Nuclear Shadowing in Tagged DIS at small x

Vadim Guzey

Petersburg Nuclear Physics Institute (PNPI), National Research Center "Kurchatov Institute", Gatchina, Russia & University of Jyväskylä, Finland

Outline

- Nuclear shadowing in DIS at small x
- Nuclear shadowing and final-state interactions (FSI) in tagged DIS on D
- Polarized inclusive DIS on D
- Summary and Outlook

```
Workshop "Polarized Light Ion Physics with EIC",
Ghent University, Feb 5-9, 2018
```

Nuclear shadowing in DIS at small x

• Nuclear shadowing is a high-energy coherent nuclear effect suppressing the nuclear cross section (structure functions) $\sigma_A < A \sigma_N$ at small x < 0.01.

- Collinear factorization and global QCD fits translate nuclear modifications into nuclear parton distributions (nPDFs): (nDS) de Florian, Sassot, PRD 69 (2004) 074028; (HKN07) Hirai, Kumano, Nagai, PRC 76 (2007) 065207; (EPS09) Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065; (nCTEQ15) PRD93 (2016) no.8, 085037; (EPPS16) Eskola, Paakkinen, Paukkunen, Salgado EPJ C77 (2017) 163
- Open question: magnitude of shadowing for different parton flavors for x < 0.005 → we need to better understand dynamics of shadowing.

Nuclear shadowing in DIS on D at small x

- In global QCD of nPDFs, some groups ignore nuclear effects in deuterium (EPS09, DSSZ, EPPS16), some include them (HKN07, hCTEQ15).
- Even 1-2% shadowing matters for the extraction of F_{2p} - F_{2n} from deuterium data since F_{2p} - F_{2n} is small at small x: $F_{2n} F_{2p} = F_{2D} 2F_{2p} + 2\Delta^{\text{shad}}F_{2p}$

Meltnitchouk, Thomas, PRD47 (1993) 3783; Piller, Niesler, Weise, Z. Phys. A358 (1997) 403; Frankfurt, Guzey, Strikman, PRL 91 (2003) 202001

• For polarized structure functions $g_{1p} \approx -g_{1n} \rightarrow$ shadowing is a small correction for extraction of $g_{1n} - g_{1p}$ from deuteron g_{1d} .

Nuclear shadowing in DIS at small x: qualitative

- In high-energy scattering on nuclear targets, nuclear shadowing is well-understood as due to distractive, QM interference among amplitudes for interaction with N=1, 2, ...A target nucleons:
 - pion-deuteron scattering for E < 5 GeV, Glauber, PRD 100 (1955) 242; hadron-nucleus scattering, Bassel, Wilkin, PR 174 (1968) 1179
 - pion-deuteron scattering for E > 5 GeV, Gribov, Sov Phys JETP 29 (1969) 483
 - extension of Gribov-Glauber model to lepton-nucleus DIS, Frankfurt, Strikman, Phys Rept. 160 (1988) 235; Meltnitchouk, Thomas, PRD47 (1993) 3783; Armesto, Capella, Kaidalov, Lopez-Albacete, Salgado (1993); Frankfurt, Strikman, EPJ A 5 (1999) 293; Piller, Weise, Phys. Rept. 330 (2000) 1; Adeluyi, Fai, PRC 74 (2006) 054904; Frankfurt, Guzey, Strikman, Phys, Rept. 512 (2012) 255
 - calculations in dipole model also have similar shadowing mechanism, Nikolaev, Zakharov (1993); Armesto, J. Phys. G. 32 (2006) R367
- In DIS, shadowing is important, when the photon coherence length (γ^* lifetime) $l_c \sim 1/(2 m_N x)$ is compatible with inter-nucleon distance $r_{NN} \sim 1.7 \text{ fm} \rightarrow x < 0.05$.
- Magnitude of shadowing is controlled by ratio of rescattering cross section σ ~25 mb and nuclear geometrical size. For deuteron, $\sigma/(\pi R_d^2)$ ~ few percent.
- For tagged DIS, shadowing can be enhanced at t≠0 by δF_A(t)/|F_A(t)|², where F_A(t) is the nuclear factor.

Nuclear shadowing in DIS at small x: qualitative

Shadowing and diffraction:

 at high energies, γ* can interact with two target nucleons by first dissociating into hadronic state → to have small momentum transfer to each nucleon, the interaction is diffractive → no mismatch between in nucleon momenta in *in* and *out* states → interference diagram leads to shadowing

 negative (shadowing) correction due to unitarity (AGK cutting rules for multiplicities due to Pomeron exchanges)

Frankfurt, Strikman, EPJ A 5 (1999) 293

 Both shadowing and anti-shadowing arise from parton ladders (Pomerons) attaching to two different nucleons → the ladders can merge (shadowing, right, P₂) or be independent (antishadowing middle, P₁) → anti-shadowing compensates shadowing locally in rapidity ln(x_P/x) < 1, Frankfurt, Guzey, Strikman, PRC 95 (2017) no.5, 055208

Nuclear shadowing in inclusive DIS on D

- There are several ways to derive shadowing corrections.
 - direct generalization of Gribov-Glauber model to DIS + GK rule Frankfurt, Strikman, EPJ A 5 (1999) 293; Guzey, Strikman, Phys, Rept. 512 (2012) 255
 - calculations of covariant Feynman graphs with subsequent non-relativistic reduction (virtual nucleon approximation), Bertocchi, Nuovo Cim. A11 (1972) 45; Sargsian, Int. J. Mod. Phys. E10 (2001) 405

b)

- light-front perturbation theory, Stikman, Weiss, arXiv:1706. 2244.

Impulse approx.

Shadowing correction

Imaginary part of shadowing = diffractive cut due to AGK cutting rules

 $F_{2D}(x,Q^2) = F_{2p}(x,Q^2) + F_{2n}(x,Q^2)$ Frankfurt, Guzey, Strikman, PRL 91 (2003) 202001 $-2\frac{1-\eta^2}{1+n^2}B_{\text{diff}}\int_{0}^{0.1} dx_{I\!\!P} dk_t^2 F_2^{D(3)}\left(\beta, Q^2, x_{I\!\!P}\right) e^{-B_{\text{diff}} k_t^2} \rho_D\left(4k_t^2 + 4(x_{I\!\!P}m_N)^2\right)$ deuteron $B_{diff} \approx 6 \text{ GeV}^{-2}$

η=Re/Im ≈ 0.17

Leading-twist proton diffractive structure function measured@HERA form factor

Diffraction in ep DIS at HERA

• One of main HERA results is discovery of large fraction of diffractive events (~10%) \rightarrow diffraction is a leading twist phenomenon (H1 and ZEUS, 1994-2006)

Collinear factorization (Collins '97) → diffractive parton distributions

$$F_2^{D(4)}(x, Q^2, x_{\mathbb{P}}, t) = \beta \sum_{j=q, \bar{q}, g} \int_{\beta}^1 \frac{dy}{y} C_j\left(\frac{\beta}{y}, Q^2\right) f_j^{D(4)}(y, Q^2, x_{\mathbb{P}}, t)$$

• Measurement of the t-dependence of diffractive cross section: $B_{diff} = 6 GeV^{-2} \pm 15\%$

$$F_{2}^{D(4)}(x, Q^{2}, x_{\mathbb{P}}, t) = e^{B_{\text{diff}}(t - t_{\text{min}})} F_{2}^{D(4)}(x, Q^{2}, x_{\mathbb{P}}, t_{\text{min}})$$
$$F_{2}^{D(3)}(x, Q^{2}, x_{\mathbb{P}}) = \int_{-1 \text{ GeV}^{2}}^{t_{\text{min}}} dt F_{2}^{D(4)}(x, Q^{2}, x_{\mathbb{P}}, t)$$

• Calculation as in the inclusive case:

≈ 50% enhancement due to AGK rules (only partial cancellation)

$$F_{2D}(x,Q^{2},\vec{p}) = F_{2D}^{\mathrm{IA}}(x,Q^{2},\vec{p}) - \frac{3-\eta^{2}}{1+\eta^{2}} \int_{x}^{0.1} dx_{I\!P} \frac{d^{2}\vec{k_{t}}}{\pi} F_{2}^{D(4)}\left(\beta,Q^{2},x_{I\!P},t\right) \\ \times \left[u(\vec{p})u(\vec{p}+\vec{k})+w(\vec{p})w(\vec{p}+\vec{k})\left(\frac{3}{2}\frac{(\vec{p}\cdot(\vec{p}+\vec{k}))^{2}}{p^{2}(p+k)^{2}}-\frac{1}{2}\right)\right],$$

