Highlights of the production of (anti-) (hyper-)nuclei and exotica with ALICE at the LHC

06/27/2018 HYP2018 Portsmouth, VA

Benjamin Dönigus

for the ALICE Collaboration

Institut für Kernphysik Goethe Universität Frankfurt

Content

- Introduction
- ALICE
- (Anti-)nuclei
- (Anti-)hypertriton
- Exotica
- Summary/Conclusion

Motivation

A. Andronic et al., PLB 697, 203 (2011) and references therein for the model, figure from A. Andronic, private communication

- Explore QCD and QCD inspired model predictions for (unusual) multi-baryon states
- Search for rarely produced anti- and hyper-matter
- Test model predictions, e.g. thermal and coalescence
- → Understand production mechanisms

Motivation

A. Andronic et al., PLB 697, 203 (2011) and references therein for the model, figure from A. Andronic, private communication

- Explore QCD and QCD inspired model predictions for (unusual) multi-baryon states
- Search for rarely produced anti- and hyper-matter
- Test model predictions, e.g. thermal and coalescence
- → Understand production mechanisms
- → Basis are light (anti-)nuclei

Thermal model

- Key parameter at LHC energies:
 - chemical freeze-out temperature T_{ch}
- Strong sensitivity of abundance of nuclei to choice of T_{ch} due to:
 - 1. large mass m
 - 2. exponential dependence of the yield ~ $\exp(-m/T_{ch})$
- → Binding energies small compared to T_{ch}

Coalescence (I)

J. I. Kapusta, PRC 21, 1301 (1980)

- Nuclei are formed by protons and neutrons which are nearby in space and have similar velocities (after kinetic freeze-out)
- Produced nuclei
- → can break apart
- → created again by final-state coalescence

T. Anticic et al. (NA49 Collaboration) PRC 94, 044906 (2016) Production probability of nuclei is usually quantified through a coalescence parameter B_A using

$$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

• B_A often connected to the coalescence volume (in momentum space p_0)

$$B_A = \left(\frac{4\pi}{3}p_0^3\right)^{A-1}\frac{M}{m^A}$$

Large Hadron Collider at CERN

18 Portsmouth - Benjamin Donigus

Large Hadron Collider at CERN

ALICE

18 Portsmouth - Benjamin Donigus

Specificity: low-momentum tracking and particle identification in a highmultiplicity environment

ITS (*Iη*I<0.9)

- 6 Layers of silicon detectors
- Trigger, tracking, vertex, PID (d*E*/d*x*)

ITS dE/dx

ITS (*Iη*I<0.9)

- 6 Layers of silicon detectors
- Trigger, tracking, vertex, PID (d*E*/d*x*)

TPC (*Iη*I<0.9)

- Gas-filled ionization detection volume
- Tracking, vertex, PID (d*E*/d*x*)

HYP2018, Portsmouth - Benjamin Dönigus

ITS (*|η*|<0.9)

- 6 Layers of silicon detectors
- Trigger, tracking, vertex, PID (d*E*/d*x*)

TPC (|η|<0.9)

- Gas-filled ionization detection volume
- Tracking, vertex, PID (dE/dx)
- Weak decay reconstruction (topological)

TOF (ΙηΙ<0.9)

- Multi-gap resistive plate chambers
- PID via velocity determination

HYP2018, Portsmouth - Benjamin Dönigus

ITS (|η|<0.9)

- 6 Layers of silicon detectors
- Trigger, tracking, vertex, PID (d*E*/d*x*)

TPC (|η|<0.9)

- Gas-filled ionization detection volume
- Tracking, vertex, PID (d*E*/dx)
- Weak decay reconstruction (topological)

TOF (|η|<0.9)

- e Multi-gap resistive plate chambers
 - PID via velocity determination

V0 [V0A (2.8<η<5.1) & V0C (-3.7<η<-1.7)]

- Forward arrays of scintillators
- Trigger, beam gas rejection
- Multiplicity estimator:
- Event selection based on total charge deposited in the VOA and VOC detectors ("VOM")
- estimated as the average number of primary charged tracks in IηI<0.5

Pb

Pb

Interlude: Centrality

Central Pb-Pb collision: High multiplicity = large $\langle dN/d\eta \rangle$ High number of tracks (more than 2000 tracks in the detector)

Peripheral Pb-Pb collision: Low multiplicity = small $\langle dN/d\eta \rangle$ Low number of tracks (less than 100 tracks in the detector)

Particle Identification

Low momenta:

Nuclei are identified using the d*E*/d*x* measurement in the Time Projection Chamber (TPC)

Higher momenta:

Velocity measurement with the Time-of-Flight (TOF) detector is used to calculate the m^2 distribution

(Anti-)Nuclei

(GeV/c)

d²N/(dydp_T)

10-

10-

10⁻³

ALICE Collaboration: PRC 93, 024917 (2016)

ALICE

Pb-Pb

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- pp spectrum shows no sign of radial flow

10⁻²

10⁻³

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- MB pp spectrum shows no sign of radial flow \rightarrow multiplicity bins show hardening

pp

ALICE Preliminary

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- MB pp spectrum shows no sign of radial flow → developing nicely

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- MB pp spectrum shows no sign of radial flow → developing nicely

³He

ALICE Collaboration: PRC 93, 024917 (2016)

- Dashed curves represent individual Blast-Wave fits
- Spectrum obtained in 2 centrality classes in Pb-Pb and for NSD collisions in p-Pb

- Dashed curves represent individual Blast-Wave fits
- Spectrum obtained in 3 centrality classes in Pb-Pb and for NSD collisions in p-Pb

³He

- Dashed curves represent individual Blast-Wave fits
- Spectrum obtained in 3 centrality classes in Pb-Pb and in 4 multiplicity classes in p-Pb

³He and t

ALICE Collaboration, arXiv:1709.08522, PRC 97 (2018) 024615 p_T (GeV/c)

• First "spectrum" measured in pp collisions at 7 TeV for ³He and anti-³He

 t and anti-t measurement difficult, (anti-)t/(anti-)³He agrees with unity HYP2018, Portsmouth - Benjamin Dönigus

LHC: factory for anti-matter and matter ALICE

 Anti-nuclei / nuclei ratios are consistent with unity (similar to other light particle species)

GOETHE

UNIVERSITÄT

FRANKFURT AM MAIN

- Ratios exhibit constant behavior as a function of $p_{\rm T}$ and centrality
- Ratios are in agreement with the coalescence and thermal model expectations

ALICE Collaboration: PRC 93, 024917 (2016) HYP2018, Portsmouth - Benjamin Dönigus

HYP2018, Portsmouth - Benjamin Dönigus

Also in pp multiplicity intervals, anti-deuterons and deuterons are produced equally HYP2018, Portsmouth - Benjamin Dönigus 29

LHC: factory for anti-matter and matter

GOETHE

FRS

FURT AM MAIN

ITÄT

Also in pp multiplicity intervals, anti-deuterons and deuterons are produced equally HYP2018, Portsmouth - Benjamin Dönigus 30

Anti-Alpha

For the full statistics of 2011 ALICE identified 10 Anti-Alphas using TPC and TOF

STAR observed the Anti-Alpha in 2010: *Nature 473, 353 (2011)*

Anti-Alpha

For the full statistics of 2015 ALICE identified 16 Anti-Alphas using TPC and TOF

STAR observed the Anti-Alpha in 2010: *Nature 473, 353 (2011)*

Mass dependence

GOETHE

VFRS

KFURT AM MAIN

- Nuclei production yields follow an exponential decrease with mass as predicted by the thermal model
- In Pb-Pb the penalty factor for adding one baryon is ~300 (for particles and antiparticles)

ALICE Collaboration, arXiv:1710.07531, NPA 971, 1 (2018)

Mass dependence

Nuclei production yields follow an exponential

decrease with mass as predicted by the thermal model

In Pb-Pb the penalty factor for adding one baryon is ~300 and in p-Pb is ~600

Thermal model fits

- Different models describe particle yields including light (hyper-)nuclei well with T_{ch} of about 156 MeV
- Including nuclei in the fit causes no significant change in $T_{\rm ch}$

HYP2018, Portsmouth - Benjamin Dönigus

T

Collaboration, arXiv:1710.07531 1, 1 (2018)

ALICE

Thermal model fits

- Different models describe particle yields including light (hyper-)nuclei slightly worse at higher collision energy with a T_{ch} of about 153 MeV
- Including nuclei in the fit causes no significant change in $T_{\rm ch}$

Hypernuclei

Hypertriton identification

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

> Bound state of Λ , p, n $m = 2.991 \text{ GeV}/c^2 (B_{\Lambda} = 130 \text{ keV})$ \rightarrow rms radius: 10.3 fm Decay modes: $^{3}_{\Lambda}\text{H} \rightarrow ^{3}\text{He} + \pi^{-}$ $^{3}_{\Lambda}\text{H} \rightarrow ^{3}\text{H} + \pi^{0}$ $^{3}_{\Lambda}\text{H} \rightarrow \text{d} + \text{p} + \pi^{-}$ $^{3}_{\Lambda}\mathrm{H} \rightarrow \mathrm{d} + \mathrm{n} + \pi^{0}$

+ anti-particles

→ Anti-hypertriton was first observed by the STAR Collaboration:

Science 328,58 (2010)

42

Hypertriton signal

• Peaks are clearly visible for particle and anti-particle \rightarrow Extracted yields in 3 p_T bins and 2 centrality classes

• Peaks are also clearly visible for particle and anti-particle \rightarrow Extracted yields in 4 p_T bins and 3 centrality classes

Hypertriton spectra

• Anti-hypertriton/Hypertriton ratio consistent with unity vs. p_{T}

Hypertriton yield

 Production in 3 centrality classes shows increase of production probability with increasing multiplicity

Hypertriton yield

- Production in 3 centrality classes shows increase of production probability with increasing multiplicity
- Ratio between anti-hypertriton-to-hypertriton unity for all centralities

Hypertriton yield vs. B.R.

ALICE

ALICE Collaboration: PLB 754, 360 (2016)

- The hypertriton branching ratio is not well known, only constrained by the ratio between all charged channels containing a pion
- Theory which prefers a value of around 25% gives a lifetime of the hypertriton close to the one of the free Λ

HYP2018, Portsmouth - Benjamin Dönigus

Hypertriton yield vs. B.R.

- The hypertriton branching ratio is not well known, only constrained by the ratio between all charged channels containing a pion
- Theory which prefers a value of around 25% gives a lifetime of the hypertriton close to the one of the free Λ

HYP2018, Portsmouth - Benjamin Dönigus

- Recently extracted lifetimes significantly below the free Λ lifetime
- Not expected from theory!
- Data before 2010 from emulsions
- Currently most precise data coming from heavy-ion collisions
- Better precision expected from larger data samples to be collected

P. Braun-Munzinger, bd, Invited review NPA in preparation

 Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
- 1.) ct spectra (default)

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
- 1.) ct spectra (default)

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
 1.) ct spectra (default)
 2.) "unbinned" method using sideband region for fitting the background and the signal region for extracting the lifetime of the hypertriton

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
 1.) ct spectra (default)
 2.) "unbinned" method using sideband region for fitting the background and the signal region for extracting the lifetime of the hypertriton

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
 1.) ct spectra (default)
 2.) "unbinned" method using sideband region for fitting the background and the signal region for extracting the lifetime of the hypertriton

Exotica

HypHI Collaboration observed signals in the $t+\pi$ and $d+\pi$ invariant mass distributions

C. Rappold et al., PRC 88, 041001 (2013)

HYP2018, Portsmouth - Benjamin Dönigus

H-Dibaryon

- Hypothetical bound state of *uuddss* ($\Lambda\Lambda$)
- First predicted by Jaffe in a bag model calculation (*PRL 195, 38* +617 (1977))
- Recent lattice calculations suggest (Inoue et al., PRL 106, 162001 (2011) and Beane et al., PRL 106, 162002 (2011)) a bound state (20-50 MeV/c² or 13 MeV/c²)
- Shanahan et al., PRL 107, 092004 (2011) and Haidenbauer, Meißner, PLB 706, 100 (2011) made chiral extrapolation to a physical pion mass and got as result:
 - the H is unbound by 13±14 MeV/c²
 or lies close to the Ep threshold
- \rightarrow Renewed interest in experimental searches

Invariant mass analyses of the two hypothetical particles lead to no visible signal \rightarrow Upper limits set

Search for a bound state of Λn and $\Lambda \Lambda$, shows no hint of signal \rightarrow upper limits set (for different lifetimes assumed for the bound states) HYP2018, Portsmouth - Benjamin Dönigus 60

Dependence on BR

If the Λ lifetime is assumed, the upper limits are away from the expectations, as long as the branching ratio stays reasonable

Hypertriton (B_{Λ} : 130 keV) and Anti-Alpha (B/A: 7 MeV) yields fit well with the thermal model expectations

→ Upper limits of $\Lambda\Lambda$ and Λ n are factors of >25 below the model values HYP2018, Portsmouth - Benjamin Dönigus 62

Oulook & Summary

Expectations

- Run 3 & Run 4 (2021 2029) of LHC will deliver much more statistics (50 kHz Pb-Pb collision rate)
- Upgraded ALICE detector will be able to cope with the high luminosity
- TPC Upgrade: GEMs for continous readout
- ITS Upgrade: less material budget and more precise tracking for the identification of hyper-nuclei
- Physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4

ITS Upgrade TDR: J. Phys. G 41, 087002 (2014)

State	$\mathrm{d}N/\mathrm{d}y$	B.R.	$\langle Acc \times \epsilon \rangle$	Yield
$^{3}_{\Lambda}H$	1×10^{-4}	25%	$11 \ \%$	44000
$\overline{\overline{4}}H$	2×10^{-7}	50%	7~%	110
${\overline 4\over\Lambda} He$	2×10^{-7}	32%	8 %	130

Expectations

Expected significance >5s for the full data set to be collected in Run 3 & 4

Conclusion

- ALICE@LHC is well suited to study light (anti-)(hyper-)nuclei and perform searches for exotic bound states (A<5)
- Copious production of loosely bound objects measured by ALICE as predicted by the thermal model
- Thermal model describes the (anti-)(hyper-)nuclei data rather well
- d/p ratio shows increasing trend for pp and p-Pb collisions and seems to saturate for Pb-Pb multiplicities (increase: coalescence, saturation: thermal)
- Most recent measurement of the hypertriton lifetime is in agreement with the free Λ lifetime and the current world average

Conclusion

- Only a selection of results possible
- See also
 - L. Fabbietti: Femptoscopy in pp and pA collisions at GeV and TeV energies as a too to shed light on the hyperon puzzle (Mo 14:35)
 - D. Mihaylov: Baryon-baryon femptoscopy in pp and p-Pb collisions (Poster)
 - R. Lea: Studying the strong interaction for meson-baryon with femptoscopy in pp collisions with ALICE (Th 16:35 Session B2)

Backup

Experiment: ALICE

→ Distance-of-Closest-Approach (DCA) distributions can be used to separate primary particles (produced in the collision) from secondary particles (from knock-out of the material, e.g. beam pipe)

→ Knock-out is a significant problem at low p_T , but only for nuclei not for anti-nuclei

→ Distance-of-Closest-Approach (DCA) distributions can be used to separate primary particles (produced in the collision) from secondary particles (from knock-out of the material, e.g. beam pipe)

→ Knock-out is a significant problem at low p_T , but only for nuclei not for anti-nuclei

Deuterons

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- MB pp spectrum shows no sign of radial flow \rightarrow multiplicity bins show hardening (GeV/c

V0M Multiplicity Classes

Blast-Wave p+p

Blast-Wave d+d Coalescence d

2.2

1.6

1.2

0.8

0.6

04

5

10

15

20

25

HYP2018, Portsmouth - Benjamin Dönigus

🕁 p+p ∩ d+d

30

35

Multiplicity classes: pp

• VOM Multiplicity Classes: $\left\{ \begin{array}{l} I \rightarrow \langle dN_{ch}/d\eta \rangle \approx 3.5 \times \langle dN_{ch}/d\eta \rangle^{\text{INEL}>0} \\ \vdots \\ X \rightarrow \langle dN_{ch}/d\eta \rangle \approx 0.4 \times \langle dN_{ch}/d\eta \rangle^{\text{INEL}>0} \end{array} \right\}$

Table A.1: Event multiplicity classes, their corresponding fraction of the INEL>0 cross-section ($\sigma/\sigma_{INEL>0}$) and their corresponding $\langle dN_{ch}/d\eta \rangle$ at midrapidity ($|\eta| < 0.5$). The value of $\langle dN_{ch}/d\eta \rangle$ in the inclusive (INEL>0) class is 5.96 \pm 0.23. The uncertainties are the quadratic sum of statistical and systematic contributions and represent standard deviations.

Class name	Ι	П	III	IV	V	VI	VII	VIII	IX	Х
$\sigma/\sigma_{\rm INEL>0}$	0-0.95%	0.95-4.7%	4.7-9.5%	9.5-14%	14–19%	19–28%	28-38%	38-48%	48-68%	68–100%
$\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}oldsymbol{\eta} angle$	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3	8.45 ± 0.25	6.72 ± 0.21	5.40 ± 0.17	3.90 ± 0.14	2.26 ± 0.12

ALICE Collaboration: J. Adam et al., Nature Physics 13 (2017) 535

TRD nuclei trigger

- A trigger on light (anti-)nuclei using the dependence of the ionisation on the charge number of the particle crossing the gas was studied intensively
- A first run in the p-Pb taking 2016

- Currently running in the standard trigger mix of ALICE in the pp data taking
- Expected enhancement mainly on Z=2 (anti-)nuclei, but possible reach up to (anti-)alpha even in pp is anticipated in 2017/2018 data taking campaign

20^{×10⁻³}

18

16

12E

10F

ALICE preliminary

0.5

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, deuterons

3₂ (GeV²/c³)

Coalescence parameter B₂

ALICE Collaboration: PRC 93, 024917 (2016)

- Coalescence parameter B_2 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- Simple coalescence expects B_2 to be constant

• 0-10% **●** 10-20%

20-40% 40-60%

← 60-100%

3.5

 p_{\perp} (GeV/c)

p-Pb

3

2.5

20×10⁻³

18E

16

14

12E

10F

ALICE preliminary

0.5

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, deuterons

15

3₂ (GeV²/c³)

Coalescence parameter B_2

ALICE Collaboration: PRC 93, 024917 (2016)

- Coalescence parameter B₂
 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B₂ scales like the HBT radii
 Decrease with centrality in Pb-Pb is understood as an increase in the source volume

20^{×10⁻³}

18E

16

14

12E

10F

ALICE preliminary

0.5

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, deuterons

1.5

2

2.5

3

3₂ (GeV²/c³)

Coalescence parameter B_2

- Coalescence parameter B_2 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B_2 scales like the HBT radii → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

Coalescence parameter B₂

- Coalescence parameter B₂ decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B₂ scales like the HBT radii
 → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

Coalescence parameter B_2

 $B_2 \, ({\rm GeV}^2/c^3)$

0.03

0.02

V0M Multiplicity Classes

0.8

I+II

• | |||

IV+V VI+VII

VIII+IX+X

ALICE Preliminary

 $d+\overline{d}$, pp $\sqrt{s} = 7$ TeV

1.2

pp

 $p_{\rm T}/A ~({\rm GeV}/c)$

4

- Coalescence parameter B_2 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B_2 scales like the HBT radii → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

 10^{-3}

 10^{-4}

0.5

Coalescence parameter B_2

V0M Multiplicity Classes

 $\langle dN_{ch} / d\eta_{ch} \rangle = 2.42$

 $\langle dN_{ch} / d\eta_{lab} \rangle = 26.22$

I (× 1)

II (× 2)

III (× 4)

IV + V (× 8)

VI (× 16)

VII (× 32)

VIII (× 64)

IX (× 128) X (× 256)

pp

1.8 p_/A (GeV/c)

1.6

Coalescence parameter B_2 $B_2 \, ({\rm GeV}^2/c^3)$ decreases with centrality in Pb-Pb **ALICE Preliminary** deuterons, pp, $\sqrt{s} = 13 \text{ TeV}$ 10 Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced ▋■▄∎∎▄ B_2 scales like the HBT radii 10^{-1} → Decrease with centrality in Pb-Pb is understood as an increase in the source volume 10^{-2} B₂ (GeV²/c³) Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ • 0-5% 5-10% • 10-20% • 20-30% 10⁻³ 30-40% 40-50% • 50-60% • 60-70% 0.4 0.6 0.8 • 70-80% \circ pp INEL $\sqrt{s} = 13$ TeV 80-90% pp INEL normalisation uncertainty: 2.55% 10^{-2}

Ph-Ph

2.5

*p*_/A (GeV/*c*) HYP2018, Portsmouth - Benjamin Dönigus

Coalescence parameter B_2

 10^{-1}

ALICE Preliminary

V0M Multiplicity Classes

 $\langle dN_{ch} / d\eta_{ch} \rangle = 2.42$

I (× 1)

II (× 2)

III (× 4)

IV + V (× 8)

VI (× 16)

VII (× 32)

VIII (× 64)

IX (× 128) X (× 256)

- Coalescence parameter B_2 $B_2 \, ({\rm GeV}^2/c^3)$ decreases with centrality in Pb-Pb deuterons, pp, $\sqrt{s} = 13 \text{ TeV}$ 10 Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced ▋■▄∎∎▄
- B_2 scales like the HBT radii → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

Coalescence parameter B₂

Thermal model fits

ALICE

- Different models describe particle yields including light (hyper-)nuclei well with T_{ch} of about 156 MeV
- Including nuclei in the fit causes no significant change in T_{ch}

Coalescence parameter B₂

- Coalescence parameter B₂
 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B₂ scales like the HBT radii
 → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

ALICE Collaboration, arXiv:1709.08522

Coalescence parameter B₂

- Coalescence parameter B₂ decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B₂ scales like the HBT radii
 → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

ALICE Collaboration, arXiv:1709.08522

ALICE Collaboration: J. Adam et al., PRC 93, 024917 (2016)

Combined Blast-Wave fit

ALICE Collaboration: J. Adam et al., PRC 93, 024917 (2016)

Simultaneous Blast-Wave fit of π^+ , K⁺, p, d and ³He spectra for central Pb-Pb collisions leads to values for $\langle \beta \rangle$ and T_{kin} close to those obtained when only π ,K,p are used

All particles are described rather well with this simultaneous fit

Outlook: Run 2

- Performance shown here only for a small fraction (~3M MB events)
- → Light nuclei are clearly visible
 → Interesting results ahead

 Run 2 of the LHC has started in 2015 and for Pb-Pb collisions ~ factor 10 increase expected in statistics

Expectations

- Run 3 & Run 4 of LHC will deliver much more statistics (50 kHz Pb-Pb collision rate)
- Upgraded ALICE detector will be able to cope with the high luminosity
- TPC Upgrade: GEMs for continous readout
- ITS Upgrade: less material budget and more precise tracking for the identification of hyper-nuclei
- Physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4

ITS Upgrade TDR: J. Phys. G 41, 087002 (2014)

State	$\mathrm{d}N/\mathrm{d}y$	B.R.	$\langle Acc \times \epsilon \rangle$	Yield
$^{3}_{\Lambda}H$	1×10^{-4}	25%	$11 \ \%$	44000
$\overline{\overline{4}}H$	2×10^{-7}	50%	7~%	110
${\overline 4\over\Lambda} He$	2×10^{-7}	32%	8 %	130

ALICE

Precision mass measurement

- The precise measurement of (anti-)nuclei ALICE Collaboration: Nature Phys. 11, 811 (2015) mass difference allows probing any difference in the interaction between nucleons and anti-nucleons
- Performed test of the CPT invariance of residual QCD "nuclear force" by looking at the mass difference between nuclei and anti-nuclei

- → Mass and binding energies of nuclei and anti-nuclei are compatible within uncertainties
 - → Measurement confirms the CPT invariance for light nuclei.

HYP2018, Portsmouth - Benjamin Dönigus

L. Zhu, C.M. Ko, X. Yin: PRC 92, 064911 (2015)

L. Zhu, C.M. Ko, X. Yin: PRC 92, 064911 (2015)

ALICE Collaboration: PRC 93, 024917 (2016)

TPC PID in Pb-Pb

ALICE Collaboration: PRC 93, 024917 (2016)

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

Thermal model fits

- Different models describe particle yields including light (hyper-)nuclei well with $T_{\rm ch}$ of about 156 MeV
- Including nuclei in the fit causes no significant change in $T_{\rm ch}$

- Observations similar to QM2014 results
- Including nuclei drives a non-equilibrium fit towards the equilibrium values

³He/p ratio increases also when going from pp to p-Pb, until it reaches the grand canonical thermal model value $(^{3}\text{He/p}=8x10^{-6} \text{ at } T_{ch}=156 \text{ MeV})$ HYP2018, Portsmouth - Benjamin Dönigus

$$\varepsilon = \frac{\left\langle y^2 \right\rangle - \left\langle x^2 \right\rangle}{\left\langle y^2 \right\rangle + \left\langle x^2 \right\rangle}$$

Initial coordinate-space anisotropy

Final momentum-space anisotropy

 $\frac{dN}{d\phi} \propto 1 + 2v_2 \cos[2(\phi - \Psi_R)] + 2v_4 \cos[4(\phi - \Psi_R)] + \dots$ Anisotropy self-quenches, so $v_2 \text{ is sensitive to early times}$

Deuteron flow

- Deuterons show a significant v₂
- Also the v₂ of deuterons follows the mass ordering expected from hydrodynamics
- A naive coalescence prediction is not able to reproduce the deuteron v₂
- A Blast-Wave prediction is able to describe the v₂ reasonably well

³He flow

³He also shows a significant v₂

³He flow

- Also the v_2 of ³He follows the mass ordering expected from hydrodynamics
- A naive coalescence prediction is not able to reproduce the ³He v₂
- A Blast-Wave prediction has difficulties to describe the v₂ reasonably well

Anti-tritons

