

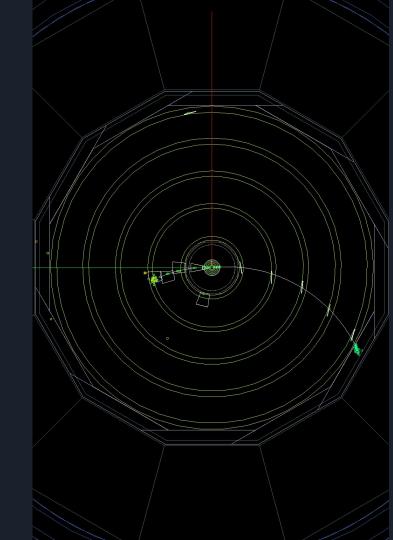
Status of Software at ANL and Containerization

David Blyth

Simulation and Reconstruction

Legacy chain: SLIC + LCSim + slicPandora

- Full simulation and reconstruction with PFA for SiD-based detectors
- Has allowed us to study the applicability of a SiD-based detector for the EIC
- Limited to SiD subdetectors and symmetry


Evolution chain: lcgeo + LCSim

- Drops SLIC in favor of the DD4Hep-based lcgeo simulation
- Does not currently include PFA

Legacy Chain

- Adaptation of the SiD simulation and reconstruction software chain
- Full simulation + tracking + PFA
- Event visualization with Jas4pp (S. Chekanov)
- Thanks to a few efficiency improvements, digitization and tracking time in LCSim has been dramatically reduced
 - E.g. for sqrt(s) = 35 GeV DIS events, time has been reduced by a factor of ~35

Evolution Chain (DD4Hep)

- Created in order to evolve away from SiD chain
- DD4Hep and LCSim made to work together for SiD-based detectors
- LCSim will soon be replaced with digitization and reconstruction that leverages DD4Hep detector description
- With LCSim replaced, the chain will be used to simulate and reconstruct detectors that are very different from SiD (e.g. Cherenkov components)
- See presentation by W. Armstrong tomorrow morning

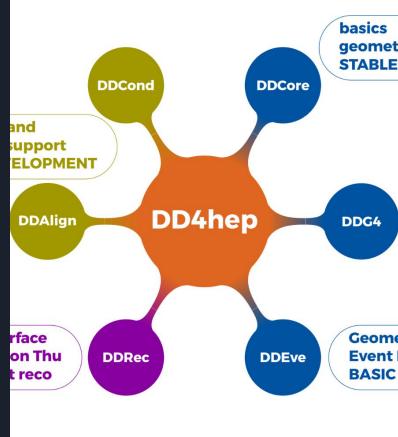
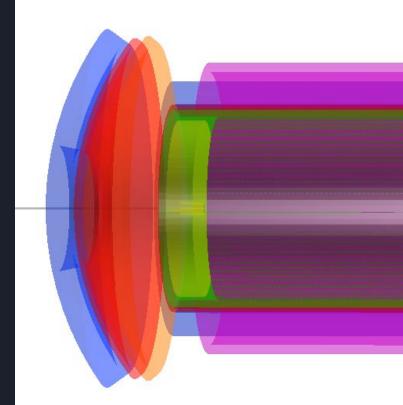
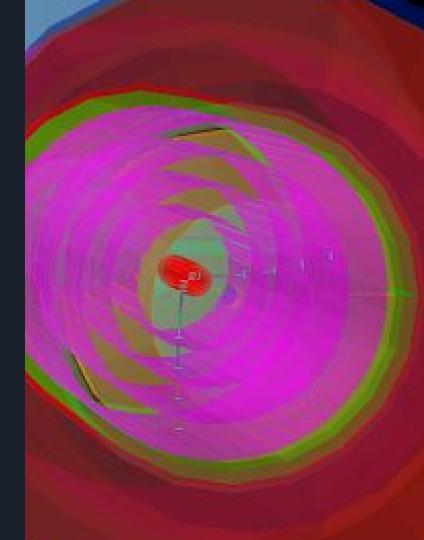



Image credit: Marko Petrič (CERN)