Nuclear shadowing is larger in the tagged DIS than in the inclusive case due to:

- AGK enhancement
- IA drops with spectator momentum faster than the shadowing term

Nuclear shadowing in unpolarized tagged DIS on D

Example of calculations for
$$R(x,Q^2,\vec{p}) = \frac{F_{2D}(x,Q^2,\vec{p})}{F_{2D}^{IA}(x,Q^2,\vec{p})}$$

- Nuclear shadowing increases with an increase of spectator momentum:
 - larger pt correspond to smaller transverse distance between p and n \rightarrow more shadowing
 - no symmetry along z; forward-moving spectator corresponds to larger shadowing

• Extraction $F_{2n}(x)$:

- measure proton spectrum as function of $p \rightarrow$ determine/verify the shadowing correction
 - \rightarrow correct data for the shadowing effect

Final-state interactions in tagged DIS on D

• Shadowing correction comes from interference of diffractive scattering on p and n in D \rightarrow in tagged DIS, there are potential FSI between p and n

- Momentum transfer is ~ few 100 MeV → strong FSI between the final-state p and n, which can be calculated using potential scattering, Frankfurt, Guzey, Strikman, Mod. Phys. Lett. A21 (2006) 23; Guzey, Strikman, Weiss (2018), JLab LDRD project "Physics potential of polarized light ions with EIC@JLab"
- Plane wave pn wave function \rightarrow pn continuum wave function

$$(J_{n/d}^{\text{diff}})^{\mu} = (J_{n/d}^{\text{diff,IA}})^{\mu} + (J_{n/d}^{\text{diff,FSI}})^{\mu} = \sqrt{2(2\pi)^3 2E_p} \sum_{s'_n,s'} j_{N,\text{diff}}^{\mu}(k) \int d^3 p'_p \psi_{NN}^*(p'_p + k/2, p_p + k/2) \Psi_d(p'_p, s'_p; p', s'_p) \psi_{NN}^*(p'_p + k/2) \Psi_d(p'_p, s'_p) \psi_{NN}^*(p'_p + k/2) \Psi_d(p'_p, s'_p) \psi_{NN}^*(p'_p + k/2) \Psi_d(p'_p, s'_p) \psi_{NN}^*(p'_p + k/2) \psi_{NN}^*(p'_p + k/2) \Psi_d(p'_p, s'_p) \psi_{NN}^*(p'_p + k/2) \psi_{NN}^*(p'_p + k$$

• FSI in e+d
$$\rightarrow$$
 e+X+p+n

$$R_{diff}(x, Q^{2}, \alpha_{p}, |\mathbf{p}_{pT}|) \equiv \frac{d\sigma(ed \rightarrow e'Xp)[\text{full}]}{d\sigma(ed \rightarrow e'Xp)[\text{IA}]} \stackrel{\text{H}}{\underset{\text{C}}{\text{H}}} 0.8$$

$$= \frac{\int d\tilde{\Gamma}_{n} \sigma_{r}^{(3)}(x, Q^{2}, x_{I\!\!P}) e^{-B_{diff}|t|} D(\alpha_{p}, \mathbf{p}_{pT}; \alpha_{n}, \mathbf{p}_{nT})[\text{full}]}{\int d\tilde{\Gamma}_{n} \sigma_{r}^{(3)}(x, Q^{2}, x_{I\!\!P}) e^{-B_{diff}|t|} D(\alpha_{p}, \mathbf{p}_{pT}; \alpha_{n}, \mathbf{p}_{nT})[\text{IA}]} 0.6$$

$$D = (p \text{ active} + n \text{ active})^{*} \times (p \text{ active} + n \text{ active})$$

- FSI depend on pp direction
- Differs from angular dependence for deuteron quasi-elastic break up at large momentum transfer, Frankfurt, Greenberg, Miller, Sargsian, Strikman, Z. Phys. A 352 (1995) 97

Extraction of F_{2n} from tagged DIS on D at small x

Virtuality of bound-state neutron:

$$t = p'^2 - m_N^2 \approx M_d (M_d - 2m_N - \frac{|\vec{p_p}|^2}{m_N})$$

 On-shell limit for neutron corresponds to unphysical, negative kinetic energy of spectator → exactly where D wave function (Paris) has a pole

• Impulse approximation (IA) is the most singular in t \rightarrow 0 limit, while shadowing and FSI terms are less singular \rightarrow similar to Sargsian, Strikman, PLB 639 (2006) 223

$$\begin{split} \rho_d(p_p, p_p) &\sim \frac{1}{t^2}, \\ \rho_d(p_p, p_p) - \rho_d^{\text{FSI}}(p_p, p_p; k) &\sim \frac{1}{t}, \\ \rho_d(p_p + k, p_p) &\sim \frac{1}{t}, \\ \rho_d(p_p + k, p_p + k; k) &\sim t^0. \end{split}$$

• We do not see it at $p_p=0$ since this asymptotic behavior takes place very rapidly on the interval between $p_p=0$ and $t=0 \rightarrow lessons$ for on-shell extrapolation.

Nuclear shadowing in polarized eD DIS

The same approach can be used for shadowing correction to deuteron spin structure function g_{1D}(X), Edelmann, Piller, Weise, Z. Phys. A357 (1997) 129, PRC 57 (1998) 3392; Frankfurt, Guzey, Strikman, Mod. Phys. Lett. A21 (2006) 23.

$$g_{1}^{D}(x,Q^{2}) = \left(1 - \frac{3}{2}P_{D}\right)(g_{1}^{p}(x,Q^{2}) + g_{1}^{n}(x,Q^{2}))$$

$$-2\frac{1 - \eta^{2}}{1 + \eta^{2}}\int_{x}^{x_{0}} dx_{\mathbb{P}} dq_{t}^{2} \Delta F^{D(4)}(\beta,Q^{2},x_{\mathbb{P}},t)\rho_{D}^{11}(4q_{t}^{2} + 4(x_{\mathbb{P}}m_{N})^{2})$$

$$unknown polarized proton diffractive structure function. Assumption of maximal shadowing:$$

$$\frac{\Delta F^{D(4)}}{g_{1}^{N}} = 2\frac{F_{2}^{D(4)}}{F_{2}^{N}} \qquad \text{longitudinally-polarized deuteron form factor}$$
Shadowing correction to $g_{1D}(x)$ is a few % effect \rightarrow
negligible since $g_{1p}(x) \approx -g_{1n}(x)$ at small x
Similar calculations of shadowing corrections in polarized DIS on 3He, 7Li, 6LiD, Guzey, Strikman, PRC 61 (2000) 014002; Bissey, Guzey, Strikman, Thomas, PRC 65 (2002) 064317; Guzey, PRC 64 (2001) 045201

14

Nuclear shadowing in polarized eD DIS (2)

 In eD DIS with unpolarized beam and polarized target, shadowing correction gives rise to T₂₀(x) asymmetry, Frankfurt, Guzey, Strikman, Mod. Phys. Lett. A21 (2006) 23:

0.001

0

10

 10^{-3}

Agrees with earlier calculations by Edelmann, Piller, Weise, Z. Phys. A357 (1997) 129, PRC 57 (1998) 3392

Summary and Outlook:

• In inclusive unpolarized DIS on D, nuclear shadowing is a 1-2% effect, which is nevertheless important for the extraction of $F_{2p}(x)$ - $F_{2n}(x)$ from $F_{2D}(x)$.

• In inclusive polarized DIS on D, shadowing is larger, but it is small correction for extraction of $g_{1n}(x)$ from $g_{1D}(x)$. However, gives rise to ~1% $T_{20}(x)$ and $b_1(x)$.

• In tagged DIS on D, the shadowing correction is enhanced by the AGK combinatoric factor and the slower dependence on the spectator momentum than impulse approximation \rightarrow possibility to test dynamics of nuclear shadowing.

• Final-state interactions in tagged DIS on D are strong and suppressed the final proton spectrum.

• The on-shell extraction exhibits very rapid dependence on spectator momentum \rightarrow need to develop best strategy for $F_{2n}(x)$ extraction.

• Developed formalism of FSI can be readily applied to tagged polarized DIS, quasi-elastic exclusive meson production and DVCS.