

### Future of the EIC Argonne Software Toolkit

Whitney Armstrong, David Blyth, Sergei Chekanov, Ian Cloët, Adam Freese, Sereres Johnston, Mohammad Hattawy, José Repond and the Argonne EIC Collaboration

> Argonne National Laboratory Funded by ANL LDRD

> > October 16, 2017





## Outline

- Quick OverviewGuiding Philosophy
- 2 Argonne Software ToolkitCritical Software Tools
- **3** Simulation and Reconstruction Data-Flows

(CiC)



4 Future Vision

### 5 Summary

# Full Simulation and Reconstruction Tasks

Basic tasks:

- **()** Event Generation Produce the simulation input events
- **2 Detector Simulation** Particle transport through detectors (Geant4)
- **3** Digitization Turn Sim Hits into realistic hits
- **4** Reconstruction Track, vertex, PID, PFA, and primary reconstruction
- **6 Performance Analysis** Collection of benchmark analyses used to tune the overall design

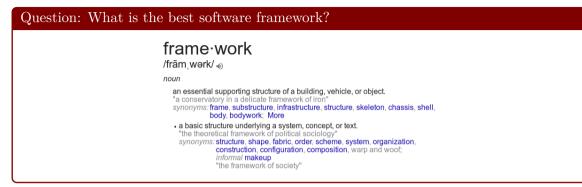
### Frameworks

### Question: What is the best software framework?

### frame·work

#### /frām wərk/ 📣

noun


an essential supporting structure of a building, vehicle, or object. "a conservatory in a delicate framework of iron" synonyms: frame, substructure, infrastructure, structure, skeleton, chassis, shell, body, bodywork; More • a basic structure underlying a system, concept, or text. "the theoretical framework of political sociology" synonyms: structure, shape, fabric, order, scheme, system, organization.

construction, configuration, composition, warp and woof; informal makeup

(CiC)

"the framework of society"

### Frameworks



Trick question. The best framework is having no framework!

The Argonne software toolkit follows the idea that large frameworks are bad and should be avoided.

### No Frameworks Classic case of "less is more"

### Why is this better?

- Fewer dependencies (always good)
- More freedom of choice
- Nested frameworks result in more rigid larger frameworks
- Precludes certain ideas/uses (often addressed by refactoring)

(CiC)

Frameworks are unavoidable. Examples:

- operating system + compiler
- language
- ROOT, GEANT4

Many frameworks we implicitly accept or take for granted, e.g.,  $x86\_64$ 

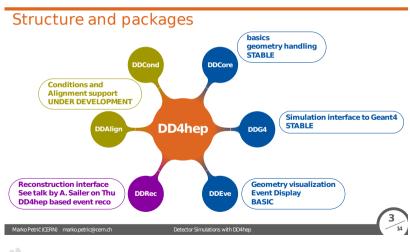
## Argonne EIC Software Toolkit

Some software tools: (in no particular order)

- HepSim
- GEANT4
- ROOT
- DD4hep (S.Chekanov's talk)
- LCIO, ProMC, proio, podio, fcc-edm, ...
- SHC+ lesim  $\rightarrow$  evochain (D.Blyth's talk)  $\rightarrow$  This talk NPdet + a collection of tools
- parameic : light weight parameter passing tool (under development)

## Outline

Quick OverviewGuiding Philosophy


2 Argonne Software ToolkitCritical Software Tools

Simulation and Reconstruction Data-Flows



## DD4hep


The result of a study from the Advanced European Infrastructures for Detectors at Accelerators (EU AIDA 2020) initiative.



- Thoughtfully designed
- Interface to Geant4
- Single source of geometry
- Simple geometry hook
   → better algorithm
   development
- Full concept detector described in human readable text file
- Easily used in a root/python scripts

# Nuclear Physics Detector Library (NPDet)

NPDet is a **collection of parameterized detectors** (using DD4hep) which can be used to construct full concept detectors in a single text file.



## Add a new detector

•••

```
static Ref_t build_detector(Detector& det, xml_h e, SensitiveDetector sens)
{
    xml_det_t x_det = e;
    Material air = det.air();
    double z_offset = dd4hep::getAttrOrDefault(x_det, _Unicode(zoffset), 10.0*dd4hep::cm);
    ... [ Build geometry ]
}
DECLARE_DETELEMENT(SimpleRomanPot, build_detector)
```

```
<detector id="1" name="MyRomanPot" type="SimpleRomanPot"
            vis="RedVis" readout="RomanPotHits" zoffset="1.0*m">
</detector>
[...]
<readouts>
        <readout name="RomanPotHits">
            <segmentation type="CartesianGridXY" grid_size_x="1.0*mm" grid_size_y="1.0*cm" />
            <id>>system:5,layer:9,module:14,x:32:-16,y:-16</id>
</readout>
</readout>
```

CiC)

# $\mathsf{GEANT} + \mathsf{DD4hep}$

The largest framework in the toolkit

DD4hep provides a  $\mathbf{single}\ \mathbf{geometry}\ \mathbf{source}$  used in both simulation and reconstruction

Geometry hooks allow for development of flexible and unified reconstruction

(eic)

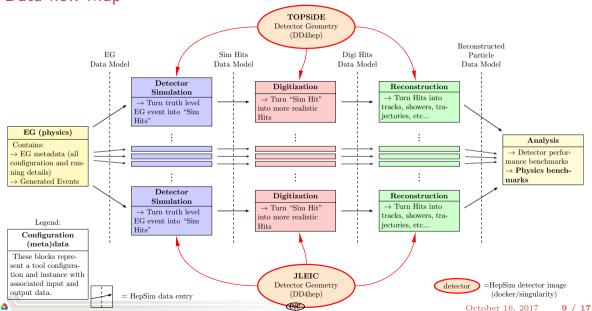
- Allows easier development of algorithms
- Generic algorithms become the focus of development
- No large framework to battle and integrate with

## Outline

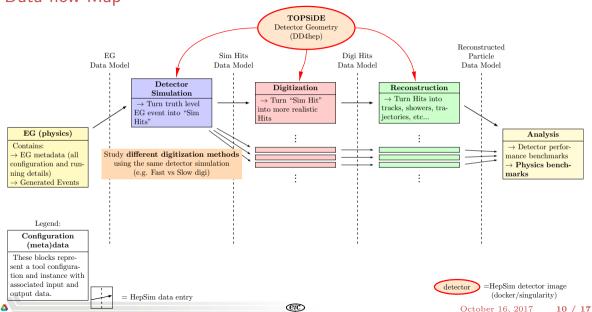
Quick OverviewGuiding Philosophy

Argonne Software ToolkitCritical Software Tools

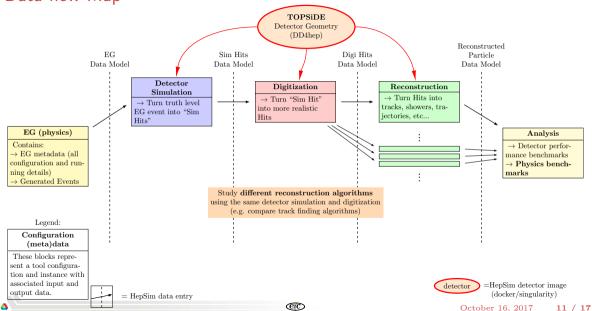
**3** Simulation and Reconstruction Data-Flows


(CiC)




4 Future Vision




## Data-flow Map



## Data-flow Map



## Data-flow Map



## DD4hep Geometry Hooks C++ in a ROOT script

```
dd4hep::Detector& detector = dd4hep::Detector::getInstance();
                                                             // Get the DD4hep instance
detector.fromCompact("my awesome detector.xml");
                                                             // Load the compact XML file
dd4hep::rec::CellIDPositionConverter converter(detector);
                                                             // Position/cellid converter tool
[...]
   for(const auto& h: hits) {
     auto cell = h->cellID;
                                                    // Unique segment/volume identifier
     auto pos1 = converter.position(cell); // The segmentation hit postion
     auto cell_dim = converter.celldimensions(cell); // Dimensions of segment/volume
     [...]
[...]
auto
       bField = detector.field().magneticField(pos); // Get the magnetic field
double
       Bz
              = bField.z()/dd4hep::tesla:
```

(CiC)

### That's it. See NPDet examples for a tutorial (work in progress).

## Where are we going with this?

Use geometry hooks to develop generic digitization and reconstruction algorithms

Not detector concept specific...



- →• Digitization Algorithms
- $\rightarrow \bullet$  Tracking Finding Algorithms
- →• Track Fitting Algorithms
- Algorithms, Algorithms, Algorithms

### Focus on the algorithm development

- The product of effort is high quality algorithm (not a bigger framework)
- Many existing algorithms are embedded in tightly coupled frameworks

Can easily collaborate and get contributions from other R&D Consortia!

## Outline

Quick OverviewGuiding Philosophy

Argonne Software ToolkitCritical Software Tools

Simulation and Reconstruction Data-Flows

(CiC)

eic

4 Future Vision

5 Summary

# Tracking Example

Developing good algorithms is the goal!

### A note about recent ROOT developments

**TDataFrame is awesome!** Check it out.

(CiC)

```
[=](const std::vector<lcio2::TrackerHitData>& hits) {
   HoughTransform ht(captured_params);
   std::vector<std::vector<lcio2::TrackerHitData>> res = ht(vec_hits);
   return res;
   };
   [&](const std::vector<std::vector<lcio2::TrackerHitData>>& possible_tracks) {
    std::vector<lcio2::TrackData> result_tracks;
   for(const auto& track_seed : possible_tracks) {
      [GenFit...]
    }
    return result_tracks;
};
```

Frameworks come and go, algorithms are forever...

# Moving Forward

Extracting algorithms from existing frameworks

- We want to build a collection of **generic algorithms**
- Currently there are many excellent algorithms embedded in tightly coupled frameworks will extracted
- These can be made more general with DD4hep hooks
- Individual detector experts are most familiar their operation  $\rightarrow$  best people to characterize its digitization

## Outline

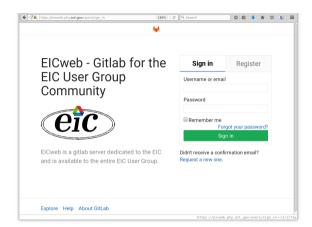
Quick OverviewGuiding Philosophy

Argonne Software ToolkitCritical Software Tools

Simulation and Reconstruction Data-Flows

(CiC)

eic


Future vision

### 5 Summary

# Links and References

## • HepSim

- **EICweb** (eicweb.phy.anl.gov) EIC dedicated gitlab server (publicly available to EIC UG)
- Singularity
- DD4hep
- lcgeo



### DD4hep Presentations

Detector Simulations with DD4hep - Marko Petric DD4hep Based Event Reconstruction - Andre Sailer The FCC software: how to keep SW experiment independent - A. Zaborowska

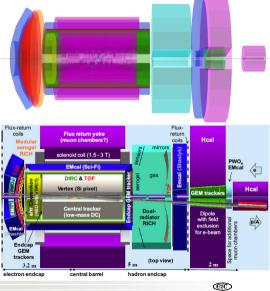
October 16, 2017

16 / 1

### Summary EIC Argonne Software Toolchain (EAST)

- We are shedding tightly coupled frameworks for a flexible toolkit
- Focusing on algorithm development not framework development
- Collaboration tools for the EIC User Group are available now.
- We want to invite the entire EIC User Group to collaborate.
  - Contribute new EG data (physics) Let's see what detectors work best
  - Add detectors to NPDet detector library Make your detector technology available

- Add reconstruction data for a new concept detector
- Write benchmarks (detector and physics) Optimise your concept detector to physics
- $\bullet\,$  Suggest ideas for improvement! We want EIC UG feedback

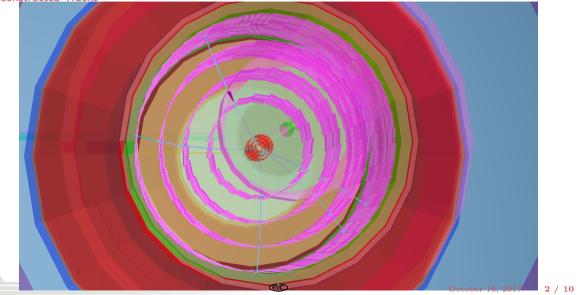

# Backup Slides

Δ

**EiC** 

# JLEIC

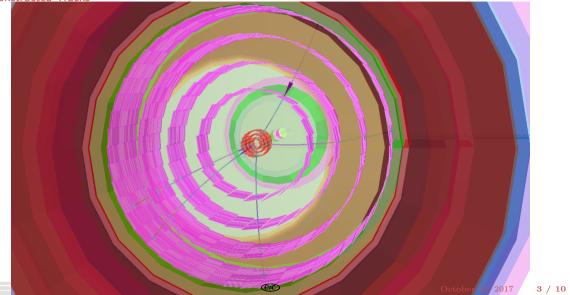
#### Sereres Johnston




October 16, 2017 1 / 10

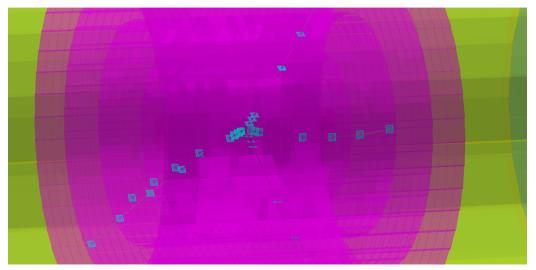
# JLEIC

Δ


#### Reconstructed Tracks

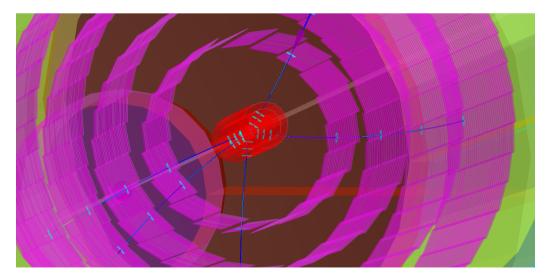


# JLEIC


Δ

### Reconstructed Tracks

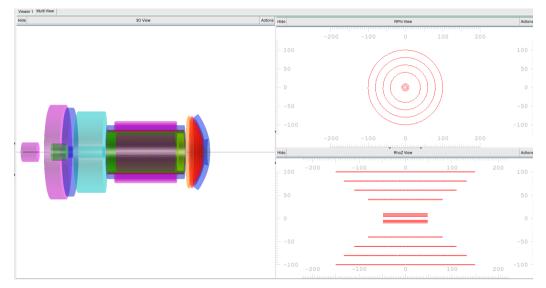



### JLEIC Reconstructed Tracks

Δ



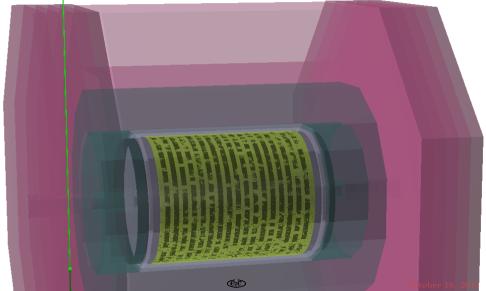
**EiC** 


## Reconstructed Tracks



C

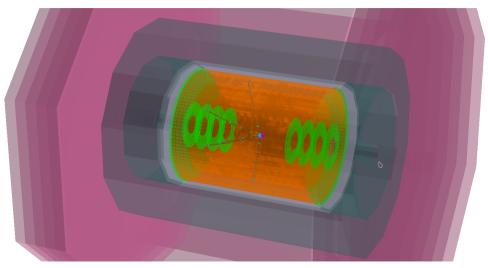
## **Reconstructed Tracks**


Δ



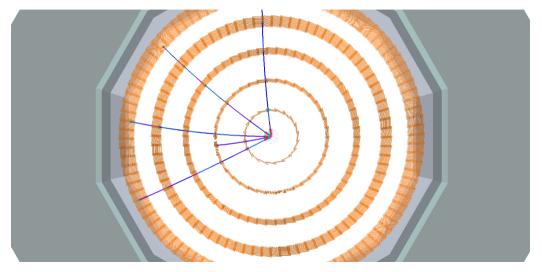
Cic

# SiEIC


SiD style detector



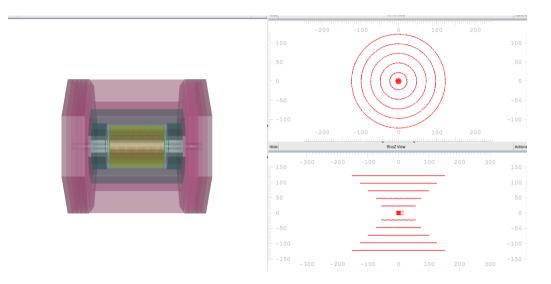
7 / 10


### SiEIC Reconstructed Tracks

Δ



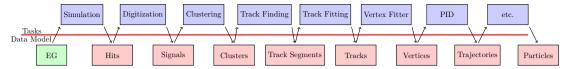
**EiC** 


### SiEIC Reconstructed Tracks

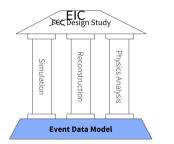


CiC

### **Reconstructed Tracks**


Δ




October 16, 2017 10 / 10

Cic

## Why a Data Model?



(CiC)



The FCC software: how to keep SW experiment independent - A. Zaborowska

- The **Data Model** is the boundaries of every task.
- A **Common** data model is the first step towards generic algorithms and tasks
- Challenge: Getting everyone to agree
- EAST initial data model: LCIO
- Note: *Data Model* does not mean *serialization tool*! It is just the data structures
- podio is a new tool which by default uses ROOT for serialization (new serialization libraries can be easily added)