pz/mN )αIP (0)−1 factor reflects the different invariant energies of the virtual photon–deuteron
and the virtual photon–neutron interactions.

We quantify the effect of nuclear shadowing on the spectrum of the produced proton by the ratio
R(x,Q2, p⃗):

R(x,Q2, p⃗) =
F2D(x,Q2, p⃗)

F IA
2D(x,Q

2, p⃗)
. (8)

Figure 8 presents the ratio R(x,Q2, p⃗) of Eq. (8) as a function of Bjorken x at fixed Q2 = 4 GeV2.
The left panel corresponds to the case of the zero longitudinal momentum of the final proton, pz = 0, and
different values of the transverse momentum, |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds
to |p⃗t| = 0 and pz = ±100 MeV/c.

A comparison of Figs. 8 and 6 shows that the shadowing correction to the tagged deuteron structure
function is much larger than that for the inclusive structure function. This happens because of the
following two features of the tagged case. First, the weight of the shadowing correction is larger because
of the AGK cutting rules (see the discussion above). Second, the impulse approximation decreases
with increasing |p⃗| faster than the shadowing term, which enhances the relative magnitude of nuclear
shadowing.

From the experimental point of view, several strategies of the extraction of the neutron structure
function F2n(x,Q2) from the deuteron data using the proton tagging are possible (the text below is
copied from our papers on the subject). As our analysis above shows, by selecting only very low pt
protons, the distortion of the proton spectrum by the nuclear shadowing and FSI effects will be minimal.
However, the drawback of this approach is the gross loss of statistics. The other, more promising approach

6

≈ 50% enhancement  
due to AGK rules (only  
partial cancellation)

• Forward Compton scattering amplitude for tagged DIS on D (proton detected) → 
imaginary part gives tagged structure function F2d(x,Q2,ps), Frankfurt, Guzey, Strikman, PRL 
91 (2003) 2022001, Mod. Phys. Lett. A21 (2006) 23, Phys. Rept. 512 (2012) 255.

• Calculation as in the inclusive case: 

8

= F2n(x)⇢D(p, p)
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where F IA
2D(x,Q

2, p⃗) is the impulse approximation. Note that the weight of the shadowing correction
(3 − η2)/(1 + η2) is larger than 2(1 − η2)/(1 − η2) for the inclusive case due to the AGK rules. (Recall
that η ≈ 0.17.) Thus, the nuclear shadowing correction is larger in the tagged case than in the inclusive
case.

For the impulse approximation, we use:

F IA
2D(x,Q

2, p⃗) =

(

1 +
qz
q0

pz
mN

)αIP (0)−1

[u2(p) + w2(p)]F2n(x̃, Q
2) , (7)

where x̃ = (1 − pz/mN )x which takes into account the effect of Fermi motion; αIP (0) = 1.11. The
(1 + qz/q0 pz/mN )αIP (0)−1 factor reflects the different invariant energies of the virtual photon–deuteron
and the virtual photon–neutron interactions.

We quantify the effect of nuclear shadowing on the spectrum of the produced proton by the ratio
R(x,Q2, p⃗):

R(x,Q2, p⃗) =
F2D(x,Q2, p⃗)

F IA
2D(x,Q

2, p⃗)
. (8)

Figure 8 presents the ratio R(x,Q2, p⃗) of Eq. (8) as a function of Bjorken x at fixed Q2 = 4 GeV2.
The left panel corresponds to the case of the zero longitudinal momentum of the final proton, pz = 0, and
different values of the transverse momentum, |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds
to |p⃗t| = 0 and pz = ±100 MeV/c.

A comparison of Figs. 8 and 6 shows that the shadowing correction to the tagged deuteron structure
function is much larger than that for the inclusive structure function. This happens because of the
following two features of the tagged case. First, the weight of the shadowing correction is larger because
of the AGK cutting rules (see the discussion above). Second, the impulse approximation decreases
with increasing |p⃗| faster than the shadowing term, which enhances the relative magnitude of nuclear
shadowing.

From the experimental point of view, several strategies of the extraction of the neutron structure
function F2n(x,Q2) from the deuteron data using the proton tagging are possible (the text below is
copied from our papers on the subject). As our analysis above shows, by selecting only very low pt
protons, the distortion of the proton spectrum by the nuclear shadowing and FSI effects will be minimal.
However, the drawback of this approach is the gross loss of statistics. The other, more promising approach
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Q2=4 GeV2

9

Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255 

• Nuclear shadowing increases with an increase of spectator momentum: 
- larger pt correspond to smaller transverse distance between p and n → more shadowing 
- no symmetry along z; forward-moving spectator corresponds to larger shadowing

• Extraction F2n(x): 
- measure proton spectrum as function of p → determine/verify the shadowing correction 
→ correct data for the shadowing effect 

 0.8

 0.85

 0.9

 0.95

 1

10-5 10-4 10-3 10-2 10-1

R
(x

,Q
2 ,p

)

x

pz=0
pt=0

pt=50 MeV/c
pt=100 MeV/c

 0.9
 0.92
 0.94
 0.96
 0.98

 1
 1.02

10-3 10-2 10-1

R
(x

,Q
2 ,p

)
x

Q2=4 GeV2

pt=0
pz=0

pz=-100 MeV/c
pz=100 MeV/c

Figure 9: Nuclear shadowing in the tagged deuteron structure function F2D(x,Q2, p⃗). The ratio
R(x,Q2, p⃗) of Eq. (35) as a function of Bjorken x at fixed Q2 = 4 GeV2. The left panel corresponds to
pz = 0 and |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds to |p⃗t| = 0 and pz = ±100 MeV/c.

[compare to Eq. (3)]:

F2D(x,Q
2, p⃗) = F IA

2D(x,Q
2, p⃗)−

3− η2

1 + η2

∫ 0.1

x
dxIP

d2k⃗t
π

FD(4)
2

(

β, Q2, xIP , t
)

×

[

u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (33)

where F IA
2D(x,Q

2, p⃗) is the impulse approximation. Note that the weight of the shadowing correction
(3 − η2)/(1 + η2) is larger than 2(1 − η2)/(1 − η2) that we had for the inclusive case due to the AGK
rules. (Recall that η ≈ 0.17.) Thus, the nuclear shadowing correction is larger in the tagged case than in
the inclusive case.

For the impulse approximation, we use:

F IA
2D(x,Q

2, p⃗) =

(

1 +
qz
q0

pz
mN

)αIP (0)−1

[u2(p) + w2(p)]F2n(x̃, Q
2) , (34)

where x̃ = (1 − pz/mN )x which takes into account the effect of Fermi motion; αIP (0) = 1.11. The
(1 + qz/q0 pz/mN )αIP (0)−1 factor reflects the different invariant energies of the virtual photon–deuteron
and the virtual photon–neutron interactions [1]. We quantify the effect of nuclear shadowing on the
spectrum of produced protons by the ratio R(x,Q2, p⃗):

R(x,Q2, p⃗) =
F2D(x,Q2, p⃗)

F IA
2D(x,Q

2, p⃗)
. (35)

Figure 9 presents the ratio R(x,Q2, p⃗) of Eq. (35) as a function of Bjorken x at fixed Q2 = 4 GeV2.
The left panel corresponds to the case of the zero longitudinal momentum of the final proton, pz = 0, and
different values of the transverse momentum, |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds
to |p⃗t| = 0 and pz = ±100 MeV/c.