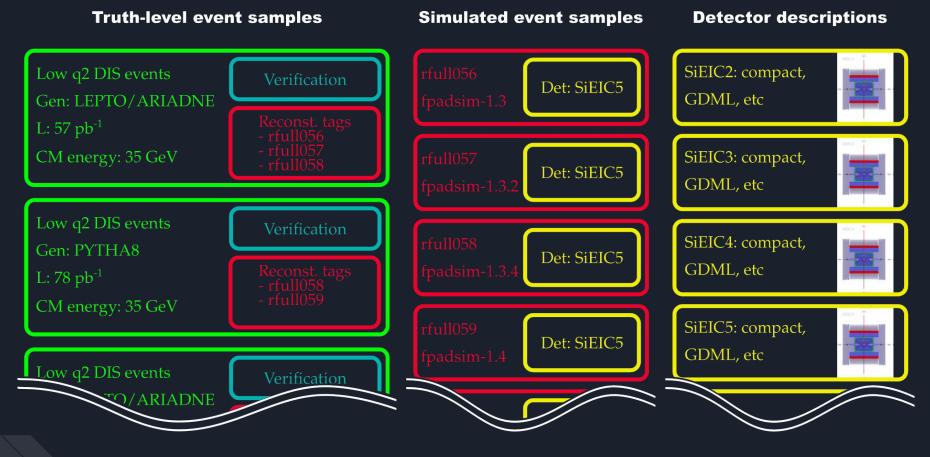
NPDet


- DD4Hep-based parameterized detector library for nuclear physics experiments (W. Armstrong, S. Johnston)
- Compatible with the "Evolution Chain"
- Provides foundations for a number of detector concepts
 - JLEIC
 - SiEIC
 - o ...
- Excellent place to collaborate *right now*! Any effort put into developing detector concepts here *will not be wasted*.

GenFind

- Generic track finding library in its early stages coupled to GenFit
 - Uses Hough transform and conformal mapping
- Working track finding for JLEIC case thanks to S. Johnston
 - However, still uses "SimTrackerHit" portion of LCIO model as input
- Near future:
 - $\circ \qquad {\sf Update \ to \ use \ digitized + reconstructed \ hits}$
 - $\circ \qquad {\sf Generalize} \ {\sf using} \ {\sf SiEIC} \ {\sf as} \ {\sf test} \ {\sf case}$

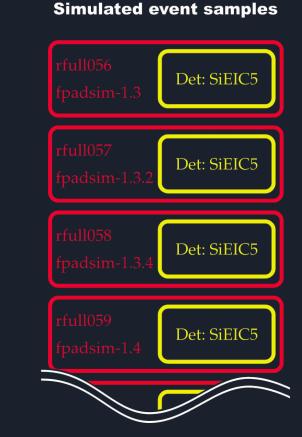
Proio


- Language-neutral IO library for storing and transmitting intermediate and reconstructed data
 - **Primary motivator:** data model evolution and *sharing data*
- Based on Protobuf, and inspired by ProMC (S. Chekanov) and EicMC (A. Kiselev)
 - Conceptual merger of LCIO and ProMC/EicMC
- Implemented in
 - Go (tools mostly written in go: portable *and* performant)
 - Python
 - C++
 - \circ Java (read-only for now)
- Will present on this in detail tomorrow
 - To get a head start: <u>https://github.com/decibelcooper/proio</u>

HepSim

- A simple but powerful tool for \bullet building a "Repository with MC simulations for particle physics"
 - Consists of a web interface and command-line tools
- Already contains ~2 Billion events \bullet
 - LO+PS, NLO, and NLO+PS
- Environment to study detector \bullet effects with fast and full simulations
- See next talk by S. Chekanov \bullet

-0	Get involv	ved Full	Search Exp	periments Manual Mirrors Tools About	Login			HEP.ANL	.GOV
how all		pS		rlo simulations for particle physics	D.Blyth	17: rfull058 tag with i		5	- C-1.
→← p TeV	Reposit	tory with	i pionte ca	no simulations for particle physics	D.Blyth	17: rfull057 tag with a	alternativ	e tracking stra	tegy from 👻
B TeV	Show 2	5 🔻 ent	ries	Previous	1 2 3	4 5 11	Next	Search:	
TeV			E						
'e V	Id *	-+- 0	[TeV]	Dataset name 🕴	Generator	Process	Topic	Files	Created 0
v	286	e+e-	3	tev3ee_pythia8_qcdjets_tunes_qedoff	PYTHIA8	QCD dijet events with 7 tunes without ISR	SM	Info	2017/07/14
-	285	e+e-	0.38	gev380ee_pythia8_qcdjets_tunes_qedof	PYTHIA8	QCD dijet events with 7 tunes wothout ISR	SM	Info	2017/07/14
	284	e-p	0.035	gev35ep_pythia8_dis1q2	PYTHIA8	DIS events at Q2>1 GeV2	SM	Info	2017/06/26
	283	e-p	0.035	gev35ep_lepto6ard_dislowq2_jlab	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>4 GeV2	SM	Info	2017/06/16
	282	e+e-	0.5	gev500ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	2017/06/12
	281	e+e-	14	tev14pp_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with tune 14.	SM	Info	2017/06/09
	280	e+e-	3	tev3ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	2017/06/03
	279	e+e-	0.38	gev380ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	2017/06/03
	278	e+e-	3	tev3ee_pythia8_qcdjets_tunes	PYTHIA8	QCD dijet events with 7 tunes	SM	Info	2017/05/20
	277	e+e-	0.38	gev380ee_pythia8_qcdjets_tunes	PYTHIA8	QCD dijet events with 7 tunes	SM	Info	2017/05/19
	276	e-p	0.035	gev35ep_lepto6ard_dislowq2	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>4 GeV2	SM	Info	2017/05/17
	275	e-p	0.035	gev35ep_lepto6_dis1q2	LEPTO/PYTHIA	DIS events at Q2>1 GeV2 and W2>5 GeV2	SM	Info	2017/05/01
	274	e+e-	3	tev3ee_pythia8_higgs_ww	PYTHIA8	Higgs to WW	SM	Info	2017/04/29
	273	e+e-	3	tev3ee_pythia8_higgs_bbar	PYTHIA8	Higgs to bbar	SM	Info	2017/04/29
	272	e+e-	3	tev3ee_pythia8_qcdjets	PYTHIA8	QCD dijet events	SM	Info	2017/04/29
	271	e-p	0.035	gev35ep_lepto6ard_dis1q2	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>5 GeV2	SM		
	270	рр	13	tev13pp_pythia8_wh2l	PYTHIA8	WHO			
	269	pp	13	tev13pp_pythia6_rho_techni	РҮТНИ				
	268	рр	14	tev14pp_pythia8_higgs2mumu					
	267	рр	13	tev13pp_pythia8_wprimes					


Logical organization of HepSim

HepSim and Containers

• Would like to standardize layout of reconstruction container images

- Standard entry-point script within container that takes input and output directories as arguments?
- Reconstruction tags in HepSim will specify/correspond to Docker Hub tags
- Anyone with Singularity or Docker will be able to process arbitrary MC data with the reconstruction software on
 - Desktop
 - OSG
 - HPC
 - etc...

Container Implementations

- Docker
 - $\circ \qquad {\sf Developed for IT industry}$
 - Integrated into cloud services such as AWS, Google Cloud, and Azure
 - Docker Hub (hub.docker.com)
- Singularity
 - Developed at LBL
 - Easier to use interactively on desktop
 - Better suited for grid and HPC
 - Can import from Docker Hub
- Shifter
 - Developed at NERSC
 - Specifically for deployment of images on HPC clusters
 - Imports from Docker Hub

Experiences with Containerization at ANL

- Much of our simulation and reconstruction has been moved to containers on both the Open Science Grid (OSG) and HPC clusters.
- Primary Docker images have been developed and hosted on Docker Hub

https://hub.docker.com/u/argonneeic/

• Singularity and Shifter containers have been run in Grid/HPC environments

Dockerfiles

• Essentially source code for Docker images

- Can be readily revision controlled
 - E.g. <u>https://eicweb.phy.anl.gov/dblyth/FPa</u> <u>DSimContainer</u>
- Serves as
 - Instructions to building a Docker image
 - Documentation for image
- Good idea to
 - Import from image tags that are not subject to change
 - Reference specific software releases or commit hashes

```
# Author: David Blyth
    # Description: Docker build intended to replicate the FPaDSim environment
          created by Sergei Chekanov
4
    FROM dbcooper/arch:2017-02-18
5
    # Set up basic environment
    ## Required tools from Arch repository
    RUN pacman -S -- noconfirm \
9
            sed \
            sudo
    RUN useradd -m -G wheel fpadsimuser; \
        sed -i.bak 's/# \(%wheel ALL=(ALL) NOPASSWD: ALL\)/\1/' /etc/sudoers;
    USER fpadsimuser
    WORKDIR /home/fpadsimuser
    CMD /bin/bash -1
    # ROOT
    ## Required tools from Arch repository
    RUN sudo pacman -S --noconfirm \
            awk \
            base \
            base-devel \
            binutils \
            cmake \
            fakeroot \
            gcc \
            git \
            grep \
            gzip \
            make \
```

python &&

Dockerfiles

•	Essentially	source code	for Dock	er images
---	-------------	-------------	----------	-----------

- Can be readily revision controlled
 - E.g. <u>https://eicweb.phy.anl.gov/dblyth/FPa</u> <u>DSimContainer</u>
- Serves as
 - Instructions to building a Docker image
 - Documentation for image
- Good idea to
 - Import from image tags that are not subject to change
 - Reference specific software releases or commit hashes

```
64
     # CLHEP
     RUN sudo pacman -S -- noconfirm \
66
                     wget \
                     xerces-c
     ENV CLHEP VERSION 2.3.4.4
     RUN wget http://proj-clhep.web.cern.ch/proj-clhep/DISTRIBUTION/tarFiles/clhep-
             tar -xzf clhep.tgz && \
             mv $CLHEP VERSION/CLHEP ./ && \
             rm -rf $CLHEP VERSION && \
             mkdir build && \
             cd build && \
             CXXFLAGS=-std=c++14 cmake .../CLHEP && \
78
             make - j30 && \
79
             sudo make install && \
80
             cd .. && \
             rm -rf build CLHEP clhep.tgz
82
     # GEANT4
     ENV GEANT4 VERSION 10.3.1
     RUN git clone https://github.com/Geant4/geant4.git && \
             cd geant4 && \
             git checkout tags/v$GEANT4 VERSION && \
             cd .. && \
             mkdir build && \
             cd build && \
             cmake ../geant4 \
                     -DGEANT4 BUILD CXXSTD=14
                     -DGEANT4 INSTALL_DATA=ON \
                     -DGEANT4 USE GDML=ON \
                     -DGEANT4 USE SYSTEM CLHEP=ON && \
97
             make - j30 && \
             sudo make install && \
```

-- -

Container Image Development Practices...

- Can differ significantly from practices of IT industry
 - For IT, there is a strong incentive to have small, single-purpose images
 - IT industry uses containers in cloud
 - On OSG and HPC, it is a different story
 - Images can be large, and it does not affect the amount of IO
 - On OSG, images are fed unpacked over CVMFS, on-demand
 - On HPC, a high-bandwidth connection serves parts of image on-demand
- For me, all software components meant to work together are packaged together in an image
 - Images are large: ~5 GiB
 - Only storage quotas apply pressure to keep images from being much larger
- In this usage, container images are less about providing *appliances*, and more about providing a cohesive simulation/reconstruction *environment*

Singularity on OSG

- OSG scripts generate unpacked singularity images served over CVMFS
 - CVMFS offers aggressive caching
 - Docker import can lose some environment information
 - In this case, it is possible to copy proper image files to nodes, but in this case image size matters!
 - Using Singularity limits jobs to a subset of grid resources
- Difficulties with OSG image distribution ultimately has discouraged use
 - My work has instead grown to favor local HPC resources (namely Bebop)

Singularity on Bebop

- New Cray CS400 cluster at ANL
- Shockingly easy!
 - 1. Load Singularity module
 - 2. Pull Docker Hub or shub image into local image file
 - 3. Load image file from nodes over high-speed link
- "Legacy chain" and "Evochain" run out of the box on Broadwell nodes
 - Not so much on KNL nodes: Java apps raise exceptions over insufficient resources
 - J. Taylor Childers discovered that it is max thread limits that prevent Java GC threads from spawning

Summary

- The power of containers can be summed up in the following fact:
 - Our entire simulation and reconstruction was converted over from running on OSG to a brand new HPC cluster in about 2 hours.
- This kind of portability can be a very powerful collaboration tool
 - E.g., people with little to no knowledge of particular simulation/reconstruction software could evaluate the performance of a detector design and/or reconstruction procedure for their physics case
- Other ways to collaborate...
 - Share Dockerfiles
 - Share base images
 - o ...