JLEIC IR and Forward Detection

Selected Detector Topics

Rik Yoshida

2/7/18 Polarized Light lons at EIC, Gent. Belgium

Office of

Science

Outline

- JLEIC Accelerator
- What we need to measure
- JLEIC Detector
 - -Central Detector
 - -Forward Detectors
 - Charged Particle Detection
 - Neutral Particle Detection
 - Some examples
 - -Accessing the JLEIC simulation
 - -Measuring high-x (low-x) at EIC
- Conclusions

Jefferson Lab Electron-Ion Collider

energy range:

E_e: **3 to 12 GeV** E_p: **40 to 100-400 GeV** √S: **20 to 65- 140 GeV** (upper limit depends on magnet tech. choice)

- Electron complex
 - CEBAF
 - Electron collider ring
- Ion complex
 - Ion source
 - SRF linac
 - Booster
 - Ion collider ring
- Fully integrated IR and detector
- DC and bunched beam coolers

Pol. Light lons at EIC, Gent

April 2017 Update

Jefferson Lab

Luminosity and Energy range of JLEIC

Pol. Light lons at EIC, Gent

JLEIC IR Design Considerations

Two opposing needs:

- FFQ's close together for higher luminosity
- Enough space for detector for excellent measurement

Integration of Extended Detector with the Acclerator

EIC detectors must be extremely well integrated with the accelerator

Jefferson Lab

Pol. Light lons at EIC, Gent

Crossing Angle and Event Symmetry

son Lab

JLEIC Detector (Central Area)

Forward Hadron Detection

- 50 mrad crossing angle
 - No parasitic collisions, fast beam separation. Room for dipoles and detectors forward. (1m separation of beams at ~+30 m)
- Two forward charged hadron detector regions:
 - Region 1: Small dipole covering scattering angles from 0.5 up to a few degrees (before quads)
 - Region 2: Far forward, up to one degree, for particles passing through (large aperture) accelerator quads. Use second dipole for precision measurement. (Hi Res)
- Neutral Hadron detection (Zero Degree Calorimeter) _{Itra forward}

Tracking Charged Particles with Large Momentum

٠

•

Acceptance for Forward Protons

Acceptance for $X_L \approx 1$

Far-Forward Acceptance for Ion Fragments

Forward geometry will provide ~100% acceptance for all cases

Very Forward Neutrons

- Neutrons uniformly distributed within ±1° horizontal & vertical angles around proton beam
- Each quad aperture = B max / (field gradient @ 100 GeV/c)

Neutron Acceptance for ep->e'Xn

Doubles kinematic coverage ~5-10 times acceptance compared to HERA

Pol. Light lons at EIC, Gent

Using Far Forward Detectors

Detection of ${}^{1}H(e,e'K')\Lambda$

Figure from K.Park Pol. Light lons at EIC, Gent

Using Far Forward Detectors

e+Pb208 collisions at 10 x 40 GeV/u

Vasiliy Morozov

Geometric Tagging R&D at JLEIC

Pol. Light lons at EIC, Gent

Neutron Calorimeter Example (ZEUS)

- Lead-Scintillator (compensating) calorimeter
- 7 interaction-length
- Had resolution of 65%/VE
- "Forward Neutron Tracker" was installed later (Width ~1.5 cm)

500 GeV Neutron \rightarrow 3% Energy Resolution

10

X (cm)

 $E_{EIC} = E_{HERA}/10$, so now neutrons are ~50 GeV

65%/VE \rightarrow 9% resolution

ZEUS Uranium-Scintillator Calorimeter was 35%/VE so 5% resolution.

Is this good enough? Do we need something better? What is the position resolution we need?

What about $\Lambda \rightarrow n pi$? 36% br. Is it possible? Better acceptance than p pi? Can we reconstruct this?

JLEIC Simulation in Container

GEMC environment is relatively complex to set up. Running JLEIC simulation in GEMC on a new platform (e.g. your laptop) used to take a considerable effort.

Solved by using "Containers" (Docker)

- Container = very lightweight Virtual Machine
 - Not running full OS with all its daemons Ο and services
 - Does not reserve large amounts of system 0 resources (RAM, CPU)
- Primary use: Provides complete software stack with all dependencies
 - Running on laptop/desktop Ο
 - Running on batch farm Ο

son Lab

Reduces installing and running JLIEC simulation to 4 steps.

Takes ~10 min. depending on your download speed. Runs on Mac/PC/linux. Full Instructions Coming Soon!

D. Lawrence, M. Diefenthaler, M. Ungaro, Z. Zhao

Highly asymmetric collision at the parton level

Since x ->1, this is like the beam energy

Parton energy ~100 GeV

Electron Beam ~10 GeV

Where does the final state go?

Pol. Light lons at EIC, Gent

High-x configuration at EIC

This is hard to measure: a jet close to beam pipe

This is why HERA measurement have big bins for high-x Can we do better at LHeC and EIC? Yes.. in principle..

Detector Concept for High-x I

Electron is "always" 10 GeV: use TRD to ID, use conventional calorimeter. Measure angle to get Q².

Jet energy needs to be measured as well as possible for x: use particle flow.

30%/root(E)? If so 3-5% resolution on x (0.5 to 1)

Pol. Light lons at EIC, Gent

Detector Concept for High-x II

Low-x configuration at EIC

Left side is essentially fixed target kinematics

Large Dipole Concept

Can we live with the smaller central tracking volume?

$$p\left[\frac{GeV}{c}\right] = 0.3 \text{ B[T] R[m]}$$

For L = 0.5 m, B = 1.5 T and p= 10 GeV s \approx 5mm so 50 um measurement of s gives a ~1% measurement of p at 10 GeV.

Doesn't sound impossible.

Electron Beam Shield

Can we get the electron beam though the dipoles?

MgB₂ Shield Prototype Statera et al.

Stony Brook Magnetic Cloak N. Feege et al.

Conclusion

- Reviewed some aspects of the current JLEIC detector design.
- Designed to have nearly 100% acceptance for all parts of the event including the far forward part.
- Fully integrated with the accelerator design.
- Simulations Container to test performance for your favorite physics coming soon!
- High-x was not a high priority consideration in this phase of the design.
- Some thoughts on high-x (and low-x) performance enhancements were presented.

EXTRAS

Angular Acceptance of

• Quad apertures = B max / (field gradient @ 100 GeV/c)

Jefferson Lab

Pol. Light lons at EIC, Gent

∆p/p

 $\Delta \mathbf{p}/\mathbf{p}$

Elastic J/Psi Production in the EIC Detector

Pol. Light lons at EIC, Gent

JLEIC Detector (Central Area)

Large Dipole Concept

Activity Name	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
12 GeV Operations																
12 GeV Upgrade																
FRIB																
EIC Physics Case																
NSAC LRP					_											
NAS Study																
CD0																
EIC Design, R&D						p	re-proj	ect	on-	project						
Pre-CDR, CDR							Pre-C	DR	CD	R						
CD1(Down-select)																
CD2/CD3																
EIC Construction																

CD0 = DOE "Mission Need" statement; CD1 = design choice and site selection CD2/CD3 = establish project baseline cost and schedule