A comparison of Figs. 9 and 6 shows that the shadowing correction to the tagged deuteron structure
function is much larger than that for the inclusive structure function. This happens because of the
following two features of the tagged case. First, the weight of the shadowing correction is larger because
of the AGK cutting rules (see the discussion above). Second, the impulse approximation decreases
with increasing |p⃗| faster than the shadowing term, which enhances the relative magnitude of nuclear
shadowing.

This feature is illustrated by the results presented in Fig. 9 which show that the deviation of R(x,Q2, p⃗)
from unity increases as |p⃗| is increased. Also, another particular feature of our predictions for R(x,Q2, p⃗)
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Final-state interactions in tagged DIS on D 
• Shadowing correction comes from interference of diffractive scattering on p and n 
in D → in tagged DIS, there are potential FSI between p and n
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FIG. 9: The �⇤ + d ! X +n+ p amplitude: the impulse approximation with the spectator proton (graph a) and the spectator
neutron (graph b) and the FSI between the active neutron and the spectator proton (graph c) and between the active proton
and the spectator neutron (graph d).

and relating the �dNN vertex to the deuteron wave function (C3), one obtains:

(Jdi↵,FSI
n/d )µ = �

p
2(2⇡)3

X

s0p,s
0
n,s

0

Z
d3p0p

p
2E0

(2⇡)32E0
p

ū(pp, sp)ū(pn, sn)FNNu(p0p, s
0
p)u(p

0
n, s

0
n)

⇥  ̄X(pX)ū(p0n, s
0
n)�

µ
di↵u(p

0, s0)
1

(p0n)
2 �m2 + i✏

 d(p
0
p, s

0
p; p

0, s0) . (C7)

The FNN vertex function is related to the nucleon–nucleon scattering amplitude fNN as follows [36]:

ū(pp, sp)ū(pn, sn)FNNu(p0p, s
0
p)u(p

0
n, s

0
n) =

p
sNN (sNN � 4m2)fNN�sp+sn,s0p+s0n , (C8)

• Momentum transfer is ~ few 100 MeV → strong FSI between the final-state p and n, 
which can be calculated using potential scattering, Frankfurt, Guzey, Strikman, Mod. Phys. Lett. A21 
(2006) 23; Guzey, Strikman, Weiss (2018), JLab LDRD project “Physics potential of polarized light ions with EIC@JLab”

• Plane wave pn wave function → pn continuum wave function

26

where sNN is the invariant energy squared of the NN interaction; =mfNN = �tot
NN , where �tot

NN is the total NN cross
section. Note that fNN depends on sNN , (pp � p0p)

2, the spin S, the orbital angular momentum L, the total angular

momentum J of the proton–neutron system, and the angle between the vectors of ~S and ~pp � ~p0p (in the presence of
the NN tensor interaction); also, fNN is a matrix in the spin space. Substituting Eq. (C8) in Eq. (C7), one obtains:

(Jdi↵,FSI
n/d )µ = �

p
2(2⇡)3

X

s0p,s
0

jµN,di↵(k)

Z
d3p0p

p
2E0

(2⇡)32E0
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p
sNN (sNN � 4m2)fNN

(p01)
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 d(p
0
p, s

0
p; p

0, s0) , (C9)

where we used the delta-function in Eq. (C8) to eliminate the sum over the s0n polarization and the short-hand notation
for the nucleon di↵ractive matrix element.

To obtain a more explicit and familiar form of the FSI term, we write the active nucleon propagator as follows:

(p0n)
2
�m2 + i✏ = (pd � p0p � k)2 �m2 + i✏ = 2(pd � k) · (pp � p0p) + p02p �m2 + i✏

= 2(pp + pn) · (pp � p0p) + i✏ = 4E⇤
p(E

⇤
p � E0⇤

p ) + i✏ ⇡ (2E⇤
p/m)(| ~p⇤p|

2
� | ~p0⇤p |

2) + i✏ , (C10)

where we used that p2n = (pd�k�pp)2 = m2 and evaluated the last equality in the proton–neutron (pn) center-of-mass
frame (all quantities with an asterisk refer to the pn center-of-mass frame). In the standard notation of quantum
mechanics, fNN = (4⇡/| ~p⇤p|)f(p̂

0⇤
p ), where | ~p⇤p| =

p
sNN (sNN � 4m2)/(4E⇤

p); f(p̂0⇤p ) is a non-relativistic scattering

amplitude, which depends explicitly on the unit vector of p̂0⇤p in the direction of ~p0⇤p and implicitly on the total energy
and S, L and J of the proton–neutron system and projections of the proton and neutron spin (see the Appendix for
details). Then Eq. (C9) can be written in the following form:

(Jdi↵,FSI
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0
p; p

0, s0) . (C11)

Note that in Eq. (C11), we use the approximation
p
2E0(m/E0

p) ⇡
p

2Ep.
Similarly, for graph d we obtain:
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q
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 d(p

0
p, s

0
p; p

0, s0) . (C12)

Note that the momenta in the denominators in Eqs. (C11) and (C12) are di↵erent, which follows from the momentum
flow shown in graphs c and d of Fig. 9, respectively.

It is convenient to combine graphs a and c to obtain the expression for the �⇤ + d ! X + n + p amplitude in the
presence of FSI between the active neutron and the spectator proton:

(Jdi↵
n/d)

µ = (Jdi↵,IA
n/d )µ + (Jdi↵,FSI

n/d )µ =
q

2(2⇡)32Ep

X

s0p,s
0

jµN,di↵(k)

Z
d3p0p 

⇤
NN (p0p + k/2, pp + k/2) d(p

0
p, s

0
p; p

0, s0) ,

(C13)

where  ⇤
NN ⌘  (+)

NN denotes the proton–neutron continuum wave function in momentum representation corresponding

to the outgoing-wave boundary condition ( NN ⌘  (�)
NN corresponds respectively to the incoming-wave boundary

condition, see, e.g. [25]):

 ⇤
NN (p0p + k/2, pp + k/2) = �3( ~p0⇤p � ~p⇤p)�sp,s0p�sn,s0n +

f(p̂0⇤p )

2⇡2

1

| ~p0⇤p |
2 � | ~p⇤p|

2 � i✏

= �3( ~p0p � ~pp)�sp,s0p�sn,s0n +
f(p̂0⇤p )

2⇡2

1

( ~p0p + ~k/2)2 � (~pp + ~k/2)2 � i✏
, (C14)

Note that for brevity we do not indicate the dependence of  ⇤
NN on the proton sp and s0p and the neutron sn and

s0 spin projections. In the last equation, we expressed the momenta in the pn center-of-mass frame in terms of the
momenta in the laboratory frame (deuteron rest frame): ~p⇤p = ~pp + ~k/2 and ~p0⇤p = ~p0p + ~k/2.
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Final-state interactions in tagged DIS on D 
• Continuum pn and D are orthogonal → strong suppression due to FSI 
• We used the effective range approximation (S-wave) with                                      :

22

Appendix B: Overlap integrals in e↵ective-range approximation

Q: I wold suggest to present here the analytic formulas for the overlap integrals deuteron-deuteron and deuteron-continuum from

Vadim’s earlier notes.

The form of the deuteron bound-state wave function and the proton-neutron (pn) scattering-state wave function for
small relative proton-neutron momenta can be derived model-independently using the fact that the range of strong
forces is smaller that the deuteron radius and the neutron wavelength, respectively [30]. In this case, the solution of
the Schrödinger equation for the pn bound-state is dominated by the S-wave scattering and has the following form
in momentum representation:

 d(pp) =

p
↵

⇡(↵2 + |pp|
2)
�1(sp, sn; sd) , (B1)

where �1(sp, sn; sd) = h
1
2sp

1
2sn|1sdi is the spin part (the Clebsch-Gordan coe�cient) of the deuteron wave function

corresponding to the total spin 1; ↵ =
p
mN |Ed| ⇡ 0.045 GeV.

For the pn scattering-state wave function with the incoming boundary condition, one obtains

 pn(p
0, s0p, s

0
n|p, sp, sn) =


�(3)(pp � p0

p) +
1

2⇡2

[f(pp)]⇤

|p0|2 � |p|2 + i✏

�
hs0p, s

0
n|P̂t|sp, sni , (B2)

where f(pp) is the scattering amplitude, which has the following form in the e↵ective range approximation,

f(|pp|) = �
1

↵+ i|pp|
. (B3)

Note that in the spin part of the wave function (B2) we retain only the spin-triplet state; P̂t = (3 + ~�p~�n)/4 is the
spin-tiplet projector operator. The spin-singlet part of the pn continuum wave function is not related to the deuteron
binding energy and does not contribute to the overlap integrals, Eqs. (57) and (58), considered in this work.

Using the e↵ective range approximation expressions for  d(pp) (B1) and  pn (B2), one can readily calculate the
overlap integrals of Eqs. (57) and(58), which enter the cross section of the �⇤ + d ! X + p+n process. Noticing that
the contraction of the spin parts of the corresponding wave functions decouples from the spatial parts and gives unity,

1

3

X

sd

X

spsn

X

sp2sn2
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Appendix B: Overlap integrals in e↵ective-range approximation

Q: I wold suggest to present here the analytic formulas for the overlap integrals deuteron-deuteron and deuteron-continuum from

Vadim’s earlier notes.

The form of the deuteron bound-state wave function and the proton-neutron (pn) scattering-state wave function for
small relative proton-neutron momenta can be derived model-independently using the fact that the range of strong
forces is smaller that the deuteron radius and the neutron wavelength, respectively [30]. In this case, the solution of
the Schrödinger equation for the pn bound-state is dominated by the S-wave scattering and has the following form
in momentum representation:

 d(pp) =

p
↵

⇡(↵2 + |pp|
2)
�1(sp, sn; sd) , (B1)

where �1(sp, sn; sd) = h
1
2sp

1
2sn|1sdi is the spin part (the Clebsch-Gordan coe�cient) of the deuteron wave function

corresponding to the total spin 1; ↵ =
p
mN |Ed| ⇡ 0.045 GeV.

For the pn scattering-state wave function with the incoming boundary condition, one obtains

 pn(p
0, s0p, s

0
n|p, sp, sn) =


�(3)(pp � p0

p) +
1

2⇡2

[f(pp)]⇤

|p0|2 � |p|2 + i✏

�
hs0p, s

0
n|P̂t|sp, sni , (B2)

where f(pp) is the scattering amplitude, which has the following form in the e↵ective range approximation,
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Note that in the spin part of the wave function (B2) we retain only the spin-triplet state; P̂t = (3 + ~�p~�n)/4 is the
spin-tiplet projector operator. The spin-singlet part of the pn continuum wave function is not related to the deuteron
binding energy and does not contribute to the overlap integrals, Eqs. (57) and (58), considered in this work.

Using the e↵ective range approximation expressions for  d(pp) (B1) and  pn (B2), one can readily calculate the
overlap integrals of Eqs. (57) and(58), which enter the cross section of the �⇤ + d ! X + p+n process. Noticing that
the contraction of the spin parts of the corresponding wave functions decouples from the spatial parts and gives unity,
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FIG. 5: The e↵ect of FSI on the e+D ! e0 +X + n+ p cross section: The ratio of Rdi↵ (D9) as a function of ↵p for typical
values of |ppT | (top) and as a function of |pp| for di↵erent values of cos ✓pq (bottom) at Q2 = 4 GeV2 and x = 10�3.

of the recoil momentum. For larger pp > 0 other terms in the decay function come into play, and the behavior starts
to depend on the recoil momentum angle as follows:

(i) In perpendicular kinematics (pp ? q), which corresponds to large values of |ppT | (top) or cos ✓pq = 0 (bottom),
as one increases pp, the decrease of D[nn] is largely compensated by a relative increase of D[pp] + 2ReD[np]. The
reason for it is that an increase of the external ppT is partially compensated by integration over pnT in Eq. (73). This
happens both in the full D in the numerator and the IA D in the denominator. It produces the observed rather flat
behavior of Rdi↵ as a function of ↵p or |pp|.

(ii) In parallel kinematics (pp k q), which corresponds to ↵p ⇡ 1 (top) or cos ✓pq = ±1 (bottom), for the values
of momenta relevant in the integration in Eq. (73), an increase of the external |pp| = |ppz| cannot be compensated
by integration over pnT and D[nn], D[pp], and ReD[np] monotonically decrease (the D[pp] term is numerically
unimportant). Again, this applies both to the full D in the numerator and the IA D in the denominator.

It is worth noting that the angular dependence of the FSI e↵ect in di↵ractive deuteron breakup observed here is
very di↵erent from the one in quasi-elastic deuteron breakup at ⇠few GeV momentum transfer [31], where (a) the
FSI vanish at pp ! 0; (b) at nonzero pp the FSI e↵ect is maximal in the perpendicular direction ✓pq ⇡ 90�. The
di↵erences are explained by the di↵erent character of the pn rescattering processes in the two cases. In di↵ractive
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IA cross section,

Rdi↵(x,Q
2,↵p, |ppT |) ⌘

d�(ed ! e0Xp)[full]

d�(ed ! e0Xp)[IA]

=

R
d�̃n �(3)

r (x,Q2, xIP ) e�Bdiff |t| D(↵p,ppT ;↵n,pnT )[full]R
d�̃n �(3)

r (x,Q2, xIP ) e�Bdiff |t| D(↵p,ppT ;↵n,pnT )[IA]
. (73)

The ratio depends on the DIS variables x,Q2 and the proton LF momentum variables ↵p and |ppT |. We evaluate
Eq. (D9) using the explicit expression of the function D, Eq. (58), and the e↵ective-range approximation for the
nonrelativistic deuteron bound-state and proton-neutron scattering-state wave functions, Eqs. (45)–(47).

Vadim: The new discussion of fig.5 (former fig.4), which now has two panels. Also, the results in the bottom panel are now somewhat

di↵erent for large pp compared to my previous calculations. Figure 5 shows our predictions for Rdi↵ as a function of ↵p for
several values of |ppT | (top) and as a function of |pp| for several values of cos ✓pq (✓pq is the angle between the vectors
pp and q). The predictions are for Q2 = 4 GeV2 and x = 10�3; the results depend weakly on x in a wide interval of
small x. One can see from the figure that the FSI e↵ect (the deviation of Rdi↵ from unity) is significant for all values
of ↵p and |ppT | and shows a pronounced dependence on ↵p or, essentially equivalently, on cos ✓pq.

This behavior can be understood by examining the di↵erent contributions to the deuteron decay functions in the
numerator (full, IA + FSI) and denominator (IA only) of Eq. (73), cf. Eq. (57). In the pp ! 0 limit, the decay
functions are dominated by the term with di↵ractive scattering on the neutron,

D(pp,pn)[full] ⇡ D(pp,pn)[full, nn],

D(pp,pn)[IA] ⇡ D(pp,pn)[IA, nn]

)
(pp ! 0); (74)

this applies to the full D in the numerator as well as to the IA D in the denominator. The observed suppression of
Rdi↵ in this region results from the orthogonality of the deuteron bound-state and the proton-neutron scattering-state
wave functions Eq. (42), which is realized in the full D but not in the IA D. This feature is independent of the angle
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This behavior can be understood by examining the di↵erent contributions to the deuteron decay functions in the
numerator (full, IA + FSI) and denominator (IA only) of Eq. (73), cf. Eq. (57). In the pp ! 0 limit, the decay
functions are dominated by the term with di↵ractive scattering on the neutron,
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Rdi↵ in this region results from the orthogonality of the deuteron bound-state and the proton-neutron scattering-state
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• FSI depend on pp direction  
  • Differs from angular dependence for 
deuteron quasi-elastic break up at large 
momentum transfer, Frankfurt, Greenberg, 
Miller, Sargsian, Strikman, Z. Phys. A 352 (1995) 97                    

Guzey, Strikman, Weiss (2018)
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where it is assumed that the matrix elements are diagonal in the nucleon spin. In Eq. (51) it enters with the LF
components of the 4-momenta given by

p+N = p+d /2, k+ = xIP p
+
d /2, kT = �pnT � ppT . (53)

The function D in Eq. (51) describes the deuteron structure entering in the di↵ractive breakup process and depends
on the LF momenta of the final-state proton and neutron,

D(↵p,ppT ;↵n,pnT ). (54)

It is given by a bilinear forms in the deuteron LF wave function and includes the e↵ects of FSI. Equation (51) expresses
the factorization of low-energy deuteron structure and deep-inelastic nucleon structure achieved in the LF description.

Deuteron breakup function. It is straightforward to compute the function D using the results of in Sec. III. In the
non-relativistic approximation employed in Sec. III, it becomes a function of the 3-momenta of the final-state proton
and neutron in the deuteron rest frame,

D(↵p,ppT ;↵n,pnT ) $ D(pp,pn), (55)

where the momentum components are related by Eq.(22). The breakup amplitude Eq. (37) consists of two terms,
corresponding to di↵ractive scattering on the neutron and the proton. The function D therefore consists of four terms,
corresponding to di↵ractive scattering on the proton and the neutron in the amplitude or the complex-conjugate
amplitude,

D = (p active + n active)⇤ ⇥ (p active + n active). (56)

Each of the four terms is given by the products of overlap integrals, in which the momenta are shifted according to
whether the proton or neutron are active. In a compact notation, we write

D(pp,pn) = D(pp,pn)[nn] + D(pp,pn)[pp] + D(pp,pn)[np] + D(pp,pn)[pn], (57)

D(pp,pn)[ji] =
1
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Z
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1
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⇥

X

sp1sn1

Z
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1
2�1k, sp1, sn1|pp +

1
2k, sp, sn)  d(pp2, sp1, sn1|sd)

�2 =

⇢
+, j = n
�, j = p

, �1 =

⇢
+, i = n
�, i = p

, k = �pn � pp (58)

Notice that the mixed terms are related by complex conjugation,

D[pn] = D[np]⇤, D[np] +D[pn] = 2ReD[np]. (59)

Explicit expressions for the overlap integrals of the S-wave wave functions in the e↵ective-range approximation are
given in Appendix B.

Di↵erential cross section. The di↵erential cross section for the di↵ractive deuteron breakup process e + d !

e0 + X + n + p is obtained by contracting the hadronic tensor with the leptonic tensor and multiplying by the flux
factor and phase space elements,

d�(ed ! e0Xnp) =
2⇡↵2

emy
2

Q6
wµ⌫ W

µ⌫
d,di↵ dxd dQ

2 d�n d�p. (60)

Here ↵em is the fine-structure constant, y ⌘ (qpd)/(pepd) is the fractional lepton energy loss,

wµ⌫ = 2(pµe p
⌫
e0 + p⌫ep

µ
e0) + q2gµ⌫ (61)
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Final-state interactions in tagged DIS on D 
• FSI affect shadowing in tagged DIS (no FSI to inclusive DIS due to completeness):                                   
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FIG. 7: Corrections to the cross section of tagged DIS on deuteron d�(eD ! e0Xp) due to nuclear shadowing and FSI (left)
and due to shadowing only (right): the ratio Rtag(x,Q

2, pp) (84) as a function of ↵p for representative values of |ppT | (top two
panels) and as a function of |pp| for several values of cos ✓pq (bottom two panels) at x = 0.001 and Q2 = 4 GeV2.

At the same time, the shadowing correction and FSI terms in Eq. (83) are less singular in 1/t than the IA term.
Indeed, for example in graph b in Fig. 9, the virtuality of the active proton is essentially non-zero,

(pp + k)2 �m2
N = (Ep + Ek)

2
� |~pn|

2
�m2

N = (Ep + Ek)
2
� (Md � Ep + Ek)

2 = Md[2(Ep + Ek)�Md)]

= �t+ 2MdEk 6= 0 , (87)

because of the non-zero k momentum transfer of the active proton. Similarly, FSI in graphs c and d in Fig. 9 lead to
the shift of the pole in the virtual nucleon propagator away from t = 0.

To be more quantitative and estimate the asymptotic behavior of the shadowing and FSI terms in Eq. (83) in

16

D[IA, nn] = (2⇡)34MN [u2(pp) + w2(pp)] is the unpolarized deuteron momentum density, see Eq. (D5).
The IA contribution receives two types of corrections. First, the FSI between the spectator nucleon and the

active nucleon (graphs c and d in Fig. 9) distort the spectator nucleon spectrum. This distortion is proportional to
(Jdi↵†

n/d )µ(Jdi↵
n/d)

⌫
� (Jdi↵,IA

n/d )µ(Jdi↵,IA
n/d )⌫ coming from graphs a and c and (Jdi↵†

p/d )µ(Jdi↵
p/d)

⌫
� (Jdi↵,IA

p/d )µ(Jdi↵,IA
p/d )⌫ coming

from graphs b and d. Note that one subtracts the respective IA contributions since they are already included in
(W IA

d )µ⌫ . The corresponding contribution to the hadronic tensor is (see Sect. D):

(WFSI
d )µ⌫ =

Z
d�n(W

di↵
N (pN , q, k))µ⌫

⇥ [D(pp,pn)[nn]�D(pp,pn)[IA, nn] +D(pp,pn)[pp]�D(pp,pn)[IA, pp]] , (79)

where (W di↵
N )µ⌫ is the nucleon di↵ractive hadronic tensor (D3).

Second, the spectrum of spectator nucleons is distorted by interference of the sum of graphs a and c with the
sum of graphs b and d corresponding to di↵ractive scattering on the neutron and the proton, respectively. It results
in a shadowing correction to the e + D ! e0 + X + p cross section [3, 4, 19]. The sign and magnitude of the
resulting shadowing correction is given by the Abramowsky–Gribov–Kancheli (AGK) cutting rules [37], which encode
the unitarity relations for particle production in high-energy hadronic scattering. Following the AGK nomenclature
applied to our case of scattering on the deuteron with tagging a slow final-state nucleon, the interference terms leads
to the following two types of contributions to the e+D ! e0 +X + p cross section: the so-called unitary cut entering
with the weight of +2, which is a↵ected by the FSI between the final state proton and neutron, and the so-called
single multiplicity cut with the weight of �4/(1 + ⌘2), which is not subject to the FSI since the cut through the
Pomeron (di↵ractive exchange) does not produce slow particles. Here ⌘ is the ratio of the real and imaginary parts of
the elementary �⇤N ! XN scattering amplitude. Therefore, the shadowing (interference) contribution to the Wµ⌫

d
hadronic tensor has the following form:

(W Shad.
d )µ⌫ =

Z
d�n(W

di↵
N (pN , q, k))µ⌫Re


2D(pp,pn)[np]�

4

1 + ⌘2
D(pp,pn)[IA, np]

�
. (80)

In our numerical analysis, we used ⌘ ⇡ ⇡/2(↵IP (0) � 1) ⇡ 0.17 estimated using the Gribov–Migdal relation for the
ratio of the real and imaginary parts of the �⇤N ! XN amplitude and the W -dependence of the �⇤N ! XN cross
section parametrized in terms of the Pomeron trajectory intercept ↵IP (0) = 0.11 [17].

Combining Eqs. (77), (79) and (80), we obtain the final expression for the hadronic tensor for DIS on the deuteron
with spectator tagging in the presence of FSI and nuclear shadowing:

Wµ⌫
d (pd, q) =

(
Wµ⌫

N D(pp,pn)[IA, nn]�

Z
d�n(W

di↵
N (k))µ⌫

h
D(pp,pn)[IA, nn]�D(pp,pn)[nn]

+ D(pp,pn)[IA, pp]�D(pp,pn)[pp]� 2ReD(pp,pn)[np] +
4

1 + ⌘2
ReD(pp,pn)[IA, np]

i)
. (81)

In terms of Wµ⌫
d , the e+D ! e0 +X + p cross section reads [compare to Eq. (D6)]:

d�(eD ! e0Xp) =
2⇡↵2

em

Q4

Mdy2

Q2
wµ⌫(Wd)

µ⌫dxddQ
2 d3pp
2Ep(2⇡)3

. (82)

Substituting the expressions for the deuteron hadronic tensor Wµ⌫
d (81) and the nucleon di↵ractive hadronic tensor

(W di↵
N )µ⌫ (D3) in Eq. (82), one obtains the final expression for the e + D ! e0 + X + p cross section at small x in

presence of the e↵ects of nuclear shadowing and FSI: Factor 1/2 on the RHS as before. Maybe it makes sense to write the

integration more explicitly to show the limits of integration over xIP . In any case, the integration measure here is d�̃n.

d�(eD ! e0Xp) =
2⇡↵2

em

xQ4
Y+

(
�r(x,Q

2)D(pp,pn)[IA, nn]�Bdi↵

Z
d�̃n�

D(3)
r (x,Q2, xIP )e

�Bdiff |t|

⇥

h
D(pp,pn)[IA, nn]�D(pp,pn)[nn] +D(pp,pn)[IA, pp]�D(pp,pn)[pp]

� 2ReD(pp,pn)[np] +
4

1 + ⌘2
D(pp,pn)[IA, np]

i)dx

2
dQ2d�p , (83)
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where �r(x,Q2) = F2(x,Q2)� y2/Y+FL(x,Q2) is the reduced nucleon cross section. Note that the right-hand side of
Eq. (83) is now defined in terms of the momentum fraction with respect to the active nucleon x = Q2/(2p0q).

To quantity the e↵ects of nuclear shadowing and FSI, we introduce the cross section ratio of Rtag(x,Q2, pp):

Rtag(x,Q
2, pp, cos ✓pq) =

d�(eD ! e0Xp)

d�IA(eD ! e0Xp)
, (84)

where d�IA(eD ! e0Xp) = 2⇡↵2
em/(xQ

4)Y+�r(x,Q2)D[IA, nn](dx/2)dQ2d�p is the IA result.
Figure 7 shows our predictions for Rtag as a function of ↵p for representative values of |ppT | (top two panels) and

as a function of |pp| for several values of cos ✓pq (bottom two panels) at x = 0.001 and Q2 = 4 GeV2. The left panels
present the results of the full calculations, while in the right panels the FSI e↵ects are omitted. As is well-known
and expected [3, 4], the shadowing correction is a few percent e↵ect at small pp, but it increases with an increase
of pp. This increase is sizable for ~pp k ~q (the cos(✓pq) = ±1 cases) and strong for ~pp ? ~q (the cos(✓pq) = 0 case).
The latter is a consequence of the fact that while both IA and shadowing terms decrease with an increase of pp, the
relative decrease of the shadowing term is slower since an increase of the transverse component of ~pp is compensated

by ~kt, see also the discussion of the results shown in Fig. 10 in Sect. C. Since large values of the spectator nucleon
transverse momenta, |~pp,t|, correspond to small transverse distances between the proton and neutron in the deuteron,
this enhancement of shadowing is a natural consequence of the increased proton–neutron overlap in the transverse
plane.

While the trends of the pp behavior in the left and right panels of Fig. 7 are similar, one can see that FSI additionally
suppress Rtag. Vadim: New plots and its short discussion. To quantify the e↵ect of the FSI on the eD ! e0Xp cross section,
we neglect the shadowing correction (the interference contribution proportional to D[np]) in Eq. (83) and introduce
the ratio RFSI,

RFSI =
1

�r(x,Q2)D(pp,pn)[IA, nn]

(
1�Bdi↵

Z
d�̃n�

D(3)
r (x,Q2, xIP )e

�Bdiff |t|

⇥ [D(pp,pn)[IA, nn]�D(pp,pn)[nn] +D(pp,pn)[IA, pp]�D(pp,pn)[pp]]

)
. (85)

Our results for RFSI are shown in Fig. 8. One can see from the figure that the FSI suppress the eD ! e0Xp cross
section by as much as 5� 10%.

In our consideration of nuclear shadowing, we omitted the screening corrections corresponding to the rescattering
of the produced di↵ractive state X on the spectator nucleon [23, 38]. Our analysis showed that they are numerically
unimportant compared to the magnitude of the e↵ects considered in this section and, hence, can be safely neglected.

Q: Could we discuss more broadly whether/how tagged measurements could be used to perform novel studies of shadowing, rather than

just quantifying how shadowing a↵ects tagged measurements?

Q: Would suggest to precede this section by brief pedagogical introduction to shadowing in inclusive DIS, as the concepts are not known

to the general reader.

VI. ON-SHELL EXTRAPOLATION OF THE BOUND NEUTRON STRUCTURE FUNCTION

To extract the on-shell, physical structure function of the neutron at small x from the eD ! e0Xp cross section of
DIS on the deuteron with spectator proton tagging, one needs to extrapolate the obtained results to the neutron pole.

In the impulse approximation, the virtuality of the active neutron in the deuteron rest frame is (see Fig. 6):

t = p02 �m2
N = (pd � pp)

2
�m2

N = p2d � 2pd · pp = Md(Md � 2Ep) ⇡ Md(Md � 2mN �
|~pp|2

mN
) . (86)

This means the IA amplitude has a pole at the non-physical, negative value of the spectator nucleon kinetic energy
equal to half of the deuteron binding energy [2]. This is exactly reflected in the structure of the Paris deuteron wave
function, whose S and D-waves are parametrized as sums of poles,

Pn
J=1 Cj/(p2p +m2

J), where mJ = ↵+ (J � 1)m0

with m0 = 1 fm�1 and ↵ =
p

2mR|Ed|, where mR is the proton–neutron reduced mass and Ed is the deuteron binding
energy. One then can see from Eq. (83) that the IA contribution to the eD ! e0Xp cross section behaves as 1/t2 in
the t ! 0 limit.

Guzey, Strikman, Weiss (2018)
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Extraction of F2n from tagged DIS on D at small x 
• Virtuality of bound-state neutron:                         
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q
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pp
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p0

FIG. 6: Tagged DIS on the deuteron with spectator tagging in the impulse approximation.

deuteron breakup the typical momenta in the rescattering process are ⇠100–200 MeV; the distortion of the pn wave
function is large, and orthogonality of the scattering state to the deuteron bound state is an important feature.
In quasi-elastic deuteron breakup the typical momenta in the rescattering process are ⇠few GeV; the rescattering
process can be regarded as on-shell rescattering, and orthogonality to the deuteron bound state is not important, as
the amplitude for the system to “return” to the deuteron is negligible.

Q: Rdi↵ is already a single-tagged observable (integrated over the neutron momentum). Could/should we show any real double-tagged

observables here to illustrate the kinematic dependence of FSI? Perhaps some “di↵raction pattern” will emerge as a function of the vector

pp for fixed pn

V. THE e+D ! e0 +X + p CROSS SECTION: ROLE OF NUCLEAR SHADOWING AND FSI

This section has not been edited yet. Could easily adapt it to new notation using the D function.

Vadim: used the new notation for overlap, di↵erent definition of the hadronic tensors.

: In the long expressions below, maybe we could simplify the notation and not show the pp, pn arguments of D every time.

The leading contribution to the e+D ! e0 +X + p cross section of DIS on the deuteron with spectator tagging is
given by the impulse approximation (IA) corresponding to inclusive DIS on the bound nucleon of the deuteron and no
further interactions with the spectator nucleon, see Fig. 6. Using the Feynman graph technique of [36], one obtains
the following expression for the �⇤ +D ! X + p amplitude in IA, J IA

d :

(J IA
d )µ = 2(2⇡)3/2

p
MN

X

s0

hX|Jµ
|Ni d(pp, sp, s

0
|sd) , (75)

where hX|Jµ
|Ni denotes the nucleon �⇤N ! X matrix element; s0 is the interacting nucleon spin projection.

The hadronic tensor for tagged DIS on the deuteron with spectator tagging can be introduced using the following
relation, see, e.g., [35]:

Wµ⌫
d (pd, q) =

1

4⇡

X

X

(2⇡)4 �(4)(q + pd � pX)(J†
d)

µJ⌫
dW

µ⌫
N (pN , q) , (76)

where
P

X is a sum over all final states satisfying energy-momentum conservation, including averaging over initial
polarizations and sum over final polarizations. Substituting Eq. (75) in Eq. (76), one obtains Wµ⌫

d in the impulse
approximation:

(W IA
d )µ⌫ = Wµ⌫

N D[IA, nn] , (77)

where Wµ⌫
N is the standard nucleon hadronic tensor [compare to Eq. (D3)],

Wµ⌫
N (pN , q) =

1

4⇡

X

X

(2⇡)4 �(4)(q + pN � pX) hN |Ĵµ†
|Xi hX|Ĵ⌫

|Ni ; (78)

t = p02 �m2
N ⇡ Md(Md � 2mN � |~pp|2

mN
)

• On-shell limit for neutron corresponds to 
unphysical, negative kinetic energy of spectator → 
exactly where D wave function (Paris) has a pole                        

• Impulse approximation (IA) is the most singular in t → 0 limit, while shadowing 
and FSI terms are less singular → similar to Sargsian, Strikman, PLB 639 (2006) 223                      

20

one can show that in the t ! 0 limit,

⇢d(pp, pp) ⇠
1

t2
,

⇢d(pp, pp)� ⇢FSId (pp, pp; k) ⇠
1

t
,

⇢d(pp + k, pp) ⇠
1

t
, ⇢FSId (pp + k, pp; k) ⇠

1

t
,

⇢d(pp + k, pp + k)� ⇢FSId (pp + k, pp + k; k) ⇠ t0 . (89)

Equation (89) shows that when extrapolating to the on-shell neutron point corresponding to the t ! 0 limit, the
leading contribution to the eD ! e0Xp cross section is given by the IA term, while the shadowing and FSI corrections
considered in this work are less less singular in powers of 1/t. This shows that similarly to the model-independent
extraction of the free neutron structure function from tagged DIS on the deuteron at intermediate and large x proposed
in Ref. [2] (for recent results and applications, see Ref. [39]), this extraction procedure is also valid at small x.

Q: Would suggest to show plot of �(full)/�(IA) as a function of t, starting at t = 0, to illustrate that FSI indeed vanishes at t = 0, and

how steep the transition is from tmin to t = 0

Q: Need to discuss how realistic would be tagged neutron structure measurements at small x: What accuracy would be needed to extract

p� n di↵erence? How do we take into account that only 10–15% of events are di↵ractive?

VII. CONCLUSIONS

In this paper, we analyzed final state interactions (FSI) between the proton and the neutron with a small relative
momentum in high-energy di↵ractive e + d ! e0 + X + n + p and inclusive e + d ! e0 + X + p deep inelastic
scattering (DIS) on the deuteron with spectator tagging. For these processes, the underlying virtual photon–nucleon
process is hard inclusive di↵raction with a small momentum transfer, which allows us to treat the FSI of interest
using the well-established formalism of non-relativistic potential proton–neutron scattering. We found that the FSI
significantly suppress the e +D ! e0 +X + n + p cross section; the suppression e↵ect increases with an increase of
the spectator proton momentum pp, depends on its direction and is maximal, when ~pp is perpendicular to the virtual
photon direction.

The shadowing correction to the e+ d ! e0+X + p cross section is determined by the interference of the �⇤+D !

X + n+ p (spectator proton) and �⇤ +D ! X + p+ n (spectator neutron) amplitudes and, hence, is a↵ected by the
FSI considered in this work. We found that that the FSI enhance the nuclear shadowing e↵ect, which becomes larger
as |~pp| is increased and strongly depends on the ~pp direction.

We also examined the extrapolation of the e + d ! e0 + X + p cross section to the limit of the on-shell neutron
and found that the leading contribution to this cross section is given by the impulse approximation, while the nuclear
shadowing and FSI corrections are less singular in powers of the bound neutron virtuality. It gives a principle possibility
to safely and controllably neglect the nuclear shadowing and FSI e↵ects in this limit and to extract the free small-x
neutron structure function from data on tagged DIS on the deuteron with a spectator proton in a model-independent
way.

Appendix A: Deuteron and proton–neutron continuum wave functions in momentum representation

Not edited yet. Can adapt this section to new notation.

In momentum representation and the deuteron rest frame, the bound-state deuteron wave function has the following
explicit form:

 (M)
d (pp, sp; pn, sn) = u(pp)h

1

2
sp

1

2
sn|1Mi+

p
4⇡w(pp)

X

ML

Y2ML(p̂p)h2ML1MS |1Mih
1

2
sp

1

2
sn|1MSi , (A1)

where sp and sn are the proton and neutron spin projections, respectively; M , ML, and MS are the projections of
the deuteron total angular momentum, the orbital angular momentum, and the spin, respectively; u and w are radial
S-state and D-state wave functions; Y2ML is the spherical harmonic and p̂p is a unit vector in the direction of ~pp;

• We do not see it at pp=0 since this asymptotic behavior takes place very rapidly 
on the interval between pp=0 and t=0 → lessons for on-shell extrapolation.                     



Nuclear shadowing in polarized eD DIS 

Q2=4, 25, 100 GeV2
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• The same approach can be used for shadowing correction to deuteron spin structure 
function g1D(x), Edelmann, Piller, Weise, Z. Phys. A357 (1997) 129, PRC 57 (1998) 3392; Frankfurt, Guzey, 
Strikman, Mod. Phys. Lett. A21 (2006) 23.
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Nuclear Shadowing and Extraction of F p
2 − F n

2 at Small x 29

Q2 ≤ 1 GeV2, one expects a significant enhancement of the nuclear shadowing
effect due to the enhancement of diffraction at small Q2 by higher twist effects such
as vector meson production. This will increase nuclear shadowing by approximately
a factor of two.19

Since the diffractive structure function F D(4)
2 is known with accuracy of approx-

imately 20%,23 the accuracy of the calculation of the nuclear shadowing correction
to the deuteron structure function F D

2 is 20 × 0.03 = 0.6%. Correspondingly, the
theoretical uncertainty for the ratio of F n

2 /F p
2 extracted from the deuteron data

will be 2 × 0.6 = 1.2%, which is likely to be smaller than possible experimental
systematic errors.

For completeness, we also list predictions for the polarized deuteron structure
function gD

1 . Unlike the unpolarized case considered above when the shadowing
correction was important for the extraction of F p

2 /Fn
2 from deuterium data because

F p
2 and Fn

2 are very close at small x, the polarized gp
1 ≈ −gn

1 at small x, which
makes the shadowing effect a very small correction in the extraction of gn

1 from
polarized deuteron data, see e.g. Refs. 32 and 33. In almost complete analogy with
the unpolarized case, the deuteron structure function gD

1 can be written as a sum
of the impulse approximation and nuclear shadowing (interference) contributions

gD
1 (x, Q2) =

(
1 − 3

2
PD

)
(gp

1(x, Q2) + gn
1 (x, Q2))

− 2
1 − η2

1 + η2

∫ x0

x
dxP dq2

t ∆FD(4)(β, Q2, xP, t)ρ11
D (4q2

t + 4(xPmN )2) , (5)

where 1 − 3/2PD is the effective polarization of the proton and neutron in the
deuteron, which differs from unity due to the deuteron D-wave contribution (PD =
0.06 for the Paris nucleon–nucleon potential); ρ11

D is the electric form factor of the
deuteron polarized in the longitudinal direction, which contains the charge and
quadrupole form factor contributions34; ∆FD(4) = FD(4)

↑↑ − FD(4)
↑↓ is the difference

of the diffractive polarized nucleon structure functions. The first arrow stands for
the helicity of the photon; the second arrow indicates the helicity of the nucleon.
The ρ11

D form factor has the following representation in terms of the deuteron S
and D-wave components34

ρ11
D (4q2

t + 4(xPmN )2) =
∫

d3p

[
u(p)u(p + q) +

u(p)w(p + q)√
2

(
3
2

(pz + qz)2

(p + q)2
− 1

2

)

+
u(p + q)w(p)√

2

(
3
2

p2
z

p2
− 1

2

)

+ w(p)w(p + q)
(

9
2

(pt · (pt + qt))(p · (p + q))
p2(p + q)2

+
3
4

p2
z

p2
+

3
4

(pz + qz)2

(p + q)2
− 1
)]

. (6)
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Fig. 4. The ratio gD
1 /[(1 − 3/2PD)gN

1 ] as a function of x. The solid curve corresponds to Q =
2 GeV; the dashed curve corresponds to Q = 5 GeV; the dash-dotted curve corresponds to
Q = 10 GeV.

Since ∆F D(4) is a new and unmeasured quantity (it can be measured in polarized
diffractive DIS on the nucleon), we cannot directly use the leading twist theory of
nuclear shadowing to estimate the shadowing correction to gD

1 . However, making an
assumption that the relative strength of diffraction mediated by the non-vacuum
exchange (responsible for the polarized structure function g1 at small x) is the
same as that of the exchange with vacuum quantum numbers (responsible for the
unpolarized F2 at small x), one obtains that

∆FD(4)

gN
1

= 2
FD(4)

2

FN
2

, (7)

where gN
1 = (gp

1 + gn
1 )/2 and F N

2 = (F p
2 + Fn

2 )/2. This assumption allows one to
express the shadowing correction to the ratio of the deuteron and nucleon spin
structure functions in terms of unpolarized diffraction on the nucleon

gD
1 (x, Q2)

2
(
1 − 3

2PD

)
gN
1

= 1 − 4
1 − η2

1 + η2

1(
1 − 3

2PD

) 1
FN

2 (x, Q2)

×
∫ x0

x
dxP dq2

t FD(4)
2 (β, Q2, xP, t)ρ11

D (4q2
t + 4(xPmN )2) . (8)

The assumption of Eq. (7) corresponds to the maximal shadowing correction. The
additional factor of two is a source of the generic combinatoric enhancement of
nuclear shadowing in polarized structure functions of few-nucleon nuclei compared
to the unpolarized case.35
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longitudinally-polarized  
deuteron form factor

unknown polarized proton diffractive 
structure function. Assumption of maximal  
shadowing:

• Shadowing correction to g1D(x) is a few % effect → 
negligible since g1p(x) ≈ - g1n(x) at small x 

• Similar calculations of shadowing corrections in 
polarized DIS on 3He, 7Li, 6LiD, Guzey, Strikman, PRC 
61 (2000) 014002; Bissey, Guzey, Strikman, Thomas, PRC 65 (2002) 
064317; Guzey, PRC 64 (2001) 045201
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• In eD DIS with unpolarized beam and polarized target, shadowing correction gives 
rise to T20(x) asymmetry, Frankfurt, Guzey, Strikman, Mod. Phys. Lett. A21 (2006) 23:

polarized deuteron form factor

proton diffractive 
structure function

• Nuclear shadowing gives rise to ≈ 1% T20(x) → 
small x rise of b1(x) deuteron structure function

Agrees with earlier calculations by Edelmann, Piller, 
Weise, Z. Phys. A357 (1997) 129, PRC 57 (1998) 3392
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2 at Small x 31

Figure 4 presents the results of the calculation using Eq. (8). The solid curve
corresponds to Q = 2 GeV, the dashed curve corresponds to Q = 5 GeV and the
dot-dashed curve corresponds to Q = 10 GeV.

As can be seen from Fig. 4, the shadowing correction to gD
1 could be as large as

8% at x ≈ 10−5. Needless to say that in order to achieve such low values of Bjorken x
simultaneously with Q2 ≥ 1 GeV2, one needs a collider with the polarized deuteron
beam. The available fixed-target data36 can probe gD

1 only down to x ≈ 0.004,
where the shadowing correction is very small.

It was noticed in Ref. 16 that for a spin-one target (deuteron), the cross-section
of DIS depends on the deuteron polarization even with the unpolarized beam. The
associated asymmetry

T20 =
σ+ − σ0

1
2 (σ+ + σ0)

, (9)

where σ+,0 denotes the γ∗-deuteron cross-section and the superscript denotes the
deuteron helicity, was estimated for x > 0.1 in the impulse approximation.16 Next, it
was pointed out in Ref. 37 that nuclear shadowing in unpolarized DIS on deuterium
leads to the values of the T20 asymmetry at the level of one percent at small-x.

This can be estimated as follows. The definition (9) allows one to immediately
write the expression for T20 by replacing the deuteron charge form factor in Eq. (1)
by ρ20

D ,

T20(x, Q2) =
2

FD
2 (x, Q2)

1 − η2

1 + η2

×
∫ x0

x
dxP dq2

t FD(4)
2 (β, Q2, xP, t)ρ20

D (4q2
t + 4(xPmN )2) , (10)

where

ρ20
D (4q2

t + 4(xPmN )2) =
3
2

∫
d3p

[
u(p)w(p + q)√

2

(
1 − 3(pz + qz)2

(p + q)2

)

+
u(p + q)w(p)√

2

(
1 − 3p2

z

p2

)

+ w(p)w(p + q)

(
1 − 3

2

[
(pz + qz)2

(p + q)2
+

p2
z

p2

+
(p · (p + q))(p · (p + q) − 3pz(pz + qz))

p2(p + q)2

])]
. (11)

Note that T20 vanishes, if one ignores the D-wave component of the deuteron wave
function or the nuclear shadowing correction.

This effect can also be formulated in terms of the third deuteron structure
function, bD

1 , which has the following probabilistic interpretation in terms of
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σ+ and σ0 are 𝛾*-D cross sections,  
+ and 0 are deuteron helicity
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the quark distributions38

bD
1 (x) =

1
2

∑
e2

q

[
q0(x) + q̄0(x) − 1

2
(q1(x) + q̄1(x) + q−1(x) + q̄−1(x))

]
, (12)

where qλ is the unpolarized quark distribution in the deuteron with helicity λ. The
connection between bD

1 and T20 is readily obtained using their definitions:

bD
1 (x, Q2) = −FD

2 (x, Q2)
2x

T20(x, Q2) . (13)

The factor 1/(2x) in Eq. (13) indicates that the often discussed bD
1 structure func-

tion is a rather inappropriate quantity: even small values of the physically measured
T20 asymmetry correspond to huge values of bD

1 .
The results of the calculation of the tensor asymmetry T20 and the deuteron

structure function bD
1 are presented in Fig. 5. The solid curve corresponds to Q =

2 GeV; the overlapping dashed and dash-dotted curves correspond to Q = 5 GeV
and Q = 10 GeV.

As one can see from Fig. 5(a), the obtained T20 is at the level of 0.6–0.7%.
This agrees with the analyses of Refs. 32 and 37. At the same time, bD

1 is large at
small x, as can be seen from Fig. 5(b). This is a purely kinematic effect due to the
1/(2x) factor in the definition of bD

1 , (13). The observation of surprisingly large bD
1

at small x was first presented in Refs. 32, 33 and 39.
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Fig. 5. The tensor asymmetry T20 and the bD
1 (x, Q2) structure function as functions of x. The

solid curve corresponds to Q = 2 GeV; the overlapping dashed and dash-dotted curves correspond
to Q = 5 GeV and Q = 10 GeV.
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l In inclusive unpolarized DIS on D, nuclear shadowing is a 1-2% effect, which is 
nevertheless important for the extraction of F2p(x)-F2n(x) from F2D(x).  

l In inclusive polarized DIS on D, shadowing is larger, but it is small correction for 
extraction of g1n(x) from g1D(x). However, gives rise to ~1% T20(x) and b1(x). 

l In tagged DIS on D, the shadowing correction is enhanced by the AGK 
combinatoric factor and the slower dependence on the spectator momentum than 
impulse approximation → possibility to test dynamics of nuclear shadowing. 
  
l Final-state interactions in tagged DIS on D are strong and suppressed the final 
proton spectrum. 

l The on-shell extraction exhibits very rapid dependence on spectator momentum 
→ need to develop best strategy for F2n(x) extraction. 

l Developed formalism of FSI can be readily applied to tagged polarized  DIS, 
quasi-elastic exclusive meson production and DVCS.  
  

Summary and Outlook:


